无碳小车设计说明
- 格式:ppt
- 大小:373.50 KB
- 文档页数:14
无碳小车设计说明书小组成员:指导教师:学校:一. 设计思路:1.根据设计要求,为达到无碳小车走8字形轨迹重叠的目的,无碳小车应具备重力势能的转换和周期性的转向的功能,即小车分为传动机构和导向机构两部分。
其中传动机构要求能量损耗少、传动比精确,故优先选用齿轮和皮带轮传动。
导向机构要求方向控制度高、摩擦损失小,选用凸轮直线滑块机构。
2.为减轻车身质量同时保证小车刚度要求,小车采用尼龙作为底板材料,上面安装轴承座以支撑输入轴、驱动轴、吊挂重物的立杆等,小车导向机构中的滑块也需固定在底板上。
4.通过计算并确定两齿轮的传动比i,并实现小车驱动轮每行走i个周长长度,转向机构运动实现一个周期,小车也行走一个完整的8字路线。
为了使小车适应不同间距桩,我们采用凸轮机构,控制小车走重叠的8字,使得小车的工作效率更高。
二. 工作原理:当重物下落时,细绳绕过立杆定滑轮带动驱动后轮上面的绕线轮,驱动中间齿轮转动驱动后轮前进,同时通过齿轮啮合传动带动凸轮旋转,带动转向前轮周期性左右转向,从而实现小车在前进过程中自动转向。
这样小车便能在重力势能驱动下沿着“8”形路线前进,并能自动绕过障碍物。
三、设计说明我们可以将小车行走路线简化为余弦曲线和两段圆弧来处理,通过小车的传动比以及驱动轮的大小我们可以计算出该余弦曲线的幅值,可计算出小车的出发点,我们将小车出发位置定在向左转弯的圆弧中点。
我们以绕8字的两个桩位置方向为X轴,在水平面内垂直于X轴为Y 轴方向,通过计算桩间距,障碍物距离,传动比,驱动轮周长可以得出确定曲线方程,通过数学知识我们可以得出小车在出发点的前轮偏向角度(即凸轮角度),偏向角度可以适当调节。
由此我们便可以得出小车出发时垂直摆桩方向的距离以及此时小车前轮的偏向角度,从而确定小车的理论出发位置。
四、设计总结对于大赛给定的命题,重力势能转换为机械能的能量转换原理是设计的重点之一,小车动力传动结构和摩擦传动装置的设计是最重要的部分。
无碳小车结构设计报告一、设计概述根据题目要求,为达到“8”字绕行的目的,无碳小车应实现两个功能:重力势能的转换和周期性的转向。
据此可以将小车分为驱动机构和转向机构两部分。
驱动机构要求能量损耗小、传动比准确,优先选用齿轮机构。
转向机构因为轨迹重复性要求高,采用齿轮和拉杆结合控制前轮转向来满足小车走周期性“8”字要求。
二、设计方案1.小车以钢板做的底板为主体,上面安装三根吊挂重物的立杆。
2.使用滑轮机构将重块的能量通过细绳以转矩的形式传递到输入轴。
3.输入轴通过一级齿轮传动将能量传到驱动轴,带动驱动轮并驱使小车向前运动。
4.输入轴转动一圈,带动转动的大齿轮转动四分之一,使与之啮合的小齿轮转动二分之一,用连杆机构链接,使前轮走了一个圆时实现转向,从而小车走了“8”字形运动。
三、相关计算驱动机构转向齿轮(控制方向)转向机构(控制周期)1主动轮2驱动轮3主动轮4从动轮传动比2.5:1传动比1:2 主要零件尺寸:前轮半径后轮半径驱动1半径驱动2半径转向3半径转向4半径转向1半径转向2半径5mm 50mm 35mm 14mm 35mm 14mm 30mm 30mm厚度为10mm 厚度为6mm 设为转角30度,两个障碍物的距离为300毫米:设为小车的轨迹半径为x,则150*150-75*75=16875,对其开方约得130毫米。
由此可知,小车的轨迹为3.14*2*130*2=1632.8毫米,车轮要转5圈,所以轴的周长为2毫米才能保证小车在理论上转了8圈。
四、整体装配图五、作品创意1.优化各零件布局,降低小车重心2.三根立杆防止小车运行中重块摞动3. 不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率高、结构简单。
在不考虑其它条件时这是最优的方式。
4.曲柄连杆面积所受压力较小,且面接触便于润滑,故磨损减小,制造方便,已获得较高精度;两构件之间的接触是靠本身的几何封闭来维系的,它不像凸轮机构有时需利用弹簧等力封闭来保持接触5.小车机构简单,单级齿轮传动,损耗能量少六、心得与体会在设计无碳小车的环节中,我们在此过程当中反复探索、不断前进。
2014年****工程训练综合能力竞赛无碳小车设计报告参赛者:指导老师:2014/10/151、设计概述“无碳小车”是将重力势能转换为机械能,使小车实现行走及转向功能的装置。
小车由能量转换机构、传动机构、转向机构和车身构成,首先通过能量转换机构获得动力来驱动后轮转动,继而通过传动机构将运动传给转向机构使转向轮,利用横纵向直线运动复合运动使转向轮呈正弦波形周期性摆动,从而避开设置在波形内固有间距的障碍物。
具体设计为小车以1kg重物块下落500mm产生的重力势能作为动力,通过线绳带动齿轮轴等传动机构,单轮驱动;通过正弦机构带动前轮周期性摆动实现转向。
无碳小车结构设计总装图如图所示。
2、设计思路和方案小车的设计分为三个主要阶段:功能分析、、制造加工调试2.1功能分析对小车功能要求进行分析,寻找功能元解,将小车分为车架、原动机构、传动机构、转向机构、行走机构、微调机构六个模块。
对每一个模块进行多方案设计,综合对比选择最优的方案组合。
2.2参数分析与个性化设计利用Solidworks软件进行小车的实体建模、部分运动仿真。
对方案建立数学模型进行理论分析,使用MATLAB软件分别进行能耗规律分析、运动学分析、动力学分析、灵敏度分析,得出小车的具体参数和运动规律。
2.3 机械总功能分解及功能元解表1.势能转向小车形态学矩阵2.4 机构选型基本原则①满足工艺动作和运动要求。
②结构最简单,传动链最短。
③原动机的选择有利于简化结构和改善运动质量。
④机构有尽可能好的动力性能。
⑤机器操纵方便、调整容易、安全耐用。
⑥加工制造方便,经济成本低。
⑦具有较高的生产效率与机械效率。
2.5转向机构分析目前,能够实现无碳小车车轮转向控制的机构主要有曲柄摇杆机构、正弦机构(曲柄移动导杆机构)、RSSR空间四杆机构凸轮推杆机构和圆轮导杆机构。
这5 种机构在结构和功能上有各自的特点。
转向机构是本小车设计的关键部分,直接决定着小车的功能。
转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。
无碳小车设计说明设计说明:无碳小车设计背景:现在的交通工具使用化石燃料作为能源,不仅对环境造成了严重的污染,还加剧了全球变暖的问题。
