光纤通信设备知识
- 格式:pptx
- 大小:238.91 KB
- 文档页数:26
第一章.概论1. 1880年,美国人贝尔(Bell)发明了用光波作载波传送话音的“光电话”。
在光电话问世后光通信进展缓慢,主要原因:没有理想的光源和传输介质。
2. 1966年,高锟和霍克哈姆发表了关于传输介质新概念的论文,指出了利用光纤进行信息传输的可能性和技术途径,奠定了现代光通信——光纤通信的基础。
1970年,光纤研制取得了重大突破,低损耗光纤研制成功和激光器研制成功。
3.光纤最低损耗的理论极限值是0.148dB/km,实际使用是0.154 dB/km.4.光纤的工作波长,也是三个损耗很小的波长窗口是0.85um ,1.31 um,1.55 um.同样光纤对不同的光损耗不同,应该选择低损耗的。
5.光纤通信的优点:1) 容许频带很宽,传输容量很大2) 损耗很小, 中继距离很长且误码率很小 3) 重量轻、 体积小 4) 抗电磁干扰性能好5) 泄漏小, 保密性能好6) 节约金属材料, 有利于资源合理使用 6. .光纤通信系统的基本组成光发射机的功能是把电信号转换为光信号,并用耦合技术把光信号最大限度地注入光纤线路。
光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失真)和衰减传输到光接收机。
光源激光器的发射波长和光检测器光电二极管的波长响应,都要和光纤这三个波长窗口相一致。
光接收机的功能是把从光纤线路输出、产生畸变和衰减的微弱光信号转换为电信号,并经放大和处理后恢复成发射前的电信号。
第二章光纤和光缆1.纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。
2.实用光纤主要有三种基本类型:突变型多模光纤,渐变型多模光纤,单模光纤。
突变型多模光纤纤芯内任意两点折射率相同,渐变型多模光纤以纤芯中心为圆,小于a 的值为半径作圆,圆上所有点折射率相同。
单模光纤输出脉冲最接近于输入脉冲。
系统容量(传输速率):单模光纤>多模光纤。
第1章概述1、光纤通信的基本概念:利用光导纤维传输光波信号的通信方式。
光纤通信工作波长在于近红外区:0.8~1.8μm的波长区,对应频率: 167~375THz。
对于SiO2光纤,在上述波长区内的三个低损耗窗口,是目前光纤通信的实用工作波长,即0.85μm、1.31μm及1.55μm。
2、光纤通信系统的基本组成:(P2图1-3)目前采用比较多的系统形式是强度调制/直接检波(IM/DD)的光纤数字通信系统。
该系统主要由光发射机、光纤、光接收机以及长途干线上必须设置的光中继器组成。
1)在点对点的光纤通信系统中,信号的传输过程:由电发射机输出的脉码调制信号送入光接收机,光接收机将电信号转换成光信号耦合进光纤,光接收机将光纤送过来的光信号转换成电信号,然后经过对电信号的处理以后,使其恢复为原来的脉码调制信号送入电接收机,最后由信息宿恢复用户信息。
2)光发射机中的重要器件是能够完成电-光转换的半导体光源,目前主要采用半导体发光二极管(LED)和半导体激光二极管(LD)。
3)光接收机中的重要部件是能够完成光-电转换的光电检测器,目前主要采用光电二极管(PIN)和雪崩光电二极管(APD)。
特性参数:灵敏度4)一般地,大容量、长距离光纤传输: 单模光纤+半导体激光器LD小容量、短距离光纤传输: 多模光纤+半导体发光二极管LED5)光纤线路系统:功能:把来自光发射机的光信号,以尽可能小的畸变和衰减传输到光接收机。
组成:光纤、光纤接头和光纤连接器要求:较小的损耗和色散参数3、光纤通信的特点:优点:(1),传输频带宽,通信容量大。
