高三数学月考试题
- 格式:doc
- 大小:323.50 KB
- 文档页数:4
哈2024—2025学年度上学期高三学年十月月考数学试卷(答案在最后)考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.2.已知是关于的方程的一个根,则()A.20B.22C.30D.323.已知,,,则的最小值为()A.2B.C.D.44.数列中,若,,,则数列的前项和()A. B. C. D.5.在中,为中点,,,若,则()A. B. C. D.6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.57.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成的角为D.三棱锥外接球的表面积为11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点第II卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.13.在中,,的平分线与交于点,且,,则的面积为______.14.已知三棱锥中,平面,,,,,、分别为该三棱锥内切球和外接球上的动点,则线段的长度的最小值为______.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥外接球记为球,当为线段中点时,求平面截球所得的截面面积.数学试卷考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则()A. B.C. D.【答案】B【解析】【分析】分别求出集合,,再根据交集的定义求.【详解】对集合:因为,所以,即;对集合:因为恒成立,所以.所以.故选:B2.已知是关于的方程的一个根,则()A.20B.22C.30D.32【答案】D【解析】【分析】根据虚根成对原理可知方程的另一个虚根为,再由韦达定理计算可得.【详解】因为是关于的方程的一个根,所以方程的另一个虚根为,所以,解得,所以.故选:D.3.已知,,,则的最小值为()A.2B.C.D.4【答案】D【解析】【分析】由已知可得,利用,结合基本不等式可求最小值.【详解】因为,所以,所以,所以,所以,当且仅当,即时等号成立,所以的最小值为.故选:D.4.数列中,若,,,则数列的前项和()A. B. C. D.【答案】C【解析】【分析】结合递推关系利用分组求和法求.【详解】因为,,所以,,,,,又,,,所以.故选:C.5.在中,为中点,,,若,则()A. B. C. D.【答案】C【解析】【分析】选择为平面向量的一组基底,表示出,再根据表示的唯一性,可求的值.【详解】选择为平面向量的一组基底.因为为中点,所以;又.由.故选:C6.在三棱柱中,点在棱上,且,点为中点,点在棱上,若平面,则()A.2B.3C.4D.5【答案】B【解析】【分析】根据已知条件及线面平行的判定定理,利用面面平行的判定定理和性质定理,结合平行四边形的性质即可得结论.【详解】依题意,作出图形如图所示设为的中点,因为为的中点,所以,又平面,平面,所以平面,连接,又因为平面,,平面,所以平面平面,又平面平面,平面,所以,又,所以四边形是平行四边形,所以,所以,又,所以,所以,所以.故选:B.7.已知偶函数定义域为,且,当时,,则函数在区间上所有零点的和为()A. B. C. D.【答案】A【解析】【分析】函数在区间上的零点的集合等于函数和函数在区间内的交点横坐标的集合,分析函数的图象特征,作出两函数的图象,观察图象可得结论.【详解】因为函数,的零点的集合与方程在区间上的解集相等,又方程可化为,所以函数,的零点的集合与函数和函数在区间内的交点横坐标的集合相等,因为函数为定义域为的偶函数,所以,函数的图象关于轴对称,因为,取可得,,所以函数为偶函数,所以函数的图象关于对称,又当时,,作出函数,的区间上的图象如下:观察图象可得函数,的图象在区间上有个交点,将这个交点的横坐标按从小到大依次记为,则,,,,所以函数在区间上所有零点的和为.故选:A.8.已知平面向量,,,满足,且,,则的最小值为()A. B.0 C.1 D.2【答案】B【解析】【分析】可设,,,由得到满足的关系,再求的最小值.【详解】可设,,,则.可设:,则.故选:B【点睛】方法点睛:由题意可知:,都是单位向量,且夹角确定,所以可先固定,,这样就只有发生变化,求最值就简单了一些.