为了解决这个问题,设计了一种无碳小车,它使用清洁能源作为驱动力,减少对环境的污染。
设计目标:1.使用清洁能源作为驱动力,减少对环境的污染。
2.提供舒适的乘坐体验和良好的操控性能。
3.具备足够的续航里程和快速充电功能。
4.物理结构紧凑,方便停放和携带。
5.引入智能控制系统,提供高效的安全性和智能交互。
设计特点:1.清洁能源驱动:无碳小车使用电能作为驱动力,充电器可使用太阳能或者风能进行充电,以减少对传统能源的依赖。
2.舒适性和操控性能:小车配备高质量的悬挂系统和减震系统,确保乘坐舒适性。
此外,小车采用电动驱动系统,提供平稳加速和操控性能。
3.续航里程和快速充电功能:小车配备高效的电池系统,提供足够的续航里程,以满足日常通勤需求。
同时,可支持快速充电功能,短时间内充电至80%以上。
4.紧凑的物理结构:小车采用紧凑的物理结构设计,尺寸较小,方便停放和携带,适合城市环境使用。
5.智能控制系统:小车配备智能控制系统,包括导航系统、安全辅助系统和智能交互界面。
导航系统可以提供最佳路线规划和实时交通信息,安全辅助系统可提供驾驶员警示和自动刹车等功能,智能交互界面可以通过语音或手势控制实现乘坐舒适性和便利性。
实施方案:1.动力系统设计:小车采用纯电动驱动系统,电池系统采用高能量密度的锂离子电池,以提供足够的续航里程。
充电器可以使用太阳能充电板或风力充电机,充电时间约为4小时。
2.悬挂系统设计:小车配备高质量的悬挂系统,以提供舒适的乘坐体验。
采用独立悬挂设计,可根据路面情况自动调节减震幅度。
3.控制系统设计:小车配备智能控制系统,包括中央控制单元、传感器和执行器。
中央控制单元接收传感器数据,并将其转换为相应的控制信号,通过执行器实现对小车的控制。
该系统可以提供导航、安全辅助、车辆诊断等功能。
无碳小车设计说明书一、基本构思通过对小车的功能分析小车需要完成重力势能的转换、驱动自身行走、形成固定路线。
在小车行走时尽量较小摩擦,实现能量较大化的转换。
而且需要灵活绕过障碍物。
在选择方案时综合考虑功能、材料、加工、制造成本等各方面因素,同时尽量避免直接决策,减少决策时的主观因素,使得选择的方案能够综合最优。
二、驱动机构1.通过重物自由下落,将重力势能转化为动能,由重物下落带动绕线轮转动,从而实现能量的转换。
2.为了增加下车的稳定性,在设计重物支撑杆时采用了三根杆,这样在小车转弯的时候控制重物左右摆动的角度。
3.在设计绕线轮时综合考虑到,要让小车跑的稳定,能轻松启动,而且跑得更远,设计成一个半径较小的二阶的绕线轮。
4.为了增加美光和方便,将固定线直接套在轴上,这样减小工作量,而且更美观更便捷。
三、传动机构1.重物的下落通过绕线轮(黄色)带动主动轴转动,然后通过二级齿轮(红色)将动力传递到后轮从动轴,从而驱动后轮转动。
2.二级齿轮实现对能量的储存。
四、转向机构(绿)1.转向机构采用偏心轴+曲柄、连杆机构(蓝色)。
U型槽的圆周运动通过连杆转化为曲柄的前后摆动,从而实现小车前轮的摆动。
(具有简单、高效、摩擦力小、能量损耗小的特点)2.还有可以无极可调。
这实现了创新,也非常符合比赛规则。
五、车身及其后轮等其他机构1.将其中的一个后轮变为从动轮,保证了小车的正常运行,而且增加差速,让下车启动更加轻松容易,跑的的也更加稳定。
2.降低了底板的高度,增加了小车的稳定性3.支撑杆支座的设计,采用尼龙,使车身更轻,更加美光。
4.后轮选用亚克力板,在车轮三割去三个圆形快,减轻车身重量,强度达到要求,美观实用。
作品设计说明书摘要我们把小车的设计分为三个阶段:方案设计、技术设计、制作调试;通过每一阶段的深入分析、层层把关,是我们的设计尽可能向最优设计靠拢;方案设计阶段根据小车功能要求我们根据机器的构成原动机构、传动机构、执行机构、控制部分、辅助部分把小车分为车架、原动机构、传动机构、转向机构、行走机构五个模块,进行模块化设计;分别针对每一个模块进行多方案设计,通过综合对比选择出最优的方案组合;我们的方案为:车架采用三角底板式、原动机构采用了带轮轴、传动机构采用带轮、转向机构采用凸轮机构、行走机构采用双轮驱动;技术设计阶段我们先对方案建立数学模型进行理论分析,借助MATLAB分别进行了能运动学分析和动力学分析,进而得出了小车的具体参数,和运动规律y 以及确定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分运动仿真;在实体建模的基础上对每一个零件进行了详细的设计,综合考虑零件材料性能、加工工艺、成本等;小车大多零件是标准件,可以购买,同时除部分要求加工精度高的部分需要特殊加工外,大多数都可以通过手工加工出来;调试过程会通过微调等方式改变小车的参数进行试验,在试验的基础上验证小车的运动规律同时确定小车最优的参数;关键字:无碳小车参数化设计软件辅助设计目录小车改进方向 (21)一绪论命题主题根据第四届全国大学生工程训练综合能力竞赛主题为“无碳小车越障竞赛”;命题与高校工程训练教学内容相衔接,体现综合性工程能力;命题内容体现“创新设计能力、制造工艺能力、实际操作能力和工程管理能力”四个方面的要求;小车功能设计要求给定一重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装置;该自行小车在前行时能够自动避开赛道上设置的障碍物间隔范围在700-1300mm,放置一个直径20mm、长200mm的弹性障碍圆棒;以小车前行距离的远近、以及避开障碍的多少来综合评定成绩;给定重力势能为4焦耳取g=10m/s2,竞赛时统一用质量为1Kg的重块 50×65 mm,普通碳钢制作铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落;要求小车前行过程中完成的所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量形式;小车要求采用三轮结构1个转向轮,2个驱动轮,具体结构造型以及材料选用均由参赛者自主设计完成;小车整体设计要求小车设计过程中需要完成:结构方案设计、工艺方案设计、经济成本分析和工程管理方案设计;命题中的工程管理能力项要求综合考虑材料、加工、制造成本等各方面因素,提出合理的工程规划;设计能力项要求对参赛作品的设计具有创新性和规范性;命题中的制造工艺能力项以要求综合运用加工制造工艺知识的能力为主;小车的设计方法小车的设计一定要做到目标明确,通过对命题的分析我们得到了比较清晰开阔的设计思路;作品的设计需要有系统性规范性和创新性;设计过程中需要综合考虑材料、加工、制造成本等给方面因素;块化尽量车架车架不用承受很大的力,精度要求低;考虑到重量加工成本等,车架采用塑料加工制作成三角式底板;原动机构原动机构的作用是将重物的重力势能转化为小车的驱动动能;能实现这一功能的方案有多种,就效率和简洁性来看绳轮最优;小车对原动机构还有其它的具体要求;1.