高等数学 第八章 第一节 向量及其线性运算
- 格式:pdf
- 大小:2.80 MB
- 文档页数:37
2023高等数学下册(朱永忠著)课后答案下载2023高等数学下册(朱永忠著)课后答案下载第八章空间解析几何与向量代数第一节向量及其线性运算第二节数量积向量积混合积第三节曲面及其方程第四节空间曲线及其方程第五节平面及其方程第六节空间直线及其方程总习题八第九章多元函数微分法及其应用第一节多元函数的基本概念第二节偏导数第三节全微分第四节多元复合函数的`求导法则第五节隐函数的求导公式第六节多元函数微分学的几何应用第七节方向导数与梯度第八节多元函数的极值及其求法第九节二元函数的泰勒公式第十节最小二乘法总习题九第十章重积分第一节二重积分的概念与性质第二节二重积分的计算法第三节三重积分第四节重积分的应用第五节含参变量的积分总习题十第十一章曲线积分与曲面积分第一节对弧长的曲线积分第二节对坐标的曲线积分第三节格林公式及其应用第四节对面积的曲面积分第五节对坐标的曲面积分第六节高斯公式通量与散度第七节斯托克斯公式环流量与旋度总习题十一第十二章无穷级数第一节常数项级数的概念和性质第二节常数项级数的审敛法第三节幂级数第四节函数展开成幂级数第五节函数的幂级数展开式的应用第六节函数项级数的一致收敛性及一致收敛级数的基本性质第七节傅里叶级数第八节一般周期函数的傅里叶级数总习题十二习题答案与提示高等数学下册(朱永忠著):内容提要点击此处下载高等数学下册(朱永忠著)课后答案高等数学下册(朱永忠著):图书目录本次修订对教材的深广度进行了适度的调整,使学习本课程的学生都能达到合格的要求,并设置部分带__号的内容以适应分层次教学的需要;吸收国内外优秀教材的优点对习题的类型和数量进行了调整和充实,以帮助学生提高数学素养、培养创新意识、掌握运用数学工具去解决实际问题的能力;对书中内容进一步锤炼和调整。
高数下册常用常见知识点高等数学下册常用知识点第八章:空间解析几何与向量代数一、向量及其线性运算1.向量的概念及基本性质:包括向量相等、单位向量、零向量、向量平行、共线、共面等基本概念。
2.向量的线性运算:包括加减法和数乘。
3.空间直角坐标系:包括坐标轴、坐标面、卦限和向量的坐标分解式等。
4.利用坐标进行向量的运算:设向量a=(ax。
ay。
az),向量b=(bx。
by。
bz),则a±b=(ax±bx。
ay±by。
az±bz),λa=(λax。
λay。
λaz)。
5.向量的模、方向角、投影:包括向量的模、两点间的距离公式、方向角、方向余弦和投影等。
二、数量积和向量积1.数量积:包括数量积的概念、性质和计算公式等。
2.向量积:包括向量积的概念、性质和计算公式等。
三、曲面及其方程1.曲面方程的概念:包括曲面方程的定义和基本性质等。
2.旋转曲面:包括旋转曲面的定义、方程和旋转后方程的计算等。
3.柱面:包括柱面的特点、方程和母线的概念等。
4.二次曲面:包括椭圆锥面的方程和图形等。
2.椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1$3.旋转椭球面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$4.单叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=1$5.双叶双曲面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{z^2}{c^2}=-1$6.椭圆抛物面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=z$7.双曲抛物面(马鞍面):$\frac{x^2}{a^2}-\frac{y^2}{b^2}=z$8.椭圆柱面:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$9.双曲柱面:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$10.抛物柱面:$2x=ay^2$空间曲线及其方程:1.参数方程:$\begin{cases}x=x(t)\\y=y(t)\\z=z(t)\end{cases}$,如螺旋线:$\begin{cases}x=a\cos t\\y=a\sin t\\z=bt\end{cases}$2.一般方程:$F(x,y,z)=0$,消去$z$,得到曲线在面$xoy$上的投影。
高等数学下册(同济大学第七版)知识点高等数学下册知识点下册预备知识第八章 空间解析几何与向量代数(一) 向量及其线性运算1、 向量,向量相等,单位向量,零向量,向量平行、共线、共面;2、 线性运算:加减法、数乘;3、 空间直角坐标系:坐标轴、坐标面、卦限,向量的坐标分解式;4、 利用坐标做向量的运算:设),,(z y x a a a a = ,),,(z y x b b b b = , 则 ),,(z z y y x x b a b a b a b a ±±±=±, ),,(z y x a a a a λλλλ= ;5、 向量的模、方向角、投影:1) 向量的模:222z y x r ++= ;2) 两点间的距离公式:212212212)()()(z z y y x x B A -+-+-=3) 方向角:非零向量与三个坐标轴的正向的夹角γβα,,4) 方向余弦:rz r y r x ===γβαcos ,cos ,cos 1cos cos cos 222=++γβα5) 投影:ϕcos Pr a a j u =,其中ϕ为向量a 与u 的夹角。
(二) 数量积,向量积1、 数量积:θcos b a b a=⋅1)2a a a =⋅高等数学(下)知识点 2)⇔⊥b a 0=⋅b az z y y x x b a b a b a b a ++=⋅2、 向量积:b a c⨯= 大小:θsin b a ,方向:c b a ,,符合右手规则1)0=⨯a a 2)b a //⇔0=⨯b a z y x z y x b b b a a a k j i b a =⨯ 运算律:反交换律 b a a b⨯-=⨯(三) 曲面及其方程1、 曲面方程的概念:0),,(:=z y x f S2、 旋转曲面: yoz 面上曲线0),(:=z y f C ,绕y 轴旋转一周:0),(22=+±z x y f 绕z 轴旋转一周:0),(22=+±z y x f3、 柱面:0),(=y x F 表示母线平行于z 轴,准线为⎪⎩⎪⎨⎧==00),(z y x F 的柱面 4、 二次曲面1)椭圆锥面:22222zbyax=+2)椭球面:1222222=++czbyax旋转椭球面:1222222=++czayax3)单叶双曲面:1222222=-+czbyax4)双叶双曲面:1222222=--czbyax5)椭圆抛物面:zbyax=+22226)双曲抛物面(马鞍面):zbyax=-22227)椭圆柱面:12222=+byax8)双曲柱面:12222=-byax9)抛物柱面:ay x=2(四)空间曲线及其方程1、 一般方程:⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F 2、 参数方程:⎪⎪⎩⎪⎪⎨⎧===)()()(t z z t y y t x x ,如螺旋线:⎪⎪⎩⎪⎪⎨⎧===btz t a y t a x sin cos 3、 空间曲线在坐标面上的投影⎪⎩⎪⎨⎧==0),,(0),,(z y