(2)传输损耗小,中继距离长:石英光纤损耗低达0.19 dB/km,用光纤比用同轴电缆或波导管的中继距离长得多。
(3)保密性能好:光波仅在光纤芯区传输,基本无泄露。
(4)抗电磁干扰能力强:光纤由电绝缘的石英材料制成,不受电磁场干扰。
(5)体积小、重量轻。
(6)原材料来源丰富、价格低廉。
缺点:1)不能远距离传输;2)传输过程易发生色散。
一、光纤通信的基本知识(一)光纤通信的概念1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
这些现象引起了丁达尔的注意,经过他的研究,发现这是由于全反射的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。
由于这种纤维能够用来传输光线,所以称它为光导纤维。
(视频)光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
(视频)(二)光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。
采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。
中国光纤通信已进入实用阶段。
(三)光纤通信的优缺点1、光纤通信的优点现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:①频带宽,通信容量大。
光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。
频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。
光纤通信知识点总结引言光纤通信是一种通过光纤传输光信号的通信技术,它使用光纤作为传输媒质,通过光的反射、折射和传播来实现信息的传输。
光纤通信具有带宽大、传输速度快、抗干扰性强、安全可靠等优点,因此在现代通信中得到了广泛的应用。
本文将对光纤通信的相关知识点进行总结,包括光纤通信的基本原理、组成结构、传输特点、光纤通信系统的组成和工作原理、光纤通信的发展趋势等内容。
一、光纤通信的基本原理1. 光的特性光波是一种电磁波,具有波粒二象性,既可以表现为波动又可以表现为微粒。
光波的主要特性包括波长、频率、相速度、群速度等。
2. 光纤的基本原理光纤是一种通过光的全反射来传输光信号的一种传输媒质。
它的基本结构是由一根纤维芯和包覆在外的包层组成,通过这样的结构使得光信号可以沿着光纤的传输方向不断进行反射和传播。
二、光纤通信的组成结构1. 光纤的结构光纤由芯和包层构成,芯是由单质或复合材料制成,包层是由低折射率的材料构成,使得光可以在芯和包层的界面上发生全反射。
2. 光纤的连接器连接器是光纤通信中的重要部分,它用于将光纤连接在一起,保证光信号的传输质量。
3. 光纤的光源和接收器光源是产生光波的设备,用于向光纤中输入光信号;接收器是用于接收光纤传输过来的光信号,并将其转换为电信号。
三、光纤通信的传输特点1. 带宽大光纤通信的带宽远远大于传统的铜线通信,可以传输更多的信息。
2. 传输距离远光纤通信的传输距离远远大于铜线通信,可以满足更长距离的通信需求。
3. 传输速度快光纤通信的传输速度远远快于铜线通信,可以实现更快的数据传输。
4. 抗干扰性强光纤通信的信号传输过程中不受电磁干扰,抗干扰性能强。
5. 安全可靠光纤信号传输过程中不会泄露电磁波,安全可靠。
四、光纤通信系统的组成和工作原理1. 光纤通信系统的组成光纤通信系统由光源、光纤、接收器、调制解调器、复用器、解复用器等组成。
2. 光纤通信系统的工作原理光源产生光信号,光信号经过调制解调器进行调制,然后通过光纤进行传输,接收器接收光信号并将其转换为电信号,经过复用器和解复用器将多个信号合并或分解,最终传输到目标设备。