驱动力适中,不至于小车拐弯时速度过大倾翻,或重物晃动厉害影响行走;2.到达终点前重物竖直方向的速度要尽可能小,避免对小车过大的冲击;同时使重物的势能尽可能的转化到驱动小车前进的动能,如果重物竖直方向的速度较大,重物本身还有较多势能未释放,能量利用率不高;3.机构简单,效率高,便于加工制作;传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上;要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等;1.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率不是很高;2.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高,不易加工制作;因此在第一种方式不能够满足要求的情况下可优先考虑使用齿轮传动;转向机构转向机构是本小车设计的关键部分,直接决定着小车的功能;转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性;能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能;能实现该功能的机构有:凸轮摇杆、曲柄连杆等等;凸轮摇杆:优点:只需设计适当的凸轮轮廓,便可使从动件得到任意的预期运动,而且结构简单、紧凑、设计方便;缺点:凸轮轮廓加工比较困难;曲柄连杆:优点:运动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;两构件之间的接触是靠本身的几何封闭来保持接触;缺点:一般情况下只能近似实现给定的运动规律或运动轨迹,且设计较为复杂;当给定的运动要求较多或较复杂时,需要的构件数和运动副数往往比较多,这样就使机构结构复杂,工作效率降低,发生自锁的可能性增加;综合上面分析我们选择凸轮摇杆作为小车转向机构的方案;行走机构行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同需要综合考虑;由摩擦理论知道摩擦力矩与正压力的关系为:对于相同的材料δ为一定值;而滚动摩擦阻力 : R N R Mf δ⋅==所以轮子越大小车受到的阻力越小,因此能够走的更远;由于小车是沿着曲线前进的,后轮必定会产生差速;对于后轮可以采用双轮同步驱动,双轮差速驱动;双轮同步驱动必定有轮子会与地面打滑,使小车运动产生偏差,但由于小车速度较小时,可以大大减小差速带来的影响;双轮差速驱动可以避免双轮同步驱动出现的问题,可以通过差速器或单向轴承来实现差速;但差速器的构造较为复杂,且由于单向轴承存在侧隙,在主动轮从动轮切换过程中出现误差导致运动不准确;综上所述行走机构的轮子应有恰当可调的尺寸,经过加工和成本的综合考虑我们选用双轮同步驱动;三 技术设计技术设计阶段的目标是完成详细设计确定个零部件的的尺寸;设计的同时综合考虑材料加工成本等各因素;建立数学模型通过对小车建立数学模型,可以实现小车的参数化设计和优化设计,提高设计的效率和得到较优的设计方案,充分发挥计算机在辅助设计中的作用;因此,我们采用了Matlab软件辅助设计;小车后轮直径计算:function D2 =fD2LC,n%D2 小车后轮直径%LC 小车行驶一个周期的路程%n 小车行驶一个周期,后轮转的圈数.%确定n之后,也就确定了后轮轴与凸轮轴的转速比为n:1 D2=LC/pi/n;End推杆伸长量计算:function Delta = fDeltatheta,yT%yT 导向杆长%Delta 凸轮的推杆伸长量假定伸长为正,缩短为负%theta 小车前轮转角假定左转为正Delta=yTsintheta;end小车路径上某点的曲率半径计算:function r = frx0,r0,l%fr 求小车路径上某点的曲率半径%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300% fx01,fx02 分别为fx0的一阶导,二阶导fx01=r0pisinpix0/l/l;fx02=r0pi^2cospix0/l/l^2;r=1+fx01^2^3/2/fx02;end小车前轮转角计算:function theta = fthetar,x%theta 小车前轮转角假定左转为正%r 小车路径上某点的曲率半径%x 前轮轴与后轮轴间距theta=atanx/r;end小车行驶一个周期的路程计算:function LC = fLCr0,l%运用第一类曲线积分,当被积函数为1时,即求曲线长度%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300%LC小车行驶一个周期的路程x0=sym'x0';%r0=sym'r0'; l=sym'l'; %使结果带有r0和l这两符号f=sqrt1+r0^2pi^2sinpi/lx0^2/l^2;LC=intf,0,2l;LC=doubleLC; %将结果转化为数值;结果带有符号时不能使用end凸轮轮廓曲线绘图:l=800; %两个障碍物间距,700~1300r0=150; %零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距x=200; %前轮轴与后轮轴间距yT=30; %yT 导向杆长rj=10; %凸轮基圆半径x1=72; %凸轮轴轴1与前轮轴水平间距x2=72; %轴1与轴2间距x3=48; %轴2与轴3间距x0=0;r=frx0,r0,l;theta=fthetar,x;maxDelta=fDeltatheta,yT; %maxDelta 推杆最大伸长或缩短的量maxDeltaxT=x1-rj-maxDelta; %xT凸轮的推杆长度xT i=1;for alpha=0::2pix0=alphal/pi;r=frx0,r0,l;theta=fthetar,x;Delta=fDeltatheta,yT;TL=rj+maxDelta+Delta;ni=alpha;mi=TL;i=i+1;%hold on;%polaralpha,TL; %描点法画出凸轮轮廓%plotx0,Delta; %查看Delta推杆伸长缩短量随x0变化而变化的情况%plotx0,theta; %查看theta前轮转角随x0变化而变化的情况%hold off;endpolarn,m;%axis equal; %描点时,使横纵坐标单位间距相等参数确定单位:mm 前轮轴与后轮轴间距x=200导向杆长x=30凸轮基圆半径R=10凸轮轴轴1与前轮轴水平间距x=80轴1与轴2间距x=72轴2与轴3间距x=48零部件设计1.