x G z y x F ,消去z ,得到曲线在面xoy 上的投影⎪⎩⎪⎨⎧==00),(z y x H(五) 平面及其方程1、 点法式方程:0)()()(000=-+-+-z z C y y B x x A法向量:),,(C B A n = ,过点),,(000z y x2、 一般式方程:0=+++D Cz By Ax 截距式方程:1=++cz b y a x 3、 两平面的夹角:),,(1111C B A n = ,),,(2222C B A n = ,222222212121212121cos C B A C B A C C B B A A ++⋅++++=θ⇔∏⊥∏21 0212121=++C C B B A A⇔∏∏21// 212121C C B B A A ==4、 点),,(0000z y x P 到平面0=+++D Cz By Ax 的距离:222000C B A DCz By Ax d +++++=(六) 空间直线及其方程1、 一般式方程:⎪⎩⎪⎨⎧=+++=+++022221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程:p z z n y y m x x 000-=-=-方向向量:),,(p n m s = ,过点),,(000z y x3、 参数式方程:⎪⎪⎩⎪⎪⎨⎧+=+=+=ptz z nt y y mt x x 000 4、 两直线的夹角:),,(1111p n m s = ,),,(2222p n m s = ,222222212121212121cos p n m p n m p p n n m m ++⋅++++=ϕ⇔⊥21L L 0212121=++p p n n m m⇔21//L L 212121p p n n m m ==5、 直线与平面的夹角:直线与它在平面上的投影的夹角,222222sin p n m C B A CpBn Am ++⋅++++=ϕ⇔∏//L 0=++Cp Bn Am⇔∏⊥L pC n B m A ==第九章 多元函数微分法及其应用(一) 基本概念(了解)1、 距离,邻域,内点,外点,边界点,聚点,开集,闭集,连通集,区域,闭区域,有界集,无界集。
462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。
第八章 空间解析几何与向量代数第一节 向量及其线性运算一、填空题1.点(1,2,3)-在第Ⅴ卦限,点(2,3,1)--在第Ⅲ卦限.2.点(,,)x y z 到xoy 面、yoz 面、xoz 面的距离分别为z ,x ,y ;到x 轴、y 轴、z.3.点(,,)a b c 关于yoz 面的对称点是(,,)a b c -;与(,,)a b c -关于xoz 面对称;关于原点的 对称点是(,,)a b c ---.4.点M 的向径与x 轴成45角,与y 轴成60角,长度为6,若在z 轴上的坐标是负值,则点M的坐标为3)-.提示:设(,,)OM x y z =,cos 6x xr α===,x =1cos 26y y r β===,3y =;由222coscos cos 1αβγ++=,有1cos 2γ=-,3z =-.5.与向量(16,15,12)a =-平行,方向相反且长度为75的向量为(48,45,36)--.6.设()()11112222,,,,,M x y z M x y z ,则12M M=7.与向量(6,7,6)a =- 平行的单位向量为676,,111111⎛⎫±- ⎪⎝⎭.8.向量AB在x 轴、y 轴、z 轴上的投影依次为44-,,7,它的终点坐标为(2,1,7)B -, 则起点坐标(2,3,0)-.提示:若(,,)A x y z ,则AB(4,4,7)(2,1,7)x y z =-=----.9. 若()(),,,,,,x y z x y z a a a a b b b b ==则a b ± =(,,)x x y y z z a b a b a b ±±±. b a ⇔ ∥y x z x y za a ab b b ==.10.在xoy 面上,与三点(3,1,2),(4,2,2),(0,5,1)A B C --等距离的点为3821,,055⎛⎫-- ⎪⎝⎭.提示:设点(,,0)D x y ,由222AD BD CD ==得26108142x y x y -=⎧⎨-+=⎩.二、单项选择题1.设向量,a b互相平行,但方向相反,当0a b >> 时,必有 A .A.a b a b +=- B.a b a b +>- C.a b a b +<- D.a b a b +>+2.下列各组角可以作为某向量的方向角的是 A .A .90,150,60αβγ===B .45,135,60αβγ===C .60αβγ===D .60,120,150αβγ===三、计算题1.已知两点()1M 和()23,0,2M .计算向量12M M的模、方向余弦和方向角.解:()1M ,()23,0,2M ,∴()121,M M =-,122M M = .∴1212M M M M11,222⎛⎫-=- ⎪ ⎪⎝⎭,方向余弦为12-,,12,方向角为0120,0135,060. 2.设()()()3,5,8,2,4,7,5,1,4m n p ==--=- ,求向量43a m n p =+-在x 轴上的投影及在y 轴上的分向量.解:()()()3,5,8,2,4,7,5,1,4m n p ==--=-,∴ 43(13,7,15)a m n p =+-= , 故在x 轴上的投影为13,在y 轴上的分向量为7j . 3.向量a 与三坐标轴的正向构成相等的锐角,其模长为3,求a .解:设 (,,)a x x x = ,且0x >,由3a = ,有239x =,得x =∴a =.第二节 数量积 向量积一、填空题1.a ⇔ ⊥b 0b a ⋅= ;a b ⇔ ∥0a b ⨯=.2.向量()(),,,,,x y z x y z a a a a b b b b ==,若两向量夹角为θ,则 cos θa b a b a b ++3.向量()()3,1,2,1,2,1a b =--=- ,则()23a b -⋅= 18-,2a b ⨯= 10214i j k ++.4.已知点()()()2,4,,3,7,5,,10,9A n B C m 三点共线,则m = 4 ,n = 1 .5.已知点()()()1231,1,2,3,3,1,3,1,3M M M -,与,M M M M 1223同时垂直的单位向量为2,2)--. 提示:与,M M M M 1223 同时垂直的单位向量为M M M M M M M M ⨯±⨯12231223.6.设()()2,5,1,1,3,2a b ==- ,a b λμ+与z 轴垂直,则λ与μ的关系2λμ=. 提示:()0a b k λμ+⋅=.7.,,a b c 为三个非零向量,a b ⊥,a 与c 的夹角为π3,b 与c 的夹角为π6,且a =1,2,3bc == ,则a b c ++=提示:2()()a b c a b c a b c ++=++⋅++ . 二、单项选择题1. 已知()()0,3,4,2,1,2a b ==- ,则ab =Pr j C . A .3 B.13-C.-1 D.1提示:515a a b b a⋅-===-Prj . 2.已知向量,a b的模分别为4,2a b ==,且a b ⋅= ,则a b ⨯= C .A.2B...2 提示: cos(,)a b a b a b ⋅= ,cos(,)2a b = , sin(,)a b a b a b ⨯==三、计算题1.