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.对于函数,下列说法正确的是()A.函数的最大值为B.是函数图象的一个对称中心C.是函数图象的一个对称轴D.将函数的图象向右平移个单位,即可得到函数的图象【答案】ACD【解析】【分析】先利用两角和与差的三角函数公式和二倍角公式,把函数化成的形式,再对函数的性质进行分析,判断各选项是否正确.【详解】因为.所以,故A正确;函数对称中心的纵坐标必为,故B错误;由,得函数的对称轴方程为:,.令,得是函数的一条对称轴.故C正确;将函数的图象向右平移个单位,得,即将函数的图象向右平移个单位,可得到函数的图象.故D正确.故选:ACD10.在正方形中,,为中点,将沿直线翻折至位置,使得二面角为直二面角,若为线段的中点,则下列结论中正确的是()A.若点在线段上,则的最小值为B.三棱锥的体积为C.异面直线、所成角为D.三棱锥外接球的表面积为【答案】AC【解析】【分析】对于A,的最小值为可判断A;对于B,过作于,求得,可求三棱锥的体积判断B;对于C;取的中点,则,取的中点,连接,求得,由余弦定理可求异面直线、所成的角判断C;对于D,取的中点,过点在平面内作的垂线交于,求得外接球的半径,进而可求表面积判断D.【详解】对于A,将沿直线翻折至,可得的最小值为,故A正确;对于B,过作于,因为二面角为直二面角,所以平面平面,又平面平面,所以平面,由题意可得,由勾股定理可得,由,即,解得,因为为线段的中点,所以到平面的距离为,又,所以,故B错误;对于C,取的中点,则,且,,所以,因为,所以是异面直线、所成的角,取的中点,连接,可得,所以,在中,可得,由余弦定理可得,所以,在中,由余弦定理可得,所以,所以异面直线、所成的角为,故C正确;对于D,取的中点,过点在平面内作的垂线交于,易得是的垂直平分线,所以是的外心,又平面平面,又平面平面,所以平面,又因为直角三角形的外心,所以是三棱锥的外球的球心,又,所以,所以三棱锥外接球的表面积为,故D错误.故选:AC.11.已知函数,则下列结论中正确的是()A.函数有两个零点B.恒成立C.若方程有两个不等实根,则的范围是D.直线与函数图象有两个交点【答案】BCD【解析】【分析】分和两种情况探讨的符号,判断A的真假;转化为研究函数的最小值问题,判断B的真假;把方程有两个不等实根,为有两个根的问题,构造函数,分析函数的图象和性质,可得的取值范围,判断C的真假;直线与函数图象有两个交点转化为有两解,分析函数的零点个数,可判断D的真假.【详解】对A:当时,;当时,;时,,所以函数只有1个零点.A错误;对B:欲证,须证在上恒成立.设,则,由;由.所以在上单调递减,在上单调递增.所以的最小值为,因为,所以.故B正确;对C:.设,则,.由;由.所以在上单调递增,在单调递减.所以的最大值为:,又当时,.如图所示:所以有两个解时,.故C正确;对D:问题转化为方程:有两解,即有两解.设,,所以.由;由.所以在上单调递增,在上单调递减.所以的最大值为.因为,,所以所以.且当且时,;时,.所以函数的图象如下:所以有两解成立,所以D 正确.故选:BCD【点睛】方法点睛:导数问题中,求参数的取值范围问题,通常有如下方法:(1)分离参数,转化为不含参数的函数的值域问题求解.(2)转化为含参数的函数的极值问题求解.第II 卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.等差数列中,是其前项和.若,,则______.【答案】【解析】【分析】设数列的公差为,将条件关系转化为的方程,解方程求,由此可求结论.【详解】设等差数列的公差为,因为,,所以,,所以,,所以,故答案为:.13.在中,,的平分线与交于点,且,,则的面积为______.【答案】【解析】【分析】根据三角形面积公式,余弦定理列方程求,再由三角形面积公式求结论.【详解】因为,为的平分线,所以,又,所以,由余弦定理可得,又,所以所以,所以的面积.故答案为:.14.已知三棱锥中,平面,,,,,、分别为该三棱锥的内切球和外接球上的动点,则线段的长度的最小值为______.【答案】【解析】【分析】根据已知可得的中点外接球的球心,求得外接球的半径与内切球的半径,进而求得两球心之间的距离,可求得线段的长度的最小值.