集成运放计算方法
- 格式:doc
- 大小:32.50 KB
- 文档页数:1
运算放大器计算方法
一、介绍
运算放大器(Operational Amplifier,简称Op-Amp)是一种多用途的电子元件,主要用于放大、运算以及控制信号。
它是一种模拟集成电路,通常由电阻、电容、二极管、晶体管等器件构成,经过精心设计,可以完成复杂的信号处理任务。
运算放大器可以用于实现多种运算,如增益放大、滤波、信号分离和信号复位,是模拟信号处理的基础构件。
二、计算方法
1、计算增益
放大器的增益是指放大器输出信号和输入信号之间的比值,也可以看作放大器级数。
其计算公式为:
增益=输出信号/输入信号
2、计算输出/输入比率
放大器的输出/输入比率是指放大器输出信号和输入信号之间的
比值,其计算公式为:
输出/输入比率=输出电压/输入电压
3、计算输出电压
放大器的输出电压是指放大器输出信号的电压值,其计算公式为:输出电压=输入电压×增益
以上是放大器的主要计算方法,根据实际应用情况可以采用不同的计算方法。
电容的运算放大器电路是一种常见的电子电路,它可以实现电压放大和滤波功能,广泛应用于许多电子系统中。
本文将从基本概念、电路结构、工作原理和计算方法等方面对含电容的运算放大器电路进行详细介绍,帮助读者更好地理解和应用这一电路。
一、基本概念1. 运算放大器(Operational Amplifier,简称Op-Amp)是一种集成电路,具有高增益、高输入阻抗、低输出阻抗等特点,广泛应用于电子电路中。
2. 电容是一种存储电荷的元件,具有阻抗与频率成反比的特性,可以用于滤波和信号处理。
二、电路结构含电容的运算放大器电路通常由运算放大器、电容和其它元件组成,其中电容可以用来实现滤波、积分、微分等功能。
三、工作原理1. 电容的作用:电容在运算放大器电路中可以用来滤波、积分、微分等。
在滤波电路中,电容可以与电阻配合,实现低通滤波、高通滤波、带通滤波等功能。
2. 电容的阻抗特性:电容的阻抗与频率成反比,即Zc=1/(jωC),其中Zc为电容的阻抗,ω为角频率,C为电容的电容值。
3. 运算放大器的特性:运算放大器具有高输入阻抗、低输出阻抗、无限大的开环增益等特点,在实际应用中可以近似认为是理想运算放大器。
四、计算方法1. 低通滤波电路的计算:对于低通滤波电路,可以通过电容和电阻的组合来实现。
其传递函数为H(jω)=1/(1+jωR1C1),其中R1和C1分别为电阻和电容的取值。
通过调整R1和C1的取值,可以实现不同的频率特性。
2. 高通滤波电路的计算:高通滤波电路同样可以通过电容和电阻的组合来实现。
其传递函数为H(jω)=jωR2C2/(1+jωR2C2),其中R2和C2分别为电阻和电容的取值。
通过调整R2和C2的取值,可以实现不同的频率特性。
3. 带通滤波电路的计算:带通滤波电路通常采用多级滤波电路进行实现,可以组合低通滤波和高通滤波电路来实现。
可以通过串联或并联的方式组合低通和高通滤波电路,来实现不同的频率特性。
集成运放的性能主要参数及国标测试方法集成运放的性能可用一些参数来表示。
集成运放的主要参数:1.开环特性参数(1)开环电压放大倍数Ao。
在没有外接反馈电路、输出端开路、在输入端加一个低频小信号电压时,所测出输出电压复振幅与差动输入电压复振幅之比值,称为开环电压放大倍数。
Ao越高越稳定,所构成运算放大电路的运算精度也越高。
(2)差分输入电阻Ri。
差分输入电阻Ri是运算放大器的主要技术指标之一。
它是指:开环运算放大器在室温下,加在它两个输入端之间的差模输入电压变化量△V i与由它所引起的差模输入电流变化量△I i之比。
一般为10k~3M,高的可达1000M以上。
在大多数情况下,总希望集成运放的开环输入电阻大一些好。
(3)输出电阻Ro。
在没有外加反馈的情况下,集成运放在室温下其输出电压变化与输出电流变化之比。
它实际上就是开环状态下集成运放输出级的输出电阻,其大小反映了放大器带负载的能力,Ro通常越小越好,典型值一般在几十到几百欧。
(4)共模输入电阻Ric。
开环状态下,两差分输入端分别对地端呈现的等效电阻,称为共模输入电阻。
(5)开环频率特性。
开环频率特性是指:在开环状态下,输出电压下降3dB所对应的通频带宽,也称为开环-3dB带宽。
2.输入失调特性由于运算放大器输入回路的不对称性,将产生一定的输入误差信号,从而限制里运算放大器的信号灵敏度。
通常用以下参数表示。