需加工的零件:a.驱动轴、传动轴b.车轮c.轴承座d.底板e.凸轮2.可购买的标准件:内圈Φ10的深沟球轴承、7个不同弹性模量弹簧、M8方形内六角螺栓3.部分加工零件二维图小车运动仿真分析为了进一步分析本方案的可行性,我们利用了Solidworks进行了动态仿真;四小车制作调试及改进小车制作流程小车调试方法小车的调试是个很重要的过程,有了大量的理论依据支撑,还必须用大量的实践去验证;小车的调试涉及到很多的内容,如车速的快慢,绕过障碍物,小车整体的协调性等;1小车的速度的调试:通过小车在指定的赛道上行走,测量通过指定点的时间,得到多组数据,从而得出小车行驶的速度,通过试验,发现小车后半程速度较快,整体协调性能不是太好,于是车小了绕绳驱动轴,减小过大的驱动力同时也增大了小车前进的距离;2小车避障的调试:虽然本组小车各个机构相对来说较简单,但损耗能量稍多,同时避障也不是很好,可以通过改变摇杆与凸轮的接触实现微量调节;小车改进方法1.结构优化:为了提高能量的利用效率,在不影响使用条件的情况下,可以削减不必要的部分;2.机构优化:为了提高能量的转换效率,在稍微增加成本的情况下,可以考虑使用齿轮传动;五评价分析小车优缺点优点:1小车机构简单,加工制作方便;2采用塑料材质,质量较轻,有利于行驶较远的距离;缺点:小车精度要求高,使得加工零件成本高,由于差速的存在影响小车的绕弯以及能量的有效利用率;改进方向小车主要的缺点是精度要求非常高和存在差速问题,相信改进小车的精度和差速问题,,小车便能达到很好的行走效果;。
无碳小车8型设计方案无碳小车基本上有以下几个部分构成:驱动、转向机构、车身和载物架部分。
以下是小编整理的无碳小车8型设计方案,欢迎阅读。
一、小车设计:1.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距400mm。
当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与Z3转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。
主动齿轮Z3带动后面的齿轮曲柄转动,而曲柄带动摇杆推动后轮左右摆动!2.动力装置传动的选择及其原理:重物下落采取连线方式,在杆顶部装一个定滑轮,因为这样可以改变力的方向,当重块下落时连线使所绕的绕线轴转动,从而带动主动齿轮转动,进而实现小车前进和转弯.3.转向装置(1)转向装置的选择:选择采用空间曲柄摇杆机构来实现转向,其原理是利用曲柄摇杆机构曲柄转一圈,摇杆带动连杆做前后运动,使车轮偏转一定角度,从而实现车轮的转向,完成指定路线的运动。
(2)车**能的选择:因考虑小车走8字形需要更高的稳定*,本方案采用前轮驱动、后轮转向!前轮驱动比后轮驱动更加稳定,驱动力更加平衡。
本小车采用后轮转向,这样可以避免两后轮同轴,实现两轮差速,所以在转8字形大弯的时候可以避免后轮打滑导致能量损失和轨迹变形。
综合考虑之后我们确定前轮驱动后轮转向。
(3)工作原理:绕线轴与转向装置之间用齿轮联动,在从动齿轮上钻孔,安装曲柄。
从动齿轮转一圈,曲柄转动,摇杆带动连杆杆做前后运动,小车现实转向前进,通过计算,完全可以实现“8”字形绕桩前进。
4.基本尺寸由以上得出:齿轮标准得表格R前轮50mm,R后轮=20mm,r线=10mm;车长230mm车宽150mm二、设计工艺:(1)小车的底板采用的是镂空硬质铝板,可以增强小车的强度,同时减轻小车的总质量。
(2)在每一个轴上都加油滚动轴承,可以减小摩擦,同时可以保*运动的精确*。
无碳小车设计说明书学院: 行知工学分院班级: 机械132班学生姓名:学号:指导老师:完成时间: 2015 年 6 月 15日1、绪论1、1小车得设计命题设计一种小车,驱动其行走及转向得能量就是根据能量转换原理,由给定重力势能转换来得。
给定重力势能为4焦耳(取g=10m/s2),设计时统一用质量为1Kg得重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许从小车上掉落。
如图1、1所示。
图1、1要求小车行走过程中完成所有动作所需得能量均由此重力势能转换获得,不可使用任何其她得能量来源。
要求小车具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物得竞赛场地。
要求小车为三轮结构,具体设计、材料选用及加工制作均由学生自主完成。
1、2小车得整体设计要求小车设计过程需要完成:机械设计、工艺方案设计、经济成本分析与工程管理方案设计。
命题中得工程管理项要求综合考虑材料、加工、制造成本等各方面因素,提出合理得工程计划。
设计能力项要求对参赛作品得设计具有创新性与规范性。
命题中得制造工艺能力项要求综合运用加工制造工艺得知识。
1、3小车得设计方法在小车得设计方法上,我们借鉴了参数化设计、优化设计、系统设计等现代设计发明理论方法。
采用CAXA、SolidWorks2012等辅助软件设计。
2、设计方案2、1尺寸设计由于小车实在平面上运行,转弯半径较小,所以定小车得宽度为150mm,长度为150mm,使其能拥有更佳得灵活性。
如图2、1所示。
图2、12、2最大转角因为小车长为150mm,当绕过最大偏移距离为500mm得圆弧时能得到最大转角,如图3、2所示,即可得最大转角位26、897°、如图2、2所示。
、、图2、2设曲柄长度为10,已知最大转角位26、897°,由图2、3所示可知可得最大偏移距离图2、3偏移距离L=10 /tan(26、897°)=19、71mm2、3后轮直径设计传动机构得功能就是把动力与运动传递到转弯机构与驱动轮上。