【详解】因为平面,所以是直角三角形,所以,,在中,由余弦定理得,所以,所以,所以是直角三角形,所以,因为平面,平面,所以,又,平面,结合已知可得平面,所以是直角三角形,从而可得的中点外接球的球心,故外接球的半径为,设内切球的球心为,半径为,由,根据已知可得,所以,所以,解得,内切球在平面的投影为内切球的截面大圆,且此圆与的两边相切(记与的切点为),球心在平面的投影为在的角平分线上,所以,由上易知,所以,过作于,,从而,所以,所以两球心之间的距离,因为、分别为该三棱锥的内切球和外接球上的动点,所以线段的长度的最小值为.故答案为:.【点睛】关键点点睛:首先确定内外切球球心位置,进而求两球半径和球心距离,再利用空间想象判断两球心与位置关系求最小值.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.在三棱柱中,,,,,为中点.(1)求证:平面;(2)求直线与平面所成角的正弦值.【答案】(1)证明见解析(2)【解析】【分析】(1)由题意可得,利用勾股定理的逆定理可得,可证结论;(2)以为坐标原点,所在直线为,过作的平行线为轴建立如图所示的空间直角坐标系,利用向量法可求得直线与平面所成角的正弦值.【小问1详解】连接,因为,为中点,所以,因为,所以,所以,又,所以,所以,又,平面,所以平面;【小问2详解】以为坐标原点,所在直线为,过作平行线为轴建立如图所示的空间直角坐标系,因为,所以,则,则,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,又,所以,设直线与平面所成的角为,则,所以直线与平面所成角的正弦值为.16.已知函数.(1)讨论函数的单调性;(2)设函数,若在恒成立,求实数的取值范围.【答案】(1)答案见解析(2)的取值范围为.【解析】【分析】(1)求函数的定义域及导函数,分别在,,,条件下研究导数的取值情况,判断函数的单调性;(2)由条件可得,设,利用导数求其最小值,由此可得结论.【小问1详解】函数的定义域为,导函数,当时,,函数在上单调递增,当且时,即时,,函数在上单调递增,当时,,当且仅当时,函数在上单调递增,当时,方程有两个不等实数根,设其根为,,则,,由,知,,,所以当时,,函数在上单调递增,当时,,函数在上单调递减,当时,,函数在上单调递增,所以当时,函数在上单调递增,当时,函数在上单调递增,函数在上单调递减,函数在上单调递增,【小问2详解】因为,,所以,不等式可化为,因为在恒成立,所以设,则,当时,,函数在上单调递增,当时,,函数在上单调递减,所以当时,函数取最小值,最小值为,故,所以的取值范围为.17.已知在锐角中,,,分别为内角,,的对边,.(1)求;(2)若,为中点,,求;(3)若,求内切圆半径的取值范围.【答案】(1)(2)(3)【解析】【分析】(1)利用正弦定理进行边化角,再结合三角形内角和定理及两角和与差的三角函数公式,可求,进而得到角.(2)利用向量表示,借助向量的数量积求边.(3)利用与正弦定理表示出,借助三角函数求的取值范围.【小问1详解】因为,根据正弦定理,得,所以,因为,所以,所以.【小问2详解】因为为中点,所以,所以,所以,解得或(舍去),故.【小问3详解】由正弦定理:,所以,,因为,所以,所以,,设内切圆半径为,则.因为为锐角三角形,所以,,所以,所以,即,即内切圆半径的取值范围是:.18.某汽车销售公司为了提升公司的业绩,将最近一段时间内每日的汽车销售情况进行了统计,如图所示.(1)求的值,并求该公司这段时间内每日汽车销售量的第60百分位数;(2)以频率估计概率,若在这段时间内随机选择4天,设每日汽车销售量在内的天数为,在恰有1天的汽车销售量不超过150辆的条件下,求的分布列及数学期望;(3)为增加销售量,公司规定顾客每购买一辆汽车可以进行一次抽奖活动,规则如下:在三棱锥中,、均是边长为2的正三角形,,现从写有数字1~8的八个标签中随机选择两个分别贴在、两个顶点,记顶点、上的数字分别为和,若为侧棱上一个动点,满足,当“二面角大于”即为中奖,求中奖的概率.【答案】(1),175(2)分布列见解析,(3)【解析】【分析】(1)根据频率之和为1可求的值,再根据百分位数的概念求第60百分位数.(2)根据条件概率计算,求的分布列和期望.(3)根据二面角大于,求出可对应的情况,再求中奖的概率.【小问1详解】由.因为:,,所以每日汽车销售量的第60百分位数在,且为.【小问2详解】因为抽取的1天汽车销售量不超过150辆的概率为,抽取的1天汽车销售量在内的概率为.