第八章 遥感数字图像分析方法
- 格式:ppt
- 大小:226.00 KB
- 文档页数:12
遥感数字图象处理1.概论遥感、遥感过程遥感:一种在远离目标,不与目标直接接触的情况下,通过传感器获取其特征信息,并对这些信息进行处理、分析和应用的综合性探测技术遥感过程:遥感过程是指遥感信息的获取、传输、处理,以及分析判读和应用的全过程遥感图象、遥感数字图象、遥感图象的数据量遥感图象:是指遥感传感器通过检测、度量地物的电磁波辐射能并进行记录所得到的图象遥感数字图象:是指以数字化形式表述的遥感影像。
遥感图象的数据量:H=M ×N ×b ×n ( bit ) M、N 为行列数, b 为波段数, n=lnG/ln2遥感图象的数字化、采样和量化遥感图象的数字化:指光学图象(物理图象)到数字图象的转换过程,包括采样和量化两个过程采样:将空间上连续的图象变换为离散的点的操作量化:将测量的灰度值用一个整数表示通用遥感数据格式(BSQ、BIL、BIP)BSQ,波段序列格式BIL,波段行交替格式BIP,波段像元交替格式遥感图象的模型:多光谱空间多光谱空间:对于 n 个波段的多光谱图象,这 n 个波段构成一个 n 维多光谱空间,多光谱空间就是一个 n 维坐标系,每一个坐标轴代表一个波段,坐标值为亮度值,坐标系内的每一个点代表一个像元。
描述像素在各个波段中亮度值的分布。
多光谱空间中,像元点在坐标系中的位置可以表示成一个 n 维向量,其中每一个分量 xi 表示该点在第 i 个坐标轴上的投影,即亮度值。
多光谱空间只表示各波段光谱之间的关系,而不包括任何该点在原图象中的位置信息,它没有图象空间的几何意义。
遥感图象的信息内容:波谱信息:指遥感图象上不同地物之间的亮度值差异及同一地物在不同波段上的亮度值差异空间信息: 通过图象亮度值在空间上的变化反映出来的信息时间信息: 指不同时相遥感图象的光谱信息与空间信息的差异遥感数字图象处理、遥感数字图象处理的内容遥感数字图象处理: 利用计算机对遥感数字图象进行一系列操作,以求达到预期目的遥感数字图象处理的内容:图象增强、图象校正、信息提取遥感图象的获取方式主要有哪几种?摄影成像、扫描成像、雷达成像如何估计一幅遥感图象的存储空间大小?遥感图象的信息内容包括哪几个方面?多光谱空间中,像元点的坐标值的含义是什么?与通用图象处理技术比较,遥感数字图象处理有何特点?遥感数字图象处理包括那几个环节?各环节的处理目的是什么?2.遥感图象的统计特征2.1 图象空间的统计量灰度直方图:概念、类型、性质、应用概念:用来描述图象中每一灰度级与其浮现频率间的关系的图表类型:直方图:横坐标为的灰度级,纵坐标为等于各个灰度级像元的浮现频率(像元数)累计直方图:横坐标为的灰度级,纵坐标为小于等于各灰度级的像元的浮现频率 (像元数) 性质:直方图反映表示不同灰度像元的浮现频率,不包含像元的位置信息同一图象的直方图惟一,同向来方图可以对应不同的图象一幅图象的直方图等于其各部份图象直方图之和同类地物的直方图接近正态分布应用: 1.直方图是图象分析的重要工具。
遥感图像分析的基本原理与方法遥感图像分析是一种通过获取和解释地球表面的图像数据来研究地理现象和环境变化的方法。
它利用遥感技术获取的图像数据进行数据处理和分析,以揭示地球的表面特征、变化和趋势。
本文将介绍遥感图像分析的基本原理和方法,并探讨其在地质、环境和农业等领域的应用。
一、遥感图像分析的基本原理遥感图像分析依赖于传感器获取的电磁辐射数据。
电磁辐射是能量在电磁波形式下传播的过程,其波长范围从长波到短波,包括可见光、红外线和微波等。
传感器可以通过不同波段的响应来获取不同的辐射数据,从而得到不同频谱范围内的图像数据。
在遥感图像中,每个像素代表一块地表区域的平均辐射量。
图像数据可以由数字矩阵表示,其中每个像素的灰度值或颜色值表示该区域的辐射强度或反射率。