8型无碳小车设计说明书这份设计说明书旨在详细描述《8型无碳小车设计说明书》的设计需求。
设计需求包括以下要点:目标:设计一个无碳小车,以减少对环境的负面影响。
尺寸和外观:小车尺寸适中,外观简洁美观。
材料选择:使用经济环保材料,避免对环境造成污染。
能源来源:小车使用无碳能源,如太阳能或电池。
驱动系统:设计高效且低能耗的驱动系统,减少能源浪费。
安全性:考虑小车的安全性,包括制动系统和防滑设计。
操控系统:设计简单易用的操控系统,提供良好的用户体验。
可维护性:设计易于维护和修理的小车结构,延长使用寿命。
根据以上设计需求,我们将制定相应的设计方案,进一步详细阐述8型无碳小车的设计和技术参数。
本设计说明书旨在介绍8型无碳小车的设计概述和目标。
该小车是一种无碳排放的电动车辆,旨在减少环境污染并提供绿色出行解决方案。
设计概述包括以下几个方面:设计背景:介绍为什么需要8型无碳小车以及环境问题的背景。
设计目标:阐述8型无碳小车的设计目标,包括节能减排、提高能效、提供便捷出行等。
技术规格:概述8型无碳小车的主要技术规格,包括车辆尺寸、重量、电池容量等。
功能特点:描述8型无碳小车的主要功能特点,例如智能导航系统、座椅调节功能等。
设计原理:简要介绍8型无碳小车的设计原理,涉及电动驱动、能量回收等方面。
安全性考虑:说明在8型无碳小车设计过程中所考虑的安全性措施,如车辆稳定性、碰撞保护等。
创新点:强调8型无碳小车的设计创新之处,并与传统车辆进行对比。
可行性分析:对8型无碳小车设计的可行性进行分析,考虑技术、经济等方面的因素。
通过本设计说明书,读者可以全面了解8型无碳小车的设计概述,为后续的设计、生产提供指导和参考。
8型无碳小车设计说明书》中包含了以下设计细节,涵盖了车辆特征、外观设计、材料选择等内容:1.车辆特征该无碳小车具有以下特征:零碳排放:小车采用无碳能源作为驱动力,不产生任何尾气排放,对环境友好。
高效节能:小车采用先进的能源转换技术,能够在运行过程中最大限度地利用能源,提高能量利用效率。
S组无碳小车设计说明书目录1、小车的设计要求 (1)2、无碳小车结构方案的设计 (2)2.1整体方案分析 (2)2.2驱动机构 (3)2.3传动机构 (4)2.4转向机构以及轨迹分析与设计 (4)2.4.1小车运行轨迹理论参数分析 (4)2.4.2小车动态力分析 (5)2.4.3传动机构及行走机构参数确定 (7)2.4.4 转向机构参数的确定 (8)2.5微调机构 (9)2.6小车车体整体分析 (9)3、基于SolidWorks motion的仿真分析 (10)3.1 简化模型的建立 (10)3.2 运动副的添加 (10)3.2 仿真计算以及结果分析 (11)参考文献 (12)1、小车的设计要求图1-1 无碳小车示意图图1-2 无碳小车运行轨迹图如上图1-1小车示意图:根据能量守恒定律,给一定重力势能(用⌀mm5065错误!未找到引用源。
普通碳钢的重块,质量为1kg,铅垂下落差为400mm来获得),设计一种“以重力势能驱动具有方向控制功能的无碳小车”,该小车能够在行驶的过程中有规律避开水平的平面上每隔1米设置一个弹性圆棒障碍物(如上图2小车运行轨迹图)。
保证小车行走的过程重物随车平稳的行走而不掉落,要求小车行走的过程中所有的动能均由重物的重力势能获得,不得借用其他形式的能量。
小车底板结构设计采用三轮结构,即2个驱动轮,1个转向轮。
细节上的结构只能根据学校现有材料、机床以及加工工艺的难度进行设计。
2、无碳小车结构方案的设计2.1整体方案分析通过对毕业设计任务要求及目的的剖析,利用发散性思维方式,把实现小车功能的各种可能方案一一列出,为了方便设计,可以将能实现小车功能细分为:驱动机构、传动机构、转向机构、微调机构四个模块。
下图2-1为无碳小车设计的思维导图:图2-1 无碳小车结构方案设计思路在选择各个模块方案时,要从实际情况出发,充分考虑实际学校的机床设备,材料的获取,制造成本以及实际加工工艺的可行性等等。
8型无碳小车设计说明书简介本文档为8型无碳小车的设计说明书,描述了该小车的设计概念、功能特点、技术参数以及设计原理等内容。
设计概念8型无碳小车是一款注重环保和可持续发展的智能交通工具。
通过使用无碳能源,例如电动驱动系统和太阳能充电系统,减少对传统燃油的依赖,并且降低了对环境的污染。
同时,该小车还拥有简洁、时尚的外观设计,提供舒适、安全的乘坐体验。
功能特点1.环保节能:采用电动驱动系统,减少对燃油的依赖,无废气排放。
2.太阳能充电:配备太阳能充电系统,可以通过太阳能进行充电,提高能源利用效率。
3.智能导航:配备智能导航系统,提供准确的导航信息,优化行驶路线,减少能源浪费。
4.安全性能:采用高强度车身结构,具有较高的抗冲击性能,保护乘员的安全。
5.舒适乘坐体验:提供宽敞舒适的座椅和乘坐空间,享受愉快的驾驶体验。
技术参数参数值尺寸4000mm x 1500mm x 1800mm车重800kg最高时速80km/h续航里程300km电池容量30kWh充电时间6小时最大载重量300kg功率50kW驱动方式后轮驱动制动系统四轮盘式刹车内饰材质环保材料能源类型电能、太阳能驾驶员座椅数量1乘员座椅数量2设计原理1. 电动驱动系统8型无碳小车采用电动驱动系统,由电动机、电池和控制器组成。
电动机负责将电能转化为机械能,提供动力驱动车辆前进。
电池负责存储电能,供电给电动机使用。
控制器负责控制电动机的运行状态,调节电能的分配和使用。
2. 太阳能充电系统为了提高能源利用效率,8型无碳小车配备了太阳能充电系统。
该系统由太阳能电池板、电控设备和储能装置组成。
太阳能电池板负责将太阳能转化为电能,电控设备负责控制电能流入储能装置进行存储。
通过太阳能充电系统,可以在太阳光充足的情况下,充电小车的电池,提高续航里程。
3. 智能导航系统8型无碳小车配备智能导航系统,通过与卫星导航系统(如GPS)的连接,提供精准的导航信息。
该系统能够根据交通状况和实时路况,优化行驶路线,减少能源的浪费。
“无碳小车”设计说明书一、概要此次无碳小车的设计主要是利用重物下落的重力势能作为原动力,来驱动小车前进以及使小车能按规定绕开障碍物。
重物质量M=1kg,下落高度H=400mm,每个障碍物之间隔0.9米、1米、1.1米。