所以:在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率为.由题意,的值可以为:0,1,2,3.且,,,.所以的分布列为:0123所以.【小问3详解】如图:取中点,链接,,,,.因为,都是边长为2的等边三角形,所以,,,平面,所以平面.平面,所以.所以为二面角DE平面角.在中,,所以.若,在中,由正弦定理:.此时:,.所以,要想中奖,须有.由是从写有数字1~8的八个标签中随机选择的两个,所以基本事件有个,满足的基本事件有:,,,,,,,,共9个,所以中奖的概率为:.【点睛】关键点点睛:在第(2)问中,首先要根据条件概率的概念求出事件“在恰有1天的汽车销售量不超过150辆的条件下,抽取的1天汽车销售量在内的概率”.19.如图,在四棱锥中,底面为正方形,,是中点,平面,.(1)求四棱锥体积的最大值;(2)设,为线段上的动点.①求平面与平面的夹角余弦值的取值范围;②四棱锥的外接球记为球,当为线段中点时,求平面截球所得的截面面积.【答案】(1)(2)①;②【解析】【分析】(1)设,用表示四棱锥体积,分析函数的单调性,可求四棱锥体积的最大值.(2)①建立空间直角坐标系,设点坐标,用空间向量求二面角的余弦,结合二次函数的值域,可得二面角余弦的取值范围.②先确定球心,求出球心到截面的距离,利用勾股定理可求截面圆的半径,进而得截面圆的面积.【小问1详解】设则,所以四棱锥体积,.所以:.由;由.所以在上单调递增,在上单调递减.所以四棱锥体积的最大值为.【小问2详解】①以为原点,建立如图空间直角坐标系.则,,,所以,,.设平面的法向量为,则.令,则.取平面的法向量.因为平面与平面所成的二面角为锐角,设为.所以.因为,,所以.②易得,则,此时平面的法向量,所以点到平面的距离为:,设四棱锥的外接球半径为,则,所以平面截球所得的截面圆半径.所以平面截球所得的截面面积为:.【点睛】关键点点睛:平面截球的截面面积问题,要搞清球心的位置,球的半径,球心到截面的距离,再利用勾股定理,求出截面圆的半径.。
南宁二中2024年11月高三月考数学(时间120分钟,共150分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集,集合,则( )A. B. C. D.2.已知复数是的共轭复数,则( )A.2B.3C.D.3.已知双曲线的一条渐近线方程为,则( )A.D.34.已知实数满足,且,则下列说法正确的是( )A. B.C.D.5.天上有三颗星星,地上有四个孩子.每个孩子向一颗星星许愿,如果一颗星星只收到一个孩子的愿望,那么该愿望成真,若一颗星星收到至少两个孩子的愿望,那么向这颗星星许愿的所有孩子的愿望都无法成真,则至少有两个孩子愿望成真的概率是( )A.B. C. D.6.已知,则( )A. B. C.1 D.37.已知函数的零点在区间内,则实数的取值范围是( )U =R {}{03},1A xx B x x =≤<=>∣∣()U A B ⋃=ð{3}x x <∣{01}x x ≤<∣{}01xx ≤≤∣{}0xx ≥∣1i,z z =-z i z z -=()22210y x b b-=>y =b =13,,a b c a b c >>0a b c ++=22ab cb >222a cc a+≥a b >0ab bc +>19294923π2tan 43θ⎛⎫+=- ⎪⎝⎭sin cos2sin cos θθθθ=-1310-1013-()(02)f x kx x =<≤31,2⎛⎫⎪⎝⎭kA. B. C. D.8.已知函数在区间上是增函数,若函数在上的图象与直线有且仅有一个交点,则的范围为( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某科技攻关青年团队共有10人,其年龄(单位:岁)分布如下表所示,则这10个人年龄的( )年龄454036322928人数121321A.中位数是34B.众数是32C.第25百分位数是29D.平均数为34.310.如图所示,在四棱锥中,底面是边长为2的正方形,是正三角形,为线段的中点,点为底面内的动点:则下列结论正确的是()A.若,平面平面B.若,直线与平面C.若直线和异面,点不可能为底面的中心D.若平面平面,且点为底面的中心,则11.设定义在上的函数与的导函数分别为和.若,,且为奇函数,则下列说法中一定正确的是( )A.函数的图象关于点对称B.