通过对这些数据进行处理和分析,可以获得地表特征的信息。
二、遥感图像分析的方法1. 预处理遥感图像预处理是为了去除图像中的噪声、增强特征和调整图像的对比度等。
常见的预处理步骤包括去噪、辐射校正、大气校正和几何校正等。
这些步骤可以提高图像质量并准确反映地表特征。
2. 特征提取特征提取是指从遥感图像中提取有用的地物信息。
可以根据图像的灰度、色彩、纹理和形状等特征来区分不同的地物类型。
常用的特征提取方法包括直方图均衡化、主成分分析、变化检测和物体识别等。
3. 分类与识别遥感图像分类是将图像中的像素按照其地物类型划分为不同的类别。
分类可以基于监督或无监督方法进行。
其中,监督分类依赖于训练样本和分类器,而无监督分类则是通过数据的统计分布和聚类分析进行分类。
4. 变化检测变化检测是利用多期遥感图像比较分析同一地区在不同时间的变化情况。
通过对像素之间的差异进行检测和分析,可以揭示地表的变化趋势和时空模式。
变化检测在环境监测、城市规划和资源管理等领域具有重要应用价值。
三、遥感图像分析的应用1. 地质勘探遥感图像分析可以帮助地质学家在不同尺度上研究地球表面的地质结构和岩矿成分。
遥感图像处理与分析算法综述随着遥感技术的发展,遥感图像处理与分析算法在各个领域中得到了广泛的应用。
遥感图像处理与分析算法是指通过对遥感图像进行数字处理和分析,来提取和解释图像中的信息。
本文将综述一些常见的遥感图像处理与分析算法,包括图像增强、分类与分割等。
一、图像增强图像增强是指通过一系列的操作,提高图像的质量和可视化效果。
常见的图像增强算法包括直方图均衡化、滤波和增强函数等。
直方图均衡化是一种常用的图像增强方法,它通过对图像的直方图进行变换,来增加图像的对比度。
该方法通过将图像的像素值映射到一个新的分布上,从而改变图像的亮度分布。
滤波是另一种常见的图像增强方法,通过在图像的空域或频域中对像素进行处理,来减少噪声和增强图像细节。
常见的滤波算法包括高通滤波和低通滤波等。
高通滤波可以增强图像的边缘和细节,而低通滤波则能够平滑图像并去除噪声。
增强函数是一种通过对图像的像素值进行非线性映射,来增强图像的方法。
常见的增强函数包括对数变换、幂次变换和伽马变换等。
对数变换可以扩展暗部像素的动态范围,而幂次变换则能够增强图像的对比度。
二、分类与分割分类与分割是遥感图像处理与分析的重要内容,它们能够将图像中的不同对象进行区分和提取。
常见的分类与分割算法包括聚类分析、最大似然分类和支持向量机等。
聚类分析是一种通过将像素划分到不同的类别中,来实现图像分类和分割的方法。
常见的聚类分析算法包括K均值聚类和自适应聚类等。
K均值聚类将图像像素划分为K个簇,每个簇代表一个类别,而自适应聚类则能够根据像素的分布进行不同权重的划分。
最大似然分类是一种基于概率统计的图像分类方法,它通过计算像素在每个类别中的概率,并选择概率最大的类别作为最终的分类结果。
最大似然分类算法能够准确地对图像中的不同对象进行分类,并且具有较强的鲁棒性。
支持向量机是一种通过构建一个最优决策边界,来实现图像分类和分割的方法。
支持向量机利用训练样本,通过最大化分类边界与样本之间的距离,来找到一个最优的分类超平面。
遥感数字图像处理教程第一章名词解释1、遥感数字图像(P1):以数字形式存储和表达的遥感图像2、A/D 转换(P1):把模拟图像转变成数字图像称为模/数转换,记作A/D 转换3、D/A 转换(P1):把数字图像转 变成模拟图像称为数/模转换,记作D/A 转换简答题1、模拟图像(照片)与遥感数字图像有什么区别? (P2) 答表1.1遥感数字图像与印刷照片的区别颜色没有特定的规则,在处理过程「二可以根据需 要通过合成产生多个波段(3-8000) 2、怎么理解图像处理的两个观点? (P7)答:两种观点是:离散方法的观点和连续方法的观点。