二、分析1、为使得小车能够行走,首要解决的就是小车驱动,要设计小车的驱动机构;2、为使得小车能够转弯,并能够绕开等距离的障碍物,所以要设计一个能够走S形路线的周期性的转向机构;3、由于只有一个动力源,所以还要设计一套小车的传动机构;4、为了使得小车能够顺利转弯,还要解决小车后轮的差速问题。
三、原理设计符号说明:驱动轮半径驱动轮A与转向轮横向偏距驱动轮B与转向轮横向偏距驱动轴(轴2)与转向轮中心距离曲柄轴(轴1)与转向轮中心距离曲柄的旋转半径摇杆长轴的绳轮半径2r1.传动机构传动机构的功能是把动力和运动传递到转向机构和驱动轮上。
要使小车行驶的更远及按设计的轨道精确地行驶,传动机构必需传递效率高、传动稳定、结构简单重量轻等。
1.不用其它额外的传动装置,直接由动力轴驱动轮子和转向机构,此种方式效率最高、结构最简单。
在不考虑其它条件时这是最优的方式。
2.带轮具有结构简单、传动平稳、价格低廉、缓冲吸震等特点但其效率及传动精度并不高。
不适合本小车设计。
3.齿轮具有效率高、结构紧凑、工作可靠、传动比稳定但价格较高。
因此在第一种方式不能够满足要求的情况下优先考虑使用齿轮传动。
2.转向机构转向机构是本小车设计的关键部分,直接决定着小车的功能。
转向机构也同样需要尽可能的减少摩擦耗能,结构简单,零部件已获得等基本条件,同时还需要有特殊的运动特性。
能够将旋转运动转化为满足要求的来回摆动,带动转向轮左右转动从而实现拐弯避障的功能。
能实现该功能的机构有:凸轮机构+摇杆、曲柄连杆+摇杆、曲柄摇杆、差速转弯等等。
凸轮:凸轮是具有一定曲线轮廓或凹槽的构件,它运动时,通过高副接触可以使从动件获得连续或不连续的任意预期往复运动。
1. 设计命题:以重力势能驱动的具有方向控制功能的自行小车给定一定重力势能,根据能量转换原理,设计一种可将该重力势能转换为机械能并以此驱动小车行走的装置。
要求小车行走过程中完成所有动作所需的能量均由此能量转换获得,不可使用任何其他的能量来源。
给定重力势能为4焦耳(取g=10m/s2),竞赛时统一用质量为1Kg的重块(¢50×65 mm,普通碳钢)铅垂下降来获得,落差400±2mm,重块落下后,须被小车承载并同小车一起运动,不允许掉落。
小车要求具有转向控制机构,且此转向控制机构具有可调节功能,以适应放有不同间距障碍物的竞赛场地。
要求小车为三轮结构。
图1:无碳小车示意图(1)直行小车竞赛小车在前行时能够自动避开赛道上设置的障碍物。
障碍物为直径20mm、高200mm的多个圆棒,沿直线等距离摆放,距离可在900mm-1100mm之间调节。
图2:无碳小车在重力势能作用下自动行走示意图(2)台上环绕小车小车在半张标准乒乓球台(长1525mm、宽1370mm)上,绕相距一定距离的两个障碍沿8字形轨迹绕行,绕行时不可以撞倒障碍物,不可以掉下球台。
障碍物为直径20mm、长200mm的2个圆棒,相距300mm-500mm放置在半张标准乒乓球台的中。
如下图图3:竞赛项目二所用乒乓球台及障碍设置图2. 报告要求要求提交结构设计报告,以以下标准评分:(1)完整性要求:小车装配图1幅(A4纸1页),设计说明书1-2页(A4)(2)正确性要求:传动原理与机构设计正确,选材和工艺合理;(3)创新性要求:有独立见解及创新设计思想;(4)规范性要求:图纸表达完整,标注正确;文字描述准确、清晰。
1。
作品设计【2 】解释书摘要我们把小车的设计分为三个阶段:计划设计.技巧设计.制造调试.经由过程每一阶段的深刻剖析.层层把关,是我们的设计尽可能向最优设计挨近.计划设计阶段根据小车功效请求我们根据机械的组成(原念头构.传念头构.履行机构.掌握部分.帮助部分)把小车分为车架 .原念头构 .传念头构 .转向机构 .行走机构五个模块,进行模块化设计.分离针对每一个模块进行多计划设计,经由过程分解比较选择出最优的计划组合.我们的计划为:车架采用三角底板式.原念头构采用了带轮轴.传念头构采用带轮.转向机构采用凸轮机构.行走机构采用双轮驱动.技巧设计阶段我们先对计划树立数学模子进行理论剖析,借助MATLAB 分离进行了能活动学剖析和动力学剖析,进而得出了小车的具体参数,和活动纪律y以及肯定凸轮的轮廓曲线;接着应用Solidworks软件进行了小车的实体建模和部分活动仿真.在实体建模的基本上对每一个零件进行了具体的设计,分解斟酌零件材料机能.加工工艺.成本等.小车大多零件是标准件,可以购置,同时除部分请求加工精度高的部分须要特别加工外,大多半都可以经由过程手工加工出来.调试进程会经由过程微调等方法转变小车的参数进行实验,在实验的基本上验证小车的活动纪律同时肯定小车最优的参数.症结字:无碳小车参数化设计软件帮助设计目次摘要2一绪论41.1命题主题41.2小车功效设计请求41.3小车整体设计请求51.4小车的设计办法6二计划设计72.1车架82.2原念头构82.3传念头构82.4转向机构92.5行走机构10三技巧设计103.1树立数学模子113.2参数肯定143.3零部件设计153.4小车活动仿真剖析18四小车制造调试及改良204.1小车制造流程204.2小车调试办法204.3小车改良办法20五评价剖析215.1小车优缺陷215.2小车改良偏向21六参考文献22一绪论1.1命题主题根据第四届全国大学生工程练习分解才能比赛主题为“无碳小车越障比赛”.命题与高校工程练习教授教养内容相连接,表现分解性工程才能.命题内容表现“创新设计才能.制造工艺才能.现实操作才能和工程治理才能”四个方面的请求.1.2小车功效设计请求给定一重力势能,根据能量转换道理,设计一种可将该重力势能转换为机械能并可用来驱动小车行走的装配.该自行小车在前行时可以或许主动避开赛道上设置的障碍物(距离规模在700-1300mm,放置一个直径20mm.长200mm的弹性障碍圆棒).以小车前行距离的远近.以及避开障碍的若干来分解评定成绩.给定重力势能为4焦耳(取g=10m/s2),比赛时同一用质量为1Kg的重块( 50×65 mm,通俗碳钢制造)铅垂降低来获得,落差400±2mm,重块落下后,须被小车承载并同小车一路活动,不许可失落落.请求小车前行进程中完成的所有动作所需的能量均由此能量转换获得,不可应用任何其他的能量情势.小车请求采用三轮构造(1个转向轮,2个驱动轮),具体结构造型以及材料选用均由参赛者自立设计完成.1.3小车整体设计请求小车设计进程中须要完成:构造计划设计.工艺计划设计.经济成本剖析和工程治理计划设计.命题中的工程治理才能项请求分解斟酌材料.加工.制造成本等各方面身分,提出合理的工程计划.