()()()2,3,1,1,1,3,1,2,0a b c =-=-=-,求()a b c ⨯⋅ .解:23185113i j ka b i j k ⨯=-=--+-,所以()(8,5,1)(1,2,0)2a b c ⨯⋅=--⋅-= .2.求向量()4,3,4a =- 在向量()2,2,1b =上的投影.解:6Pr j 23b a b a b ⋅====. 3.已知3,26,72a b a b ==⨯=,求a b ⋅ .解:∵sin 72a b a b θ⨯== ∴7212sin 32613θ==⨯,5cos 13θ==±,从而5cos 3263013a b a b θ⎛⎫⋅==⨯⨯±=± ⎪⎝⎭.4.化简:()()()a b c c a b c b b c a ++⨯+++⨯--⨯.解:()()()a b c c a b c b b c a ++⨯+++⨯--⨯a cbc a b c b b a c a =⨯+⨯+⨯+⨯-⨯+⨯ a c b c a b b c a b c a =⨯+⨯+⨯-⨯+⨯-⨯2()a b =⨯ .第三节 曲面及其方程一、填空题1.xoy 面上双曲线224936x y -=分别绕x 轴、y 轴旋转一周所得旋转曲面的方程依次 为36)(94222=+-z y x 和369)(4222=-+y z x .2.曲面2221x y z --=是由xoy 面上的曲线221x y -=绕x 轴旋转一周所得或由xoz 面上 曲线122=-z x 绕x 轴旋转一周所得.3.2221484x y z ++=表示的曲面为 旋转椭球面 . 4.2235x y z +=表示的曲面为 椭圆抛物面 .5.z =表示的曲面为 圆锥面的上半部分 .6.22y x =表示的曲面为 母线平行于z 轴的抛物柱面 .二、计算题1.一动点与两定点()2,3,1A 和()4,5,6B 等距离,求这动点的轨迹方程. 解:设动点为),,(z y x P ,则由题意知:22||||PB PA =,从而222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x即 0631044=-++z y x ∴动点的轨迹方程为:0631044=-++z y x . 2.将xoz 坐标面上的曲线z x a =+分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程. 解:在xoz 面上的a x z +=绕x 轴旋转一周,所得旋转曲面为:a x z y +=+±22即222)(z y a x +=+,同理,绕z 轴旋转一周后,得旋转曲面方程为:a y x z ++±=22, 即222)(y x a z +=-.3.说明下列旋转曲面是怎样形成的:⑴2221499x y z ++= ⑵22214yx z -+= 解:(1) xoy 面上的曲线19422=+y x (或xoz 面上的曲线19422=+z x )绕x 轴旋转一周所得;(2) xoy 面上的曲线1422=-y x (或yoz 面上的曲线1422=-y z )绕y 轴旋转一周所得. 4.画出由曲面4z =22z x y =+及221x y +=所围立体(含z 轴部分).解:4z =)4,0,0(的下半圆锥面,22z x y =+表示旋转抛物面,221x y +=表示圆柱面,从而三者所围立体即可得到,如图所示.第四节 空间曲线及其方程一、填空题1.母线平行于y 轴且经过曲线2222222160x y z x z y ⎧++=⎨+-=⎩的柱面方程为223216x z +=. 2.球面z =z =xoy 面上的投影方程为221x y z ⎧+=⎨=⎩. z 22z x y =+ 221x y +=4z =图8-1x yO3.旋转抛物面()2204z x y z =+≤≤在xoy 面上的投影为224x y z ⎧+≤⎨=⎩,在yo z 面上的投 影为240y z x ⎧≤≤⎨=⎩.4.圆锥面z =22z x =所围立体在xoy 面上的投影为2220x y xz ⎧+≤⎨=⎩,在xoz面上的投影为0x z y ⎧≤≤⎪⎨=⎪⎩ 二、单项选择题1.曲线2221:1645230x y z x z Γ⎧+-=⎪⎨⎪-+=⎩关于xoy 面的投影柱面的方程是 A . A .2220241160x y x +--= B .22441270y z z +--=C .22202411600x y x z ⎧+--=⎨=⎩D .224412700y z z x ⎧+--=⎨=⎩2.曲线22203y z x z ⎧+-=⎨=⎩在面xoy 上的投影曲线的方程是 B .A .220y x z ⎧=⎨=⎩B .2290y x z ⎧=-⎨=⎩C .2293y x z ⎧=-⎨=⎩D .223y xz ⎧=⎨=⎩三、将曲线方程22222443812y z x zy z x z ⎧++=⎨+-=⎩化成母线分别平行于x 轴及z 轴的柱面的交线方程. 解:将22222443812y z x z y z x z ⎧++=⎨+-=⎩分别消去,x z ,得 224y z z += ① 240y x += ②再将①②联立得交线方程:222440y z zy x ⎧+=⎨+=⎩.第五节 平面及其方程一、填空题1.设一平面经过点()000,,x y z,且垂直于向量(),,A B C ,则该平面方程为000()()()0A x x B y y C z z -+-+-=. 2.平面260x y z -+-=与平面250x y z ++-=的夹角为π3.3.平行于xoz 面且经过点()2,5,3-的平面方程为50y +=.4.经过x 轴和点()3,1,2--的平面方程为20y z +=. 提示:过x 轴的平面方程设为0By CZ +=.5.点()1,2,1到平面22100x y z ++-=的距离为 1 .提示:d =.二、求平行于x 轴且经过两点()4,0,2-和()5,1,7的平面方程.解:设所求平面方程为0By Cz D ++=, 又平面过()4,0,2-()5,1,7两点2070C D B C D -+=⎧∴⎨++=⎩, 29D CB C=⎧∴⎨=-⎩, ∴所求平面方程为:920y z --=. 三、一平面过点()1,0,1-且平行于向量()2,1,1a = 和()1,1,0b =-,试求该平面方程.解:设平面的法向量为n ,则n a b =⨯ ,2113110i j kn i j k ∴==+--,从而(1,1,3)n =-. 又 平面过点(1,0,1)-,∴所求平面方程为(1)3(1)0x y z -+-+=,即340x y z +--=.四、求平面2250x y z -++=与各坐标面夹角的余弦.解:平面2250x y z -++=的法向量(2,2,1)n =-,设平面与,,yoz xoz xoy 面的夹角分别为,,αβγ, 又yoz 面的法向量(1,0,0)i =2c o s .3n i n i α⋅∴== 同理.21cos ,cos .33βγ== 第六节 空间直线及其方程一、填空题1.设直线经过点()000,,x y z ,且平行于向量(),,m n p ,则该直线的对称式方程为00o x x y y z z m n p ---==,参数方程为000x x mty y nt z z pt=+⎧⎪=+⎨⎪=+⎩. 2.直线124x y z x y z -+=⎧⎨++=⎩的对称式方程为302213x y z --+==-. 3.