数字图像处理第八章PPT课件
- 格式:ppt
- 大小:5.90 MB
- 文档页数:18
第8章 图象的检测及模板匹配图象的分割与检测(识别)实际上是一项非常困难的工作。
很难说清楚为什么图象应该分割成这样而不是那样。
人类的视觉系统是非常优越的,它不仅包含了双眼,还包括了大脑,可以从很复杂的景物中分开并识别每个物体,甚至可以毫不费力地跟上每秒好几十帧变化的图象。
举两个例子来说明一下人类视觉系统的优越性。
图8.1 单词THE图8.2 看不见的三角 图8.1是单词THE ,这一点很容易看出来,但仔细观察一下,就会发现,图中少了很多线条。
在我们人类看来很简单的一件事,让计算机来做就很困难了。
图8.2中尽管没有任何线条,但我们还是可以很容易的看出中间存在着一个白色三角形。
计算机却很难发现。
由于人类在观察图象时适用了大量的知识,所以没有任何一台计算机在分割和检测真实图象时,能达到人类视觉系统的水平。
正因为如此,对于大部分图象应用来说,自动分割与检测还是一个将来时。
目前只有少数的几个领域(如印刷体识别OCR)自动识别达到了实用的水平。
也许算是题外话,我们可以憧憬这样一种应用:基于内容的搜索。
在一场足球比赛的录象中,用户可以输入命令,由计算机自动搜索出所有射门的镜头并显示在屏幕上。
目前,我们能从一幅图象中获得的信息只是每个象素的颜色或灰度值,除此以外别无其它,完成上述功能实在是太困难了。
所以说解决图象分割和检测最根本的方法是在编码(成象)时就给予考虑。
这也正是MPEG4及未来的视频压缩编码标准的主要工作。
正因为有上述的困难,所以我们今天要介绍的只是一些最基本,最简单的算法和思想,针对也只能是一些具体(而不是通用)的应用。
算法共有三个:投影法、差影法和模板匹配。
8.1 投影法在介绍投影法之前,我先出一道题目,下面的这幅照片是著名的华盛顿纪念碑(我记得在“阿甘正传”中曾经看到过它),怎样从图中自动检测到水平方向上纪念碑的位置。
仔细观察,不难发现,纪念碑上象素的灰度都差不多而且与众不同,如果我们选取合适的阈值,做削波处理(这里选175到220),将该图二值化,如图8.3所示:图8.3 华盛顿纪念碑图8.4 削波处理,将图8.3二值化 由于纪念碑所在的那几列的白色点比起其他列多很多,如果把该图在垂直方向做投影,如图8.5所示。