光纤通信重要知识点总结第一章1.任何通信系统追求的最终技术目标都是要可靠地实现最大可能的信息传输容量和传输距离。
通信系统的传输容量取决于对载波调制的频带宽度,载波频率越高,频带宽度越宽。
2.光纤:由绝缘的石英(2)材料制成的,通过提高材料纯度和改进制造工艺,可以在宽波长范围内获得很小的损耗。
3.光纤通信系统的基本组成:以光纤为传输媒介、光波为载波的通信系统,主要由光发送机、光纤光缆、中继器和光接收机组成。
光纤通信系统既可传输数字信号也可传输模拟信号。
输入到光发射机的带有信息的电信号,通过调制转换为光信号。
光载波经过光纤线路传输到接收端,再由光接收机把光信号转换为电信号。
系统中光发送机的作用是将电信号转换为光信号,并将生成的光信号注入光纤。
光发送机一般由驱动电路、光源和调制器构成,如果是直接强度调制,可以省去调制器。
光接收机的作用是将光纤送来的光信号还原成原始的电信号。
它一般由光电检测器和解调器组成。
光纤的作用是为光信号的传送提供传送媒介,将光信号由一处送到另一处。
中继器分为电中继器和光中继器(光放大器)两种,其主要作用就是延长光信号的传输距离。
为提高传输质量,通常把模拟基带信号转换为频率调制、脉冲频率调制或脉冲宽度调制信号,最后把这种已调信号输入光发射机。
还可以采用频分复用技术,用来自不同信息源的视频模拟基带信号(或数字基带信号)分别调制指定的不同频率的射频电波,然后把多个这种带有信息的信号组合成多路宽带信号,最后输入光发射机,由光载波进行传输。
在这个过程中,受调制的电波称为副载波,这种采用频分复用的多路电视传输技术,称为副载波复用技术。
目前大都采用强度调制与直接检波方式。
又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。
数字光纤通信系统基本上由光发送机、光纤与光接收机组成。
发送端的电端机把信息进行模数转换,用转换后的数字信号去调制发送机中的光源器件,则就会发出携带信息的光波,即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”。
光纤知识点(5-9章)第五章知识点1.数字传输体制有两种:是不同的传输体制协议。
SDH(同步数字传输体制)PDH(准同步数字传输体制)2. SDH对模型的下列几个方面做了规定:(1)网络节点接口(2)同步数字体系的速率(3)帧结构。
(1)网络节点接口传输设备:光缆传输系统设备;微波传输系统设备;卫星传输系统设备。
网络节点:只有复用功能(简单);复用、交叉连接多种功能(复杂)。
(2)速率:同步传输模块:STM-N,N=1、4、16 等。
STM-1 155.520Mbit/s 155Mbit/sSTM-4622.080Mbit/s 622Mbit/sSTM-16 2488.320Mbit/s 2.5Gbit/sSTM-64 9953.280Mbit/s 10Gbit/sSTM-256 39813.12Mbit/s 40Gbit/s(3)帧结构:SDH 帧为块状帧结构,共有9 行,270 列,以字节为单位。
一个STMN 帧有9 行,每行由270×N 个字节组成。
这样每帧共有9×270×N 个字节,每字节为8 bit。
帧周期为125μs,即每秒传输8000 帧。
对于STM1 而言,传输速率为9×270×8×8000=155.520 Mb/s 。
字节发送顺序为:由上往下逐行发送,每行先左后右。
(结构图见书127页,重点)3.STM-N 帧包括三个部分:SOH、AU-PTR、PAYLOAD(结构图见书127页,重点)(1)段开销SOH:RSOH,再生段开销:1~3 行。