(1)输入失调电压Vos。
在室温及标称电源电压下,当输入电压为零时,集成运放的输出电位Vo0折合到输入端的数值,即:Vos=Vo0/Ao失调电压的大小反映了差动输入级元件的失配程度。
当集成运放的输入端外接电阻比较小时。
失调电压及其漂移是引起运算误差的主要原因之一。
Vos一般在mV级,显然它越小越好。
(2)输入失调电流Ios。
在常温下,当输入信号为零时,放大器两个输入端的基极偏置电流之差称为输入失调电流。
即:Ios=Ib- — Ib+式中Ib-、Ib+为放大器内两个输入端晶体管的基极电流。
实验五 集成运算放大器的基本运算电路一、实验目的1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。
2、正确理解运算电路中各组件参数之间的关系和“虚短”、“虚断”、“虚地”的概念。
二、设计要求1、设计反相比例运算电路,要求|A uf |=10,R i ≥10K Ω,确定外接电阻组件的值。
2、设计同相比例运算电路,要求|A uf |=11,确定外接电阻组件值。
3、设计加法运算电路,满足U 0=-(10U i1+5U i2)的运算关系。
4、设计差动放大电路(减法器),要求差模增益为10,R i >40K Ω。
5、应用Multisim8进行仿真,然后在实验设备上实现。
三、实验原理1、理想运算放大器特性集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。
当外部接入不同的元器件组成负反馈电路时,可以实现比例、加法、减法、积分、微分等模拟运算电路。
理想运放,是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。
开环电压增益 A ud =∞ 输入阻抗 r i =∞ 输出阻抗 r o =0 带宽f BW =∞失调与漂移均为零等。
理想运放在线性应用时的两个重要特性: (1)输出电压U O 与输入电压之间满足关系式U O =A ud (U +-U -)由于A ud =∞,而U O 为有限值,因此,U +-U -≈0。
即U +≈U -,称为“虚短”。
(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。
这说明运放对其前级吸取电流极小。
上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。
2、基本运算电路 (1)反相比例运算电路电路如图2.5.1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1//R F 。
图2.5.1反相比例运算电路图2.5.2反相加法运算电路(2) 反相加法电路i 1F O U R R U -=电路如图2.5.2所示,输出电压与输入电压之间的关系为)U R RU R R (U i22F i11F O +-=R 3=R 1//R 2//R F (3)同相比例运算电路图2.5.3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为i 1FO )U R R (1U +=R 2=R 1//R F 当R 1→∞时,U O =U i ,即得到如图2.5.3(b)所示的电压跟随器。
实验13 集成运放组成的基本运算电路一、实验目的:1.掌握集成运放组成的比例、加法和积分等基本运算电路的功能。
2.了解集成运算放大器在实际应用时应考虑的一些问题。
3.掌握在放大电路中引入负反馈的方法。
二、实验内容1.实现两个信号的反相加法运算。
2.实现同相比例运算。
3.用减法器实现两信号的减法运算。
4.实现积分运算。
5.用积分电路将方波转换为三角波。
三、实验准备1.复习教材中有关集成运放的线性应用部分。
2.拟定实验任务所要求的各个运算电路,列出各电路的运算表达式。
3.拟定每项实验任务的测试步骤,选定输入测试信号υS 的类型(直流或交流)、幅度和频率范围。
4.拟定实验中所需仪器和元件。
5.在图9.30所示积分运算电路中,当选择υI =0.2V 时,若用示波器观察υO (t )的变化轨迹,并假定扫速开关置于“1s/div ”,Y 轴灵敏度开关置于“2V/div ”,光点一开始位于屏幕左上角,当开关S 2由闭合转为打开后,电容即被充电。
试分析并画出υO 随时间变化的轨迹。
四、实验原理与说明由集成运放、电阻和电容等器件可构成比例、加减、积分、微分等模拟运算电路。