设计才能项请求对参赛作品的设计具有创新性和规范性.命题中的制造工艺才能项以请求分解应用加工制造工艺常识的才能为主.1.4小车的设计办法小车的设计必定要做到目的明白,经由过程对命题的剖析我们得到了比较清楚坦荡的设计思绪.作品的设计须要有体系性规范性和创新性.设计进程中须要分解斟酌材料 .加工 .制造成本等给方面身分.2.2原念头构原念头构的感化是将重物的重力势能转化为小车的驱动动能.能实现这一功效的计划有多种,就效力和简练性来看绳轮最优.小车对原念头构还有其它的具体请求.1.驱动力适中,不至于小车拐弯时速渡过大倾翻,或重物晃悠厉害影响行走.2.到达终点前重物竖直偏向的速度要尽可能小,避免对小车过大的冲击.同时使重物的势能尽可能的转化到驱动小车进步的动能,假如重物竖直偏向的速度较大,重物本身还有较多势能未释放,能量应用率不高.3.机构简略,效力高,便于加工制造.2.3传念头构传念头构的功效是把动力和活动传递到转向机构和驱动轮上.要使小车行驶的更远及按设计的轨道精确地行驶,传念头构必需传递效力高.传动稳固.构造简略重量轻等.1.带轮具有构造简略.传动安稳.价钱低廉.缓冲吸震等特色但其效力不是很高.2.齿轮具有用力高.构造紧凑.工作靠得住.传动比稳固但价钱较高,不易加工制造.是以在第一种方法不可以或许知足请求的情形下可优先斟酌应用齿轮传动.2.4转向机构转向机构是本小车设计的症结部分,直接决议着小车的功效.转向机构也同样须要尽可能的削减摩擦耗能,构造简略,零部件已获得等根本前提,同时还须要有特别的活动特征.可以或许将扭转活动转化为知足请求的往返摆动,带动转向轮阁下迁移转变从而实现拐弯避障的功效.能实现该功效的机构有:凸轮摇杆.曲柄连杆等等.凸轮摇杆:长处:只需设计恰当的凸轮轮廓,便可使从动件得到随意率性的预期活动,并且构造简略.紧凑.设计便利;缺陷:凸轮轮廓加工比较艰苦.曲柄连杆:长处:活动副单位面积所受压力较小,且面接触便于润滑,故磨损减小;两构件之间的接触是靠本身的几何关闭来保持接触.缺陷:一般情形下只能近似实现给定的活动纪律或活动轨迹,且设计较为庞杂;当给定的活动请求较多或较庞杂时,须要的构件数和活动副数往往比较多,如许就使机构构造庞杂,工作效力降低,产生自锁的可能性增长.分解上面剖析我们选择凸轮摇杆作为小车转向机构的计划.2.5行走机构行走机构即为三个轮子,轮子又厚薄之分,大小之别,材料之不同须要分解斟酌.由摩擦理论知道摩擦力矩与正压力的关系为:δ⋅=N M对于雷同的材料δ为必定值.而滚动摩擦阻力 : R N R Mf δ⋅==所以轮子越大小车受到的阻力越小,是以可以或许走的更远.因为小车是沿着曲线进步的,后轮必定会产生差速.对于后轮可以采用双轮同步驱动,双轮差速驱动.双轮同步驱动必定有轮子会与地面打滑,使小车活动产生误差,但因为小车速度较小时,可以大大减小差速带来的影响.双轮差速驱动可以避免双轮同步驱动消失的问题,可以经由过程差速器或单向轴承来实现差速.但差速器的构造较为庞杂,且因为单向轴承消失侧隙,在主动轮从动轮切换进程中消失误差导致活动不精确.综上所述行走机构的轮子应有恰当可调的尺寸,经由加工和成本的分解斟酌我们选用双轮同步驱动.三技巧设计技巧设计阶段的目的是完成具体设计肯定个零部件的的尺寸.设计的同时分解斟酌材料加工成本等各身分.3.1树立数学模子经由过程对小车树立数学模子,可以实现小车的参数化设计和优化设计,进步设计的效力和得到较优的设计计划,充分施展盘算机在帮助设计中的感化.是以,我们采用了Matlab软件帮助设计.小车后轮直径盘算:function [D2] =fD2(LC,n)%D2 小车后轮直径%LC 小车行驶一个周期的旅程%n 小车行驶一个周期,后轮转的圈数.%(肯定n之后,也就肯定了后轮轴与凸轮轴的转速比为n:1)D2=LC/pi/n;End推杆伸长量盘算:function [Delta] = fDelta(theta,yT)%yT 导向杆长%Delta 凸轮的推杆伸长量(假定伸长为正,缩短为负)%theta 小车前轮转角(假定左转为正)Delta=yT*sin(theta);end小车路径上某点的曲率半径盘算:function [r] = fr(x0,r0,l)%fr 求小车路径上某点的曲率半径%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300% fx01,fx02 分离为fx0的一阶导,二阶导fx01=r0*pi*sin(pi*x0/l)/l;fx02=r0*(pi^2)*cos(pi*x0/l)/(l^2);r=(1+(fx01^2))^(3/2)/fx02;end小车前轮转角盘算:function [theta] = ftheta(r,x )%theta 小车前轮转角(假定左转为正)%r 小车路径上某点的曲率半径%x 前轮轴与后轮轴间距theta=atan(x/r);end小车行驶一个周期的旅程盘算:function [ LC ] = fLC(r0,l)%应用第一类曲线积分,当被积函数为1时,即求曲线长度%r0 零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距%l 两个障碍物间距,700~1300%LC小车行驶一个周期的旅程x0=sym('x0');%r0=sym('r0'); l=sym('l'); %使成果带有r0和l这两符号f=sqrt(1+r0^2*pi^2*(sin(pi/l*x0))^2/(l^2));LC=int(f,0,2*l);LC=double(LC); %将成果转化为数值.成果带有符号时不能应用end凸轮轮廓曲线画图:l=800; %两个障碍物间距,700~1300r0=150; %零点处曲线的纵坐标,r0-y/2>10,y为两后轮间距x=200; %前轮轴与后轮轴间距yT=30; %yT 导向杆长rj=10; %凸轮基圆半径x1=72; %凸轮轴(轴1)与前轮轴程度间距x2=72; %轴1与轴2间距x3=48; %轴2与轴3间距x0=0;r=fr(x0,r0,l);theta=ftheta(r,x);maxDelta=fDelta(theta,yT); %maxDelta 推杆最大伸长(或缩短)的量maxDeltaxT=x1-rj-maxDelta; %xT凸轮的推杆长度xT i=1;for alpha=0:0.0001:2*pix0=alpha*l/pi;r=fr(x0,r0,l);theta=ftheta(r,x);Delta=fDelta(theta,yT);TL=rj+maxDelta+Delta;n(i)=alpha;m(i)=TL;i=i+1;%hold on;%polar(alpha,TL); %描点法画出凸轮轮廓%plot(x0,Delta); %查看Delta(推杆伸长缩短量)随x0变化而变化的情形%plot(x0,theta); %查看theta(前轮转角)随x0变化而变化的情形%hold off;endpolar(n,m);%axis equal; %描点时,使横纵坐标单位间距相等3.2参数肯定单位:mm 前轮轴与后轮轴间距x=200导向杆长x=30凸轮基圆半径R=10凸轮轴(轴1)与前轮轴程度间距x=80轴1与轴2间距x=72轴2与轴3间距x=483.3零部件设计1.