过点()0,2,4且与两平面21x z +=和32y z -=平行的直线方程为024231x y z ---==-. 4.直线30x y z x y z ++=⎧⎨--=⎩与平面10x y z --+=的夹角为 0 .5.点()3,1,2-到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离为. 提示:过(3,1,2)A -与10:240x y z L x y z +-+=⎧⎨-+-=⎩垂直的平面为1y z +=,该平面与直线L 的交点131,,22B ⎛⎫-⎪⎝⎭,则A 到直线L 的距离即为AB .6.过直线1:L 4020x z y +-=⎧⎨-=⎩且平行于直线221:211x y zL +-==的平面方程为 320x y z -++=.提示:过1L 的平面束:(4)(2)0x z y λ∏+-+-=, 2∥L ∏20n s ∴⋅= ,2(1,,1),(2,1,1)n s λ==210λ∴++=,得3λ=-.∴平面为43(2)0x z y +---=,即320x y z -++=..7.直线326040x y z x y z D -+-=⎧⎨+-+=⎩与z 轴相交,则D = 3 .二、单项选择题1.两直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩的夹角为 C . A .π6 B .π4 C .π3 D .π22.直线111x x y y z z m n p---==与平面0Ax By Cz D +++=的夹角θ满足 C . A .sin θ=B .cos θ=C .sin θ=D .cos θ=3.过点()2,0,3-且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程是 A .A .16(2)14(0)11(3)0x y z --+-++=B .(2)2(0)4(3)0x y z ---++=C .3(2)5(0)2(3)0x y z -+--+=D .16(2)14(0)11(3)0x y z -++++-= 4.设直线3210:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4220x y z ∏-+-=,则直线L C .A .平行于∏B .在∏上C .垂直于∏D .与∏斜交提示:判断直线的方向向量与平面的法向量的关系.三、计算题1.求过点()4,1,3-且与直线230:510x y L y z --=⎧⎨-+=⎩平行的直线方程.解:设直线L 的方向向量12025051i j ks i j k =-=++-,∴所求直线的方向向量(2,1,5)s '=,从而直线方程为:413215x y z -+-==. 2.求直线2403290x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解:过已知直线的平面束方程为:329(24)0x y z x y z λ---+-+=,即(32)(14)(2)90x y z λλλ+-++--=.要使其与平面41x y z -+=垂直,则满足4(32)1420,λλλ++++-= 11.13λ=-1731371170.x y z ∴+--= ∴投影直线方程为 41.1731371170x y z x y z -+=⎧⎨+--=⎩ 3.求过直线20:4236x y L x y z +=⎧⎨++=⎩且切于球面2224x y z ++=的平面方程.解:设所求平面方程为:4236(2)0x y z x y λ++-++=即(42)(2)360x y z λλ++++-= 由题意知:(0,0,0)到平面的距离为22=即2440λλ++=2λ∴=-∴所求平面方程为:2z =.第八章 自测题一、填空题(每小题3分,共24分)1.设a =()2,5,1-,b =()1,3,2,问λ与μ有怎样的关系2λμ=,λa +μb 与z 轴垂直. 2.若已知向量a =()3,4,0,b =()1,2,2,则a ,b夹角平分线上的单位向量为.提示: a ,b 夹角平分线上的单位向量为a b a b a ba b+±+.3.若两个非零向量a ,b的方向余弦分别为111cos ,cos ,cos αβγ和222cos ,cos ,cos αβγ, 设a ,b夹角为ϕ,则cos ϕ=122112cos cos cos cos cos cos ααββγγ++.4.过直线122232x y z -+-==-且与平面3250x y z +--=垂直的平面方程为 81390x y z -++-=.提示:L :122232x y z -+-==-,化为一般方程12232232x y y z -+⎧=⎪⎪-⎨+-⎪=⎪-⎩, 即32102320x y y z ++=⎧⎨+-=⎩,过L 的平面束为:321(232)0x y y z λ++++-= ① (3,22,3)n λλ=+ ,(3,2,1)s =-,由0n s ⋅= 得13λ=-,代入①,可得平面方程.5.直线1l :158121x y z --+==-与直线2l :623x y y z -=⎧⎨-=⎩的夹角θ=1arccos 6. 6.点()3,-4,4到直线452221x y z ---==-的距离为 提示:过()A 3,-4,4与L :452221x y z ---==-垂直的平面为:2(3)2(4)(4)0x y z --++-=,与L 的交点为(8,1,4)B ,A 到L 的距离即为AB . 7.曲线22210x y z x y z ⎧++=⎨++=⎩在xoy 面上的投影曲线为2222210x y xy z ⎧++=⎨=⎩.8.与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行,且过原点的平面方程为 0x y z -+=.二、单项选择题(每小题3分,共12分)1.点()3,2,2P -在平面32210x y z -+-=上的投影点是 B . A .()3,1,2- B .301720,,777⎛⎫-⎪⎝⎭ C .()7,2,1 D .()2,21,3--提示:过()3,2,2P -与平面 垂直的直线为322312x y z -+-==-,其与平面∏的交点即为投影点. 2.直线224213x y z -+-==-与平面4x y z ++=的关系是 A . A .直线在平面上 B .平行 C .垂直 D .三者都不是 3.两平行平面23490x y z -++=与234150x y z -+-=的距离为 C .A .629 B .2429 CD提示:两平行平面的距离为平面上任一点到另一平面的距离 4.xoz 平面上曲线e xz =绕x 轴旋转所得旋转曲面方程为 A .Ae x = B .22e x y z += C .22e xy z += D.z =三、计算题(共64分)1.求与坐标原点O 及点()2,3,4A 距离之比为1:2的点的全体所组成的曲面方程,它表示 怎样的曲面?(本题6分)解:设所求曲面上的点为(,,)x y z ,则由题意知:2222221(2)(3)(4)4x y z x y z ++=-+-+-, ∴ 曲面方程为:222333468290x y z x y z +++++-=,表示一球面.2.将空间曲线方程222160x y z x z ⎧++=⎨+=⎩化为参数方程.(本题5分)解:把z x =-代入22216x y z ++=,得22216x y +=,令x t =,4sin y t =,则z t =-,∴空间曲线方程的参数方程为:4sin x ty t z t⎧=⎪=⎨⎪=-⎩.3.