在这些应用中,须确保集成运放工作在线性放大区,分析时可将其视为理想器件,从而得出输入输出间的运算表达式。
下面介绍几种常用的运算电路:1.反相加法运算电路如图9.27所示,其输入与输出之间的函数关系为:)(2211I f I fO v R R v R R v +-=图9.27 反相加法运算电路 通过该电路可实现信号υI1和υI2的反相加法运算。
为了消除运放输入偏置电流及其漂移造成的运算误差,须在运放同相端接入平衡电阻R 3,其阻值应与运放反相端的外接等效电阻相等,即要求R 3= R l ∥R 2∥R f 。
实验时应注意:(1)为了提高运算精度,首先应对输出直流电位进行调零,即保证在零输入时运放输出为零。
(2)输入信号采用交流或直流均可,但在选取信号的频率和幅度时,应考虑运放的频率响应和输出幅度的限制。
熟悉运放三种输入方式的基本运算电路及其设计方法2、了解其主要特点,掌握运用虚短、虚断的概念分析各种运算电路的输出与输入的函数关系.3、了解积分、微分电路的工作原理和输出与输入的函数关系。
学习重点:应用虚短和虚断的概念分析运算电路.学习难点:实际运算放大器的误差分析集成运放的线性工作区域前面讲到差放时,曾得出其传输特性如图,而集成运放的输入级为差放,因此其传输特性类似于差放。
当集成运放工作在线性区时,作为一个线性放大元件v o=A vo v id=A vo(v+—v—)通常A vo很大,为使其工作在线性区,大都引入深度的负反馈以减小运放的净输入,保证v o 不超出线性范围。
对于工作在线性区的理想运放有如下特点:∵理想运放A vo=∞,则 v+-v-=v o/ A vo=0 v+=v-∵理想运放R i=∞ i+=i—=0这恰好就是深度负反馈下的虚短概念.已知运放F007工作在线性区,其A vo=100dB=105 ,若v o=10V,R i= 2MΩ.则v+-v-=?,i+=?,i—=?可以看出,运放的差动输入电压、电流都很小,与电路中其它电量相比可忽略不计.这说明在工程应用上,把实际运放当成理想运放来分析是合理的。
返回第二节基本运算电路比例运算电路是一种最基本、最简单的运算电路,如图8。
1所示。
后面几种运算电路都可在比例电路的基础上发展起来演变得到。
v o∝ v i:v o=k v i(比例系数k即反馈电路增益 A vF,v o=A vF v i)输入信号的接法有三种:反相输入(电压并联负反馈)见图8.2同相输入(电压串联负反馈)见图8.3差动输入(前两种方式的组合)讨论:1)各种比例电路的共同之处是:无一例外地引入了电压负反馈.2)分析时都可利用”虚短"和"虚断"的结论: i I=0、v N=v p。
见图8.43)A vF的正负号决定于输入v i接至何处:接反相端:A vF〈0接同相端:A vF>0,见图8.5作为一个特例,当R1→∞时A VF=1,电路成为一个电压跟随器如图8.6所示。
电子组魏永钦
[课题]:集成运放的计算
[课时]:1课时[课型]:习题课
[教学目的]:
1.应用基本公式计算
2.掌握复杂电路的计算方法
[教学重点]:计算方法的应用
[教学难点]:复杂电路的解题讲解
[复习指导]:由容易到难依次分析,运用方法解答难题
[学法指导]:敢于参与,通过展示—合作—练习的学法得出结论
[授课过程]:
导课:对07、08年高考试题分析特点导出课题| 简析试题
一.展示较易试题|
由学生画出试题电路|
学生进行点评、讲解,分析| 1--2位同学,补充讲解总结方法1:直接代公式法| 学生敢于参与,
对简单的问题要会应用基本公式| 培养交流合作意识
二、展示中等难度的试题|
学生进行点评、讲解,分析| 创新意识.教师要
总结方法2:叠加原理法| 注意学生出题的科学性总结方法3:节点电流法| 比较两种方法,强调方对较难问题要会应用方法| 法的应用
三.拓展练习|
能在上述两题中总结方法,进行提高练习,展示有一| 两组应用两种方法
定难度的试题,是对上述方法的检验由学生用两种方法进|
行点评、讲解,分析| 教师进行补充
|
四.高考预测|
展示你认为将要考的高考题| 由时间决定试题数量
| (鼓励有创新)
|
五.课堂小结|
| 用方法解多变的题
六.板书设计: |
1. 例题 2 例题 3 例题| 主导好学生的书写
解解解|
|
六.课后反思| 要备好课,应对学生讲课
| 可能出现的各样问题
|
|
七. 作业布置:预习指导| 有针对性的设计习题。