MSOH,复用段开销:5~9 行。
区别:监管范围不同。
如:若光纤上传输2.5G 信号,RSOH 监控STM-16 整体的传输性能。
MSOH 监控每一个STM-1 的传输性能。
(2)管理指针AU-PTR:指示净负荷PAYLOAD 中信息的起始字节位置,便于接收端从正确的位置分解出有效传输信息。
1光纤由那几层构成,各层的主要作用是什么?光纤是由中心的纤芯和外围的包层同轴组成的圆柱形细丝••纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输•包层为光的传输提供反射面和光隔离,并起一定的机械保护作用•2、光纤是怎样分类的?按折射率一突变型多模光纤、渐变性多模光纤、单模光纤;按材料一石英系光纤、石英芯塑料包层光纤、多成分玻璃纤维、塑料光纤3、什么叫光纤损耗?造成光纤损耗的原因是什么?硅光纤的光谱衰减曲线表明存在三个低损耗窗口,这三个窗口分别是多少。
传输过程中光信号幅度的减小。
原因:吸收、散射、弯曲损耗,吸收损耗是由于SiO2材料引起的固有吸收和杂质引起的吸收产生的,散射损耗主要是由材料微观度不均匀引起的锐利散射和光线结构缺陷引起散射产生的。
0.85um、1.31um、1.55um附近时光纤传输损耗较小或最小的波长“窗口”相应损耗为2—3dB/km,0.5dB/km,0,2dB/km。
4、什么是色散?色散对光信号有什么影响?单模光纤中有哪几种色散?多模光纤中有哪几种色散?单模光纤的零色散波长在什么位置?色散位移光纤是采用什么原理制成的?色散:(模式、材料、波导色散)在光纤中传输的光信号,由于不同成分的光的时间延迟不同而产生的一种物理效应。
影响:模拟调制中限制带宽,若是数字脉冲信号将使脉冲展宽,限制系统传输速率。
单模:色度色散、偏振模色散。
多模:模内、模间色散。
1.31um。
5、目前光纤通信为什么采用以下三个作波长:入0=0.85讥2=1.31询3=1.55 ©m 这是光纤的三个低损耗窗口6、光纤通信为什么向长波长、单模光纤方向发展?长波长、单模光纤比短波、多模光纤具有更好的传输特性。
一:单模光纤没有色散模式,不同成分光经过单模光纤的传播时间不同的程度显著限于经过多模光纤的传输时间;二:由光纤损耗和波长的关系曲线可知,随着波长增大,损耗呈下降趋势,且在1.55um处有最低值,而且1.31um和1.55um处的色散很小,故目前长距离光纤通信一般都工作在 1.55um处。
关于光纤的知识点总结光纤的基本结构包括纤芯、包层和包覆层。
纤芯是光信号传输的主要部分,包层是用来保护纤芯并起到光波导的作用,包覆层则是用来保护光纤整体并增强其机械性能。
光纤的基本工作原理是利用全反射来限制光信号在纤芯内传输,并且减少光信号的衰减。
光纤的优点主要有带宽大、传输速度快、信号衰减小、抗干扰性强等。
这些优点使得光纤在通信领域得到广泛应用,如长距离通信、高速宽带接入、光纤传感等。
此外,光纤还被广泛应用于医疗和工业领域,如光纤内窥镜、光谱分析和激光焊接等。
在光纤通信领域,光纤传输系统主要包括光源、光纤、检测器和探测器等组件。
其中,光源主要用于产生光信号,光纤用于传输光信号,检测器用于接收和解码光信号,探测器用于监测光纤系统的工作状态。
光纤传输系统通过这些组件的相互配合,可以实现高速、稳定、安全的光信号传输。
光纤的制造工艺主要包括拉制法、浸镀法和溅射法等。
拉制法是最常用的光纤制造工艺,其主要过程包括预制棒制备、预拉制备、拉制和收线,并通过这一系列工艺流程,可以制备出高质量的光纤。
而浸镀法主要是利用光纤预拉制备的玻璃棒浸入气相腔中,通过化学反应得到光纤。
溅射法是一种将材料溅射到基片上的制备方法,通过控制溅射材料和基片的相对位置和温度,可以得到所需的光纤材料。