1 .离散方法:图像的存储和表示均为数字形式,数字是离散的,因此,使用离散 方法进行图像处理才是合理的。
与该方法相关的一个概念是空间域。
空间域图像 处理以图像平面本身为参考,直接对图像中的像素进行处理。
2 .连续方法:图像通常源自物理世界,它们服从可用连续数学描述的规律,因此 具有连续性,应该使用连续数学方法进行图像处理。
与该方法相关的一个主要概 念是频率域。
频率域基于傅里叶变换,频率域的图像处理是对傅里叶变换后产生 的反映频率信息的图像进行处理。
完成频率域图像处理后,往往要变换回到空间 域进行图像的显示和对比。
四、论述题1、什么是遥感数字图像处理,主要内容有哪些? (P2)答:遥感数字图像处理是通过计算机图像处理系统对遥感图像中的像素进行系列 操作的过程。
(1)图像增强:使用多种方法去除噪声,增强显示图像整体或突出图像中的特 定地物的信息,使图像更容易理解、解释和判读。
例:例如灰度拉伸、平滑、锐 化、彩色合成、主成分(K-L )变换、K-T 变换、代数运算、图像融合照片来自于模拟方式通过摄影系统产生没有像素没有行列结构没有才」推行o 表示投有数据任何点,都没有编号摄影受电黑波谱的成像范围限制遛感数字图像 来自干数字方式 通过扫描和数码相机产生 基本利成单位是像素 具有行和列 可能会观察到扫描行 。
遥感图像数字处理与分析知识要点围绕遥感基础知识-数字图像处理与分析总体框架来组织相关内容要点。
其中,第一、二、三章介绍遥感数字图像处理、主要成像方式、存取及表示基础知识,是图像处理、理解及分析的起点;第四、五、六、七章常用遥感数字图像处理方法,应视具体遥感数字图像处理要求有所选择;第八章图像分割是图像处理高级方法,是灰度拉伸、变换、滤波等数字图像增强方法的综合应用,为进一步深入学习和掌握决策树、面向对象及专家系统等高级分类技术奠定基础;第九章图像分类是图像处理的主要目的和最终成果第一章概论图像、遥感数字图像、照片与遥感数字图像区别、遥感数字图像处理及观点图像:物理世界中客观对象的相似性描述,包含客观对象的信息,是人们最主要的信息源数字图像:用计算机存储和处理的图像,是一种空间坐标和灰度均不连续、以离散数学原理表达的图像遥感数字图像:数字形式表示的遥感图像遥感数字图像和照片的差异:遥感图像处理:利用计算机图像处理系统对遥感图像中的像素进行系列操的过程遥感数字图像处理的观点:连续方法:我们感兴趣的图像源自物理世界,服从可用连续数学描述的规律,具有连续性,连续数学方法,频率域(高通滤波、低通滤波等)离散方法:数字图像的存储和表示均为数字形式,数字是离散的,离散数学方法,空间域(点运算算法-灰度变换、直方图修正;邻域去噪算法-图像平滑、锐化等)第二章遥感数字图像的获取和存取数字扫描和数字摄影、数字化(重采样和量化)及意义、遥感数字图像级别、存储格式及元数据、传感器分辨率数字扫描:在遥感平台前进过程中,进行横向(与飞行方向垂直)行扫描来获取地物目标反射或辐射的电磁波信号,逐行记录成像特点:能以分割得相当精确的波段通道,分别收集和记录地物目标的电磁波信号数字摄影:地物目标反射的太阳辐射通过相机镜头投射到感光胶片上发生光化学反应,经过形成潜影、显影、定影和放印等过程而获得图像特点:瞬间成像,图像几何特征服从中心投影成像规律,可形成模拟图像(传统胶片照相机)和数字图像(数码相机),相片灰度反映了地物反射或辐射电磁波的强弱,工作波段:紫外、可见光、红外、多光谱,工作时间:白天,遥感平台:地面和航空平台采样:将空间上连续的图像变换成离散点(即像素)的操作重采样:根据一类象元的信息内插出另一类象元信息的过程量化:将像素灰度值转换成整数灰度级的过程数字化的意义:通过成像方式获取的图像是连续的,无法直接进行计算机处理。