求中心点在直线247045140x y z x y z +--=⎧⎨++-=⎩上且过点A ()0,3,3和点B ()1,3,4-的球面方程.(本题6分)解:把247045140x y z x y z +--=⎧⎨++-=⎩化为对称式方程:7002322x y z ---==-,设球心坐标为 73,2,22O t t t ⎛⎫- ⎪⎝⎭,则OA OB =,从而 ()()()222227932233423222t t t t t ⎛⎫⎛⎫-+-=-+-+- ⎪ ⎪⎝⎭⎝⎭,∴32t =, ∴(1,3,3)O -,1OA =,所以球面方程为222(1)(3)(3)1x y z ++-+-=.4.求通过直线0230x y z x y z ++=⎧⎨-+=⎩且平行于直线23x y z ==的平面方程.(本题7分)解:设所求平面的方程为:(23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=,(12,1,13)n λλλ=+-+ ,又∵直线11123x y z==平行于平面, ∴1112(1)(13)023λλλ++-++=, ∴1115λ=-, ∴所求平面方程为:726180x y z -+=.5.点()2,1,1P --关于平面∏的对称点为1P ()-2,3,11,求∏的方程.(本题7分)解:设1PP 的中点为0P ,则0(0,1,5)P ,1(4,4,12)PP =- ,∵1//PP n ,取(1,1,3)n =-,由题意知所求∏的方程为:(0)(1)3(5)0x y z --+-+-=,即3160x y z -++-=.6.直线10:10x y z L x y z +--=⎧⎨-++=⎩在平面:0x y z ∏++=上投影直线L 0的方程.(本题7分)解:设所求平面方程为:1(1)0x y z x y z λ+--+-++=,即(1)(1)(1)10x y z λλλλ++-+-+-=,1(1,1,1)n λλλ=+--, 又∵2(1,1,1)n = ,22n n ⊥, ∴1110λλλ++-+-= ∴1λ=-,∴ 10y z --=, ∴ 投影直线L 0的方程为:10y z x y z -=⎧⎨++=⎩.7.求过直线5040x y z x z ++=⎧⎨-+=⎩且与平面48120x y z --+=成π4角的平面方程.(本题7分)解:设所求平面的方程为:5(4)0x y z x z λ+++-+=,即(1)5(1)40x y z λλλ+++-+=,1(1,5,1)n λλ=+- ,又∵2(1,4,8)n =--,1212πcos 4n n n n ⋅==,=即,解得34λ=-, 又平面40x z -+=与平面48120x y z --+=的夹角余弦cos ==θ π.4∴=θ ∴所求平面方程为:207120x y z ++-=及40x z -+=.8.求过点()P 2,1,3且与直线l :11321x y z+-==-垂直相交的直线方程.(本题7分) 解:由题意知,过点P ()2,1,3且垂直与l 的平面方程为:3(2)2(1)(3)0x y z -+---=即3250x y z +--=,令3121x t y t z t=-⎧⎪=+⎨⎪=-⎩,代入上述平面方程,解得37t =.所以平面与l 的交点为02133,,777P ⎛⎫- ⎪⎝⎭,由于所求直线的方向向量0//s P P ,所以取(2,1,4)s =- , 所以直线方程为213214x y z ---==-. 9.直线过点()3,5,9A --且和直线1l :3523y x z x =+⎧⎨=-⎩,2l :47510y x z x =-⎧⎨=+⎩相交,求此直线方程.(本题7分)解:设所求直线为l ,则l 与1l ,2l 分别相交,1l :5332y z x -+==,2l :71045y z x +-==, 所以取11(0,5,3)P l -∈,1(1,3,2)s = ,1(3,0,6)AP = ;22(0,7,10)Pl -∈,2(1,4,5)s =, 2(3,12,19)AP =- ,令111(18,0,9)n s A P =⨯=-,222(136,4,24)n s AP =⨯=--,过l 与1l 的平面方程为:2(3)(9)0x z +-+=,即230x z --=;过l 与2l 的平面方程为:34(3)(5)6(9)0x y z +---+=,即346530x y z --+=;所以直线l 的方程为:230346530x z x y z --=⎧⎨--+=⎩.。
第8章第1节向量及其线性运算习题8—111,12,15,17,18第8章第2节数量积、向量积、混合积习题8—23,4,6,7,9,10第8章第3节曲面及其方程习题8—32,5,7,9,10(1)(2)(3)(4)第8章第4节空间曲线及其方程习题8—43,4,7,8第8章第5节平面及其方程习题8—51,2,3,5,9第8章第6节空间直线及其方程习题8—61,2,3,4,5,8,9,10(1)(2),12,13,15第8章总复习题总复习题八1,7,8,10,11,12,13,14(1)(2),15,17,19,20第9章第1节多元函数基本概念习题9—12,5(1)(2),6(1)(2)(4)(5),7(1),8第9章第2节偏导数习题9—21(3)(4)(5) (6)(7),4,6(2),9(1)第9章第3节全微分习题9—31(1)(2)(4),2,3,5第9章第4节多元复合函数的求导法则习题9—42,4,6,7,8(1)(2),10,11,12(1)(4)第9章第5节隐函数的求导公式习题9—51,2,4,5,6,8,9,10(1)(3)第9章第6节多元函数微分学的几何应用习题9—63,4,6,7,9,10,12第9章第7节方向导数与梯度习题9—72,3,5,7,8,10第9章第8节多元函数的极值及其求法习题9—81,2,5,6,7,9,11第9章第9节二元函数泰勒公式习题9—91,3第9章总复习题总复习题九1,2,3,5,6,8,9,12,15,16,17,20第10章第1节二重积分的概念与性质习题10—12,4,5第10章第2节二重积分的计算法习题10—21(1)(3),2(3)(4),4(1)(3),6(4)(5)(6),7,89,12(1)(2)(3),14(1)(2),15(1)(2)(3),16 第10章第3节三重积分习题10—31(1)(2),2,4,5,7,8,9(1)(2),10(1)(2),11(1)第10章第4节重积分的应用习题10—41,2,5,6,8,10,14第10章总复习题总复习题十1,2(1) (3),3(1)(2)6,8(1)(2),10,11,12第11章第1节对弧长的曲线积分习题11—11,3(3)(4)(5)(7),4第11章第2节对坐标的曲线积分习题11—23(1) (2)(3) (5) (6)(7),4(1)(2)(3),7(1)(2),8第11章第3节格林公式及其应用习题11—31,2(1)(2),3,4(1)(2),5(1)(2)(4),6(1)(3)(4),8(1) (3)(5) (6)(7)第11章第4节对面积的曲面积分习题11—41,4(1)(2),5(1),6(1)(2)(3),7,8第11章第5节对坐标的曲面积分习题11—53(1)(2)(4),4(1)(2)第11章第6节高斯公式通量与散度习题11—61(1) (2)(3) (4) , 3(1)(2)第11章第7节斯托克斯公式环流量与旋度习题11—72(1) (2)(3),3(1)(2)第11章总复习题总复习题十一1,2,3,4,5,7,11第12章第1节常数项级数的概念和性质习题12—11(1)(4),2(3)(4),3,4第12章第2节常数项级数的审敛法习题12—21(1)(4) (5),2(1)(4) ,3(1)(3),4(1)(3)(5),5(1)(2)(3) (5)第12章第3节幂级数习题12—31,2第12章第4节函数展开成幂级数习题12—42,3,4,5,6第12章第7节傅里叶级数习题12—71(1)(2),2(1),3,4,5,6第12章第8节一般周期函数的傅里叶级数习题12—81(1)(2),2第12章总复习题总复习题十二1,2(1)(2)(3)(5),4,5(1)(2)(4),6(1),7(1)(2)(4),8(1)(2)(3),9(1),10(1),11。