需加工的零件:a.驱动轴.传动轴b.车轮c.轴承座d.底板e.凸轮2.可购置的标准件:内圈Φ10的深沟球轴承.7个不同弹性模量弹簧.M8方形内六角螺栓3.部分加工零件二维图3.4小车活动仿真剖析为了进一步剖析本计划的可行性,我们应用了Solidworks进行了动态仿真.四小车制造调试及改良4.1小车制造流程4.2小车调试办法小车的调试是个很重要的进程,有了大量的理论根据支持,还必须用大量的实践去验证.小车的调试涉及到许多的内容,如车速的快慢,绕过障碍物,小车整体的调和性等.(1)小车的速度的调试:经由过程小车在指定的赛道上行走,测量经由过程指定点的时光,得到多组数据,从而得出小车行驶的速度,经由过程实验,发明小车后半程速度较快,整体调和机能不是太好,于是车小了绕绳驱动轴,减小过大的驱动力同时也增大了小车进步的距离.(2)小车避障的调试:固然本组小车各个机构相对来说较简略,但损耗能量稍多,同时避障也不是很好,可以经由过程转变摇杆与凸轮的接触实现微量调节.4.3小车改良办法1.构造优化:为了进步能量的应用效力,在不影响应用前提的情形下,可以削减不必要的部分.2.机构优化:为了进步能量的转换效力,在稍微增长成本的情形下,可以斟酌应用齿轮传动.五评价剖析5.1小车优缺陷长处:(1)小车机构简略,加工制造便利;(2)采用塑料材质,质量较轻,有利于行驶较远的距离.缺陷:小车精度请求高,使得加工零件成本高,因为差速的消失影响小车的绕弯以及能量的有用应用率.5.2改良偏向小车重要的缺陷是精度请求异常高和消失差速问题,信任改良小车的精度和差速问题,,小车便能达到很好的行走后果.。
无碳小车设计说明书机制八班(100%)2014.7.71.工作原理给定1kg的重块在400mm的高度落下来,由重力势能转化成小车前进的动能,同时利用转向装置实现小车按8字形曲线(近似看作)绕桩前进,桩距500mm。
当重物下落时,其所带的绳子带动绕线轴转动,带动与绕线轴同轴的主动齿轮Z1与大带轮d1转动,Z1又带动前面的与前轮同轴的从动齿轮Z2转动,驱动小车前进。
大带轮通过带传动带动小带轮转动引起凸轮转动推动连杆使小车前轮发生偏转从而改变小车运行方向构成转向机构。
机构运动简图如下所示2.行程放大小车绕一个8字的近似路程S=2π*500=3142mm,绕20个8字S总=20S=62840,取64000初步设计小车车轮直径100mm小车绕一圈8字车轮转过圈数n轮=S/(πD)=10行程放大系数u=64000/400=160S总=n轮πD=n绕*i*πD=L*i*D/D绕i/D绕=8/5,取i=8,D绕=5mm小车驱动转矩M=1*10*2.5=25N/mm通过网络可以查知一般情况下滚动摩擦系数u<0.01,小车整体质量小于3KG,阻力转矩M阻=30*50*0.01=15<M所以正常状态下物块能驱动小车行进3.转向机构的设计如图所示为小车的绕行轨迹,其中加粗部分为主动轮的轨迹使用单轮驱动,小车运动时前轮偏转角为Θ如图所示,cosα=cos(兀/2_Θ)=sinΘ=0.4Θ=23.58使用凸轮机构,设实际轨迹为240°的大圆弧则S1=4兀/3×6×5=40兀左边为270°S2=6兀/4×4×5=30兀如图导杆机构令l2=5mm则计算可得l1=11.5mm令在凸轮大端推动推杆时小车的主动轮在大圆上运动,可设计如图所示凸轮Θ1=s1/s总×360°=144°Θ2=s2/s总×360°=108°传动比i2的计算由已知可知道凸轮绕一圈小车绕一个8字,车轮绕10圈n凸/n轮=1:10n凸/n绕=n凸/(n轮/8)=4:5无碳小车示意图。
无碳小车设计机械设计课程设计说明书1. 引言本课程设计旨在通过机械设计的方式,设计一款无碳小车,以减少对环境的污染和消耗。
本文档将详细介绍无碳小车的设计背景、设计目标、设计原则和设计方法。
2. 设计背景随着全球环境问题的日益严重,减少碳排放已成为全球范围内的热门话题。
传统的汽车使用化石燃料,会产生大量的二氧化碳排放,对空气质量和气候变化产生不良影响。
为了减少对环境的负面影响,无碳小车设计应运而生。
3. 设计目标本课程设计的主要目标是设计一款无碳小车,具体目标包括: - 实现零碳排放,不使用化石燃料或其它能源; - 具备足够的运行时间和里程,以满足日常出行需求; - 车辆结构紧凑,便于停放和携带; - 提供舒适的乘坐体验和便捷的操作方式;- 造价低廉,易于生产和维护。
4. 设计原则在设计无碳小车时,应遵循以下原则: - 绿色环保:选择环保材料和可再生能源来实现零碳排放; - 轻量化设计:减少车辆重量,降低能耗; - 紧凑型设计:优化车辆结构,使其紧凑易携带; - 智能化设计:引入智能控制系统,提高车辆的性能和安全性; - 成本优化:设计时要兼顾制造和维护成本,降低用户购买和使用成本。
5. 设计方法无碳小车的设计可以通过以下步骤来完成:5.1 确定车辆类型和用途根据市场需求和用户需求,确定无碳小车的类型和用途,例如城市代步车、短途出行车、商务巴士等。
5.2 材料选择选择符合绿色环保要求的材料,例如轻质高强度的复合材料,可再生材料等。
5.3 车辆结构设计根据车辆类型和用途,设计合理的车身结构、底盘结构和悬挂系统,以确保车辆性能和舒适性的要求。
5.4 驱动系统设计设计无碳小车的驱动系统,可以使用电动机、太阳能电池等能源,提高车辆的效能和续航能力。
5.5 控制系统设计引入智能控制系统,通过传感器和算法优化车辆的性能和安全性,例如自动驾驶、智能节能等功能。
5.6 辅助设备设计除了核心的车辆设计,还可以设计一些辅助设备,例如充电桩、车辆定位系统等,提供便捷的使用体验。