光纤的性能主要包括传输损耗、带宽、波长、色散和非线性等。
传输损耗是光信号在光纤中传输过程中损失的光功率,带宽是光纤支持的频率范围,波长是光信号的波长范围,色散是光信号在光纤中传输过程中频率的扩散,非线性是光信号在高功率或长距离传输过程中的非线性效应。
通过对这些性能的研究和优化,可以提高光纤的传输效率和性能稳定性。
光纤的发展趋势主要包括高带宽、长距离传输、低成本和多功能化等。
随着通信需求的增加,对光纤传输系统的带宽和距离要求也越来越高,因此未来光纤的应用将更加趋向于高速、稳定和长距禿传输。
而随着光纤制造技术的不断发展,光纤制造成本将会降低,使光纤技术的普及更加便宜。
光纤通信优点光纤通信之所以受到人们的极大重视,这是因为和其它通信手段相比,具有无以伦比的优越性。
1、通信容量大从理论上讲,一根仅有头发丝粗细的光纤可以同时传输1000 亿个话路。
虽然目前远远未达到如此高的传输容量,但用一根光纤同时传输24 万个话路的试验已经取得成功,它比传统的明线、同轴电缆、微波等要高出几十乃至上千倍以上。
一根光纤的传输容量如此巨大,而一根光缆中可以包括几十根甚至上千根光纤,如果再加上波分复用技术把一根光纤当作几根、几十根光纤使用,其通信容量之大就更加惊人了。
2、中继距离长由于光纤具有极低的衰耗系数(目前商用化石英光纤已达0.19dB/km 以下),若配以适当的光发送与光接收设备,可使其中继距离达数百公里以上。
这是传统的电缆(1.5km)、微波(50km)等根本无法与之相比拟的。
因此光纤通信特别适用于长途一、二级干线通信。
据报导,用一根光纤同时传输24 万个话路、100 公里无中继的试验已经取得成功。
此外,已在进行的光孤子通信试验,已达到传输120 万个话路、6000 公里无中继的水平。
因此,在不久的将来实现全球无中继的光纤通信是完全可能的。
3、保密性能好光波在光纤中传输时只在其芯区进行,基本上没有光“泄露”出去,因此其保密性能极好。
4、适应能力强适应能力强是指,不怕外界强电磁场的干扰、耐腐蚀,可挠性强(弯曲半径大于25 厘米时其性能不受影响)等。
5、体积小、重量轻、便于施工维护光缆的敷设方式方便灵活,既可以直埋、管道敷设,又可以水底和架空。
6、原材料来源丰富,潜在价格低廉制造石英光纤的最基本原材料是二氧化硅即砂子,而砂子在大自然界中几乎是取之不尽、用之不竭的。
因此其潜在价格是十分低廉的。
光纤的重量轻,光缆的重要比电缆轻得多,例如18管同轴电缆1m的重量为11kg,而同等容量的光缆1m重只有90g,这对于在飞机、宇宙飞船和人造卫星上使用光纤通信更具有重要意义。
还有,光纤柔软可挠,容易成束,能得到直径小的高密度光缆。
光纤通信原理及基础知识
一、光纤通信原理
光纤通信的核心技术是光子学,它是利用光纤光缆中的光纤对光信号进行传播和传输。
光纤光缆是一种由多根光纤缆组成的电缆,用来传输可见光或近红外波长范围内的光信号。
它包含一根中心的内管,围绕着由若干根绝缘光缆组成的外面,以及外面包裹的电缆套管。
光纤具有比一般电线传输快和体积小的优势。
而且它可以传输的信息量比一般电线传输的信息量大得多,在数据传输,广播和电视节目传输,网络传输,数据中心和建筑物的内部数据传输,机场、地铁和高速列车的安全监控等场合有广泛的应用。
二、光纤通信基础知识
1、光纤的基本结构
光纤是由内管、纤芯、护套和外皮组成的。
内管是光纤的中心,由若干根细细的玻璃或塑胶的纤维组成,用来把发出的信号紧密包裹起来;纤芯则由抗光折射率差异的介质层组成,可以实现光子的数字信号传输;护套是中心纤芯的保护层,由特殊的材料构成,用以抗折和抗磨损;。
光纤通信概述及光纤和光缆基础知识介绍一、光纤通信概述光纤通信是一种基于光纤传输信息的技术,它利用光的特性实现信号的传输和处理。