高等数学第六版(同济版)第八章复习资料汇总第一篇:高等数学第六版(同济版)第八章复习资料汇总第八章空间解析几何与向量代数§8.1向量及其线性运算一、向量的相关概念1.向量的定义:称既有大小又有方向的量为向量(或矢量).2.向量的数学表示法:用一条有方向的线段表示,记为或.3.向量的模:称向量的大小为向量的模,记为.4.自由向量:称与起点无关的向量为自由向量.(如位移)5.单位向量:称模为1的向量为单位向量,记作.6.零向量:称模为0的向量为零向量,记作7.两向量相等:若向量与同模同方向,则称的与相等,记作.(即两个向量平移后重合 8.两向量的夹角:,9.两向量平行:若非零向量与所成的角或,则称的与平行,记作.规定: 零向量与任何向量平行10.两向量垂直:若非零向量与所成的角,则称的与垂直,记作注: 零向量可认为与任何向量平行或垂直 11.向量共线:平行的向量可移动到同一条直线上,也称之为向量共线 12.向量共面:将个向量的起点放到同一点时,若个终点与公共起点在一个平面上,则称这个向量共面.二、向量的线性运算1.向量的加减法(1).向量的加法①.运算法则:设有向量与,求与的和.I.三角形法则: II.平行四边形法则:.②.运算规律:1°.交换律:2°.结合律:注:,再以第一个向量的起点为起点,最后一个向量的终点为终点作一向量,这个向量即为所求向量的和,即.(2).向量的减法①.负向量:称与向量同模反向的向量为它的负向量,记作②.两向量的差:称向量与向量的负向量的和为与的差向量,记作.注:特别地,当时,.③.运算法则:设有向量与,求与的差.I.平行四边形法则:.II.三角形法则:.(3).运算定理:.2.向量与数的乘法(1).定义:称向量与实数的乘积为向量的数乘.注:1°.规定是一个向量2°.3°.若,则与同向;若,则与反向;若,则.(2).运算规律:①.结合律:.②.分配律:.(3).性质①.向量的同向单位向量:,.②.向量平行的充要条件(定理):若向量,则向量平行于唯一的实数,使③.数轴上的点的坐标为的充要条件为:,其中向量为数轴的单位向量,实数称为有向线段的值.例1.如图,用、表示、、以及,进而.又,故,进而三、空间直角坐标系解:由于,故1.空间直角坐标系:坐标系或坐标系2.坐标面:面;面;面.3.卦限:;;;;;;;4.空间点的坐标:(向径).(1).向量的坐标分解式:.(2).向量的分向量:.(3).向量的坐标:.(4).点的坐标:注:1°.面上点的坐标:;2°.轴上点的坐标:;面上点的坐标:;轴上点的坐标:;面上点的坐标:.z轴上点的坐标:四、利用坐标作向量的线性运算:设,.1.向量线性运算的坐标表示:(1).加减法:.(2).数乘:(3).两向量平行:注:1°.若,则2.若,则例2.已知,求线性方程组的解向量解:方程①乘2减去方程②乘3得:,方程①乘3减去方程②乘5得:例3.已知两点、在直线AB上求一点M,使.及实数,解:因为,因此有,整理得,代入坐标得,从而得到点M的坐标注:线段AB中点坐标公式五、向量的模、方向角、投影1.向量的模与两点间距离公式:(1).向量的模:,.(2).两点间距离公式:点与之间的距离:推导:因为,所以例4.求证以三点、、为顶点的三角形是一个等腰三角形.解:由两点间距离公式,有;;,由于,故为等腰三角形.例5.在z轴上求与两点、等距离的点.解:由题可设所求点为,有,即,整理得,故所求点为.例6.已知两点、,求与同向的单位向量解:因为,所以,于是 2.方向角与方向余弦(1).向量的方向角:称非零向量与三条坐标轴的夹角为向量的方向角(2).向量的方向余弦:方向角的余弦 , , 注:1°.;2°..例7.已知两点、,计算向量的模、方向余弦和方向角.解:由于,从而有于是,,由此可得例8.设点A位于第I卦限,向径与x轴、y轴的夹角依次为的坐标、,且,求点A,解:由于,并且,有由题可知,故,于是,故点A的坐标为.3.向量在轴上的投影(1).向量在轴上的投影:设向量与u轴正向的夹角为,称数为向量在u轴上的投影,记作或注:向量在三个坐标轴上的投影即为对应的坐标,即,(2).投影的性质:①..②.例9.设立方体的一条对角线为OM,一条棱为OA,且|OA|= a,求在解:记,有,于是.§8.2数量积、向量积一、两向量的数量积1.常力沿直线所作的功:2.两向量的数量积(1).定义:称向量与的模及其夹角余弦的乘积为与的数量积,内积或点积,记作注:1°.2°..3°..(2).运算规律①.交换律:.(由定义可知)②.分配律:③.结合律:; 3.两向量数量积的坐标表示式:若,则4.两非零向量夹角余弦的坐标公式:例1.试用向量证明三角形的余弦定理:.解:在中,记,,,有,从而,即例2.已知三点、和,求解:由题可得,于是,故例3.设液体流过平面S上面积为A的一个区域,液体在这区域上各点处的流速均为(常向量)v.设为垂直于S的单位向量,计算单位时间内经过这区域流向所指一侧的液体的质量m(液体的密度为解:单位时间内经过该区域的液体的体积为,所求质量为.二、两向量的向量积1.力对支点的力矩:模:;方向:与及的方向成右手规则.2.两向量的向量积(1).定义:设有向量与,夹角为,称为与的向量积(叉积、外积),其中,方向与和的方向符合右手规则,记作.注:1°.2°.3°.的几何意义:以与为邻边的平行四边形的面积.(2).运算规律①.反交换律:.②.分配律:.③.结合律:(3).两向量的向量积的坐标表示式:设,则.例4..证明:在三角形中,记,,由于,即,整理得.例5.设,计算解:.例6.已知三角形ABC 的顶点分别是、和,求三角形ABC的面积解:由于,有,于是.例7.设刚体一角速度绕轴旋转,计算刚体上一点M的线速度.解:在轴l上引进一个角速度向量,使,其方向与旋转方向符合右手法则,在l上任取一点O,作向径,它与的夹角为,则点M离开转轴的距离,由物理学中线速度和角速度的关系可知,且、、符合右手规则,于是.§8.3曲面及其方程一、曲面方程的相关概念1.曲面方程:若曲面S上任一点的坐标都满足方程,且不在曲面S上的点的坐标都不满足方程(*),则称方程(*)为曲面S的方程,而称曲面S为称方程(*)的图形.2.关于曲面的两个基本问题(1).已知一曲面作为空间点的几何轨迹,建立该曲面的方程.(2).已知关于点的坐标、、之间的一个方程,研究该方程所表示曲面的形状例1.建立球心在点、半径为R的球面方程解:设为所求球面上任一点,有,即,整理得例2.设有点和,求线段AB的垂直平分面的方程.解:设为所求平面上任一点,由题意,有,即,整理得例3.方程表示怎样的曲面?解:原方程变形为,表示以为球心,以5为半径的球面.二、旋转曲面1.定义:称由一条平面曲线绕其平面上一条定直线旋转一周所成的曲面为旋转曲面,称旋转曲线为旋转曲面的母线,定直线为旋转曲面的轴.2.旋转曲面的方程:曲线C:绕z轴旋转一周所成的旋转曲面方程为:.(绕y轴旋转一周所成的旋转曲面方程为:.)(巧记:绕谁谁不动,缺谁补上谁推导:在曲线C上任取一点,有,且点到z轴的距离.当曲线C绕z轴旋转时,点绕z轴旋转到点,其中,点到z轴的距离,由于,有,即,代入曲线方程有注:1°.曲线C:绕x 轴旋转一周所成的旋转曲面方程为:;绕y轴旋转一周所成的旋转曲面方程为:2°.曲线C:绕z轴旋转一周所成的旋转曲面方程为:;绕x轴旋转一周所成的旋转曲面方程为:3.常见旋转曲面及其方程(1).圆锥面及其方程①.圆锥面:称由直线L绕与其相交的直线旋转一周所成的曲面为圆锥面,称两直线的交点为圆锥面的顶点,称两直线的夹角为圆锥面的半顶角②.圆锥面的方程:以坐标原点o为顶点,以为半顶角,以z轴为旋转轴的圆锥面的方程为:,其中推导:在坐标面上,过原点且与z轴夹角为的直线方程为,于是,直线L绕z轴旋转而成的圆锥面的方程为,整理得注:1°.以坐标原点O为顶点,以为半顶角,以x,其中2°.以坐标原点O为顶点,以为半顶角,以y,其中(2).旋转双曲面及其方程①.旋转双曲面:称由双曲线绕其对称轴旋转一周所成的曲面为旋转双曲面,分为单叶和双叶双曲面②.旋转双曲面的方程:(双曲线:.旋转单叶双曲面的方程:(绕z轴旋转.旋转双叶双曲面的方程:(绕x轴旋转)三、柱面1.柱面的定义:称由直线L沿定曲线C平行于定直线l 移动所成的轨迹为柱面,称定曲线C为柱面的准线,动直线L为柱面的母线.2.几种常见柱面及其方程(缺谁母线平行谁(1).圆柱面:.(准线为坐标面上的圆:,母线平行z轴.(准线为坐标面上的圆:,母线平行x 轴.(准线为坐标面上的圆:,母线平行y轴(2).过坐标轴的平面:,过z 轴,准线为坐标面上的直线,过x轴,准线为坐标面上的直线.,过y 轴,准线为坐标面上的直线四、二次曲面 1.椭球面:.2.椭圆锥面: 3.单叶双曲面:.4.双叶双曲面:5.椭圆抛物面:.6.双曲抛物面:7.椭圆柱面:.8.双曲柱面: 9.抛物柱面:§8.4空间曲线及其方程一、空间曲线:称空间两曲面的交线为空间曲线,记为C.二、空间曲线的方程1.一般式(面交式)方程:例如:表示圆柱面与平面的交线.表示上半球面又如:与圆柱面的交线 2.参数方程:,其中点随着参数t的变化遍历曲线C 例1.称由点在圆柱面上以角速度绕z轴旋转,又同时以线速度v沿平行z轴的正向上升所成的图形为螺旋线,求其参数方程解:取时间t为参数,对应点,对应点,作M在xoy面上的投影,有,且,于是,又,于是,螺旋线的参数方程为,令,则螺旋线的参数方程为三、空间曲线在坐标面上的投影 1.投影柱面:称以空间曲线C为准线,母线平行于z轴的柱面为曲线C关于坐标面的投影柱面2.空间曲线的投影:称空间曲线C关于坐标面的投影柱面与坐标面的交线为空间曲线C在坐标面上的投影曲线,也称为投影3.空间曲线的投影方程:空间曲线C:在坐标面上的投影方程,其中为方程组消去z所得的投影柱面方程.注:1.空间曲线曲线C:在坐标面上的投影方程为2°.空间曲线曲线C:在坐标面上的投影方程为例2.求曲线在坐标面上的投影方程.解:现求曲线C在关于坐标面上的投影方程,将方程组消去z 得投影柱面方程:,于是所求投影方程为例3.求由上半球面和锥面所围成的立体在坐标面上的投影解:先求曲线关于坐标面的投影方程,消去z 在坐标面上的投影方程为,从而所求投,故曲线影为圆域:§8.5平间及其方程一、平面的点法式方程1.平面的法向量:称垂直于一平面的非零向量为该平面的法线向量2.平面的点法式方程:过点,以向量为一法向量的平面推导:在平面上任取一点,有向量,由于,有,即有(1),即平面上的点的坐标都满足方程(1).反之,若点不在平面上,则向量不垂直法向量,从而,即不在平面上的点的坐标都不满足方程(1).于是得到平面的点法式方程.例1.求过点且以为法向量的平面的方程解:由平面的点法式方程得,整理得.例2.求过三点、和的平面的方程解:先求所求平面的一个法向量,由题可得向量,可取,于是所求平面的方程为,整理得.二、平面的一般方程1.平面的一般方程:(*)推导:若点满足方程(*),则有,(**)两方程相减得,(*** 方程(***)为过点,以向量为一法向量的平面的点法式方程.由于方程(*)与(***)同解,可知任何一个三元一次方程(*)为平面的一般方程,其一法线向量为2.几种特殊平面的一般方程:(缺谁平行谁(1).过原点的平面方程:,法向量为.(2).平行x轴的平面方程:,法向量为(3).垂直于x轴(平行坐标面)的平面方程:,法向量为.例3.求通过x轴和点的平面的方程解:由题意,可设所求平面的方程为:,(*)又点在该平面上,有,得,代入方程(*)得.例4.设一平面与x、y、z轴的交点依次为、,求该平面的方程解:设所求平面的方程为,(*)将PQR三点坐标代入得,,代入方程(*),从而有所求平面方程为,称之为平面的截距式方程三、两平面的夹角及点到平面的距离得1.两平面的夹角:称两平面的法线向量的夹角(锐角)为两平面的夹角 2.两平面夹角的余弦:设平面1的法线向量为,平面,两平面的夹角为,则注:1°..2°.3.点到平面的距离:平面外一点到平面的距离为推导:在平面上任取一点,过点作平面的一法向量,有,由于,,由于于是,又点在平面上,故有,从而例5.求两平面和的夹角.解:由两平面夹角余弦公式,故所求夹角为例6.一平面通过两点和且垂直于平面,求它的方程.解:设所求平面的一个法线向量为,由题可知向量在平面上,已知平面的一个法线向量为,由题意有,有;,有;由以上两方程可得,故所求平面的法线向量为,于是所求平面的方程为,整理得另解:由题可知所求平面上一向量,又已知平面的一个法线向量为,易知不平行于,故可取所求平面的一个法线向量为,于是所求平面方程为:,整理得第六节空间直线及其方程一、空间直线:称空间两平面1、的交线为空间直线.二、空间直线的方程1.一般(面交式)方程:2.对称式(点向式)方程(1).直线的方向向量:称平行于已知直线的非零向量为该直线的方向向量(2).直线的点向式方程:过点以向量为方向向量的直线L.推导:在直线L上任取一点,有向量,由于,故有,(*)即直线L上点的坐标都满足方程(*)反之,若点不在直线L上,则由于不平行,所以这两向量的对应坐标就不成比例,因此方程(*)就是直线L 的方程,称为直线的对称式或点向式方程.注:1°.mnp不同时为零2°.若,则直线L的方程为,即平面上的直线3°.若,则直线L的方程为,即平面与交线,过点且平行z轴 3.参数方程:注:一般式对称式参数式例1.用对称式方程以及参数方程表示直线解:先找出该直线上一点:不妨取,代入原方程组得,解得,即为该直线上一点再找该直线的方向向量:由题可知交成该直线的两平面的法线向量分别为,故可取.,得到所给直线的参数方程:令.三、两直线的夹角 1.两直线的夹角:称两直线的方向向量的夹角(锐角)为两直线的夹角 2.两直线夹角的余弦:直线的方向向量为,直线的方向向量 ,两直线的夹角为,则注:1°.2°.例2.求直线.和的夹角.解:由题可知直线的方向向量为,直线的方向向量为,设的夹角为,则由两直线夹角余弦公式得故四、直线与平面的夹角 , 1.直线与平面的夹角:称直线与不垂直该直线的平面上的投影直线的夹角为直线与平面的夹角..2.直线与平面夹角的正弦:若直线的方向向量为,平面为.与的夹角为,则.注:1°.2°..例3.求过点且与平面垂直的直线的方程解:由题意,可取为所求直线的一个方向向量,故所求直线的方程为.