与传统的铜线和无线通信相比,光纤通信具有更高的带宽、更低的信号衰减和更远的传输距离等优点,因此成为国际上普遍采用的通信方式之一。
光纤通信系统通常由三部分组成:光源、传输介质和接收器。
其中,光源产生光信号,光纤负责传输;光接收器接收信号并将其转化为电信号。
光源可以是半导体激光器、发光二极管等,而光接收器则可以是光电二极管、光二极管等。
光纤通信系统具有以下优点:1.高速传输:光纤的传输速度很快,可达到每秒数十亿位的传输速率,远高于传统的铜线通信。
2.信号衰减小:由于光纤中传播的是光信号,而光信号的衰减比电信号小很多,因此在长距离传输时,光纤的信号衰减相对较小,传输质量更好。
3.安全可靠:由于光信号无法被窃听和干扰,因此光纤通信更安全可靠。
二、光纤和光缆基础知识介绍1. 光纤光纤是将光束导入硅基、石英等材料中传播的一种技术。
一般由芯、包层和包覆层组成。
芯是载流介质,包层是用来防止信号泄漏的介质,包覆层是用来保护光纤的外层。
光纤的类型主要有多模光纤和单模光纤两种。
多模光纤的芯的直径一般为50或62.5微米,单模光纤的芯的直径只有几个微米左右。
单模光纤的优点在于传输质量更好,由于芯的直径小,所以功率损失更少,传输距离也更远,但造价也较高。
2. 光缆光缆是用来保护和传输光纤的一种材料。
它主要由光纤、护套、铠装层和防水层等组成。
光缆的护套一般由PVC、LSZH和PE等材料构成,不同的护套材料具有不同的特性,一般用于不同的场合。
光缆比较脆弱,需要特别的保护,因此在光缆的外层一般要铺设防水层、铠装层等来进行保护。
其中的防水层主要作用是保护光缆不能被水泡,铠装层则是为了防止外力对光缆的影响。
三、总结光纤通信是一种现代化的通信技术,它具有高速传输、信号衰减小和安全可靠等优点。
光纤通信系统由光源、传输介质和接收器三部分组成。
光纤通信的关键组件、工作原理、优点光纤通信是一种基于光纤传输光信号的高速通信技术。
它利用光的传输速度快、带宽大的特点,通过光纤传输信号,实现远距离、高速、大容量的通信传输。
光纤通信系统主要包括三个关键组件:1.光发射器(光源):光发射器产生光脉冲信号,并将其转化为光信号。
常用的光源包括激光二极管(LD)和LED (发光二极管)。
2.光纤传输介质:光纤是一种由高纯度玻璃或塑料制成的细长线材,具有非常高的折射率。
光信号通过光纤的全内反射传输,几乎不会受到衰减和信号干扰。
3.光接收器(光检测器):光接收器将传输的光信号转化为电信号,并进行数据恢复与处理。
光接收器常用的检测器包括光电二极管(PD)和光电倍增管(PMT)。
光纤通信的工作原理如下:1.数据转换:发送方将需要传输的数据转化为电信号。
2.光发射:光发射器将电信号转化为光信号,并发送到光纤中。
3.光传输:光信号通过光纤快速传输,通过光的全内反射在光纤中进行反射。
4.光接收:光信号到达接收端后,光接收器将光信号转化为电信号。
5.数据处理:接收端的电信号经过电子设备的放大、滤波和解调等处理,最终恢复出原始的数据信息。
光纤通信的优点包括:1.高带宽:光纤通信具有非常高的传输带宽,能够实现大容量的数据传输。
2.高速度:光信号的传输速度非常快,远远超过了传统的铜线传输。
3.长距离传输:光信号在光纤中几乎不衰减,能够实现远距离的信号传输。
4.抗干扰性:光纤通信对电磁干扰和信号衰减的影响较小,信号质量稳定可靠。
5.安全性:光信号在传输过程中不会产生外部电磁辐射,难以被窃听,具有较高的安全性。
光纤通信广泛应用于长途通信、局域网、数据中心互联、无线通信、有线电视和医疗诊断等领域,推动了信息传输速度和容量的大幅提升。
随着技术的进步,光纤通信的应用前景更加广阔。