五、平面束及其方程1.平面束:称通过定直线的所有平面的全体为平面束2.平面束的方程:设有直线,其中与不成比例则通过直线的平面束的方程为:.注:该平面束不包含平面例4.求直线在平面上的投影直线的方程解:过直线的平面束的方程为,即,其中为待定常数.由题可知,该平面与已知平面垂直,故,即,解得.由此可得所给直线关于所给平面的投影平面的方程为,整理得,故所求投影直线的方程为.六、点到直线的距离:直线外一点到直线的距离为:为直线上的一点推导:在直线上任取一点,有向量,设点到直线的距离为,由于,故例5.求点的距离.解:由题可知,所给直线的方向向量为,点,由平面外一点到直线的距离公式得:.七、杂例:例6.求与两平面和的交线平行且过点的直线的方程.解法一(点向式由题可知两已知平面的法向量分别为和,故可取线的一个方向向量,即,于是所求直线方程为.解法二(一般式过点且与平面平行的平面方程为,过点平行的平面方程为以所求直线方程为例7.与平面的交点.解:易知所给直线的参数方程为,,解得,代入直线的参数方程得所求交点的坐标例8.求过点垂直相交的直线方程.第二篇:高等数学第六版(同济版)第九章复习资料[模版]第九章多元函数微分法及其应用引入:在上册书中,我们学习了一元函数微积分学,所讨论的对象都只有一个自变量的函数,而在实际应用中,研究的问题往往要涉及多方面的因素,反映在数量上就是一个变量要依赖几个自变量,即数学上的多元函数,从这节课开始,我们进入多元函数微积分学的学习阶段.先来学习多元函数微分学由于从一元函数到二元函数,单与多的差异已能充分体现,我们由二元函数入手来研究多元函数微分学,然后把相关概念及性质推广到三元、四元直至元函数上去第一节多元函数的基本概念一、平面点集的相关概念 1.平面点集:具有性质P} 例如:,其中点表示点2.邻域:(1).邻域:(2).去心邻域:3.坐标面上的点与平面点集的关系:(1).内点:若,使,则称为的内点.(2).外点:若,使,则称为的外点(3).边界点:若,且,则称为的边界点边界:的边界点的全体称为它的边界,记作.(4).聚点:若,则称为的聚点导集:的聚点的全体称为它的导集注:1°.若为的聚点,则可以属于,也可以不属于2°.内点一定是聚点;外点一定不是聚点;边界点也不总是聚点,如孤立的边界点.例如:;.4.一些常用的平面点集:(1).开集:若点集的点都是其内点,则称为开集(2).闭集:若点集的边界,则称为闭集.(开集加边界(3).连通集:若中任何两点都可用属于的折线连接,则称为连通集.(4).开区域:连通的开集称为开区域,也称为区域.(5).闭区域:开区域加上其边界称为闭区域例如:为区域.为闭区域.(6).有界集:若,使,则称为有界集.(7).无界集:若,使,则称为无界集二、维空间:对取定的自然数,称元数组的全体为维空间,记为.注:前述的邻域、区域等相关概念可推广到维空间.三、多元函数的概念 1.,或,其中因映自变变量射量定义域:D 值域:注:可推广:元函数:,.例: 1.,2.,2.几何表示:函数对应空间直角坐标系中的一张曲面:.四、二元函数的极限1.定义:设函数的定义域为,点若,,为,满足,则称为当,称之为的二重极限例1.设证明:,要使不等式,求证成立,只须取,于是,,总有,即例2.不存在,其中证明:当沿直线趋于时,总有,随着的不同而趋于不同的值,故极限不存在例3.求极限五、二元函数的连续性 1.二元函数的连续性:设函数的定义域为D,点为D的聚点,且,则称在点连续 2.二元函数的间断点: 设函数的定义域为D,点为D的聚点,若在点不连续,则称为的间断点.注:间断点可能是函数有定义的孤立点或无定义的点.3.性质:设D为有界闭区域(1).有界性:,有(2).最值性:,使得,有(3).介值性:,使得.4.二元连续函数的运算性质(1).和、差、积仍连续;(2).商(分母不为零)连续;(3).复合函数连续.5.二元初等函数及其连续性(1).二元初等函数:由二元多项式和基本初等函数经过有限次四则运算和有限次复合所构成的、并用一个式子表示的二元函数称为二元初等函数.(2)..例4.,则解:令例5...(分子有理化)第二节偏导数引入:在一元函数微分学中,我们研究了一元函数的变化率—导数,并利用导数研究了函数的性态.对于多元函数,我们也要讨论它的变化率,但由于多元函数的自变量不止一个,所以多元函数的变化率要比一元函数的变化率复杂得多.我们还是以二元函数为例来研究多元函数的变化率,先把二元函数中某一自变量暂时固定,再讨论二元函数关于另一个自变量的变化率,这就是数学上的偏导数.一、偏导数的相关概念1.偏导数:设函数在点的某邻域内有定义,把暂时固定在,而处有增量时,相应地有增量.若极存在,则称此极限值为函数在点处对的;或注: 1°..2°..2.偏导函数:若函数在区域D内每一点处对或偏导数存在,则该偏导数称为偏导函数, 或;或.注:可推广:三元函数在点处对的偏导数定义为例1.求在处的偏导数.,.例2.求的偏导数.,.例3.求的偏导数.,..3.偏导数的几何意义(1).偏导数是曲线在点处的切线关于轴的斜率(2).偏导数是曲线在点处的切线关于轴的斜率.4.函数偏导数存在与函数连续的关系:函数偏导数存在与函数连续之间无必然的蕴含关系.(1).函数在点处偏导数存在,但它在点却未必连续例如:函数在点的两个偏导数都存在,即,.不存在,故在点不连续(2).函数在点连续,但它在点处却未必存在偏导数例如:函数在点连续,但它在点对及的偏导数都不存在,这是因为:,即在点对及的偏导数都不存在.二、高阶导数1.二阶偏导数:若函数对及的偏导数及对及的偏导数也存在,则称它们是函数的二阶偏导数记作:;;(二阶纯偏导数);.(二阶混合偏导数)(二阶纯偏导数注:1°.一般地,二元函数的阶偏导数的偏导数称为它的阶偏导数2°.二阶以及二阶以上的偏导数统称为高阶导数.3°.二元函数的阶偏导数至多有个.例4.设,求它的二阶偏导数.;;;;;.总结:从这一例题,我们看到:,即两个二阶混合偏导数相等,与求导顺序无关.那是不是每个二元函数都有这样的相等的二阶混合偏导数呢?我们说不是的,例如:,在点,有,事实上,;而,,于是,,即那么满足什么条件得二元函数的两个二阶混合偏导数与求导顺序无关呢?有下面的定理:2.二阶混合偏导数的性质定理:若函数的两个二阶混合偏导数与在区域内连续,则它们在D内必相等,即注:1°.可推广:高阶混合偏导数在连续的条件下与求导顺序无关.2°.一般地,若二元函数的高阶混合偏导数都连续,则的阶偏导数只有个第三节全微分一、全微分的相关概念1.偏增量:称为函数对的偏增量称为函数对的偏增量2.偏微分:称与为对及的偏微分.注:,但在实际应用中,往往要知道函数的全面的变化情况,即当自变量有微小增量、时,相应的函数增量与自变量的增量、之间的依赖关系,这涉及到函数的全增量.3.全增量:称为函数在点、的全增量一般来讲,计算全增量是比较困难的,我们总希望像一元函数那样,利用、的线性函数来近似代替函数的全增量,为此,引入了全微分4.全微分:若函数在点的某领域内有定义,且在的全增不依赖于、,可表示为,其中而仅与、有关,则称在点可微分,而称为在点的全微分,记作,即若在区域D内每一点都可微分,则称在D内可微分.注:我们知道,当一元函数在点的微分存在时,那么,当二元函数在点的全微分存在时,、又为何值呢?下面讨论二元函数可微分与连续、可微分与偏导数存在的关系,从中得到、的值.二、二元函数可微分与偏导数存在、可微分与连续的关系1.函数可微分的必要条件定理1.若函数在点可微分,则它在点的两个偏导数必定存在,且在点的全微分证明:由于在点可微分,则有,。