⎛ ⎝(⎫⎪⎪⎭1,12⎛⎫ ⎪⎝⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦()f x π0,2⎡⎤⎢⎥⎣⎦2y =ω[)2,5[)1,5[]1,231,2⎡⎤⎢⎥⎣⎦E ABCD -ABCD CDE V M DE N ABCD BC DE ⊥CDE ⊥ABCDBC DE ⊥EA ABCD BM EN N ABCD CDE ⊥ABCD N ABCD BM EN≠R ()f x ()g x ()f x '()g x '()()42f x g x --=()()2g x f x '=-'()2f x +()f x ()2,0()()354g g +=-C.D.三、填空题:本题共3小题,每小题5分,共15分.12.已知正三角形的边长为为中点,为边上任意一点,则__________.13.已知三棱锥,二面角的大小为,当三棱锥的体积取得最大值时,其外接球的表面积为__________.14.拿破仑定理:“以任意三角形的三条边为边,向外构造三个正三角形,则这三个正三角形的中心恰为另一个正三角形的顶点.”利用该定理可为任意形状的市区科学地确定新的发展中心区位置,合理组织人流、物流,使城市土地的利用率,建筑的使用效率达到最佳,因而在城市建设规划中具有很好的应用价值.如图,设代表旧城区,新的城市发展中心分别为正,正,正的中心.现已知,则的面积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知等差数列中,.(1)令,证明:数列是等比数列;(2)求数列的前项和.16.(本小题满分15分)米接力短跑作为田径运动的重要项目,展现了一个国家短跑运动的团体最高水平.每支队伍都有自己的一个或几个明星队员,现有一支米接力短跑队,张三是其队员之一,经统计该队伍在参加的所有比赛中,张三是否上场时该队伍是否取得第一名的情况如下表.如果依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关,则认为张三是这支队伍的明星队员.队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名上场104020241()2024k g k ==-∑20241()0k f k ==∑ABC 2,O BC P BC AP AO ⋅=,3,,P ABC AC PB AB BC AB BC -==⊥=P AB C --60 P ABC -ABC V 123,,O O O ACD V ABE V BCF V 1232,30,AB ACB O O O ∠==V ABC V {}n a 5108,23a a ==732n a nb +={}n b {}n nb n n S 4100⨯4100⨯0.1α=未上场6合计24(1)完成列联表,并判断张三是否是这支队伍的明星队员.(2)米接力短跑分为一棒、二棒、三棒、四棒4个选手位置.张三可以作为一棒、二棒或四棒选手参加比赛.当他上场参加比赛时,他作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.当张三上场参加比赛时,队伍取得第一名的概率为0.7.(i )求的值;(ii )当张三上场参加比赛时,在队伍取得某场比赛第一名的条件下,求张三作为四棒选手参加比赛的概率.附:.0.150.100.050.0250.0100.0012.0722.7063.8415.0246.63510.82817.(本小题满分15分)如图,在四棱锥中,为等边三角形,底面是矩形、平面平面分别为线段的中点,点在线段上(不包括端点)(1)若,求证:点四点共面;(2)若,是否存在点,使得与平面,若不存在,请说明理由.18.(本小题满分17分)已知椭圆,四点22⨯4100⨯0.5,,x y 0.7,0.8,0.3,x y ()()()()22(),n ad bc n a b c d a b c d a c b d χ-==+++++++αx αP ABCD -PBC V ABCD PBC ⊥,,ABCD O E ,BC PA F PB 23PF PB =,,,O D E F 22BC AB ==F EF PCD PFBF()2222:10x y E a b a b+=>>,其中恰有三点在椭圆上.(1)求的方程;(2)设是的左、右顶点,直线交于两点,直线的斜率分别为.若,证明:直线过定点.19.悬链线在建筑领域有很多应用.当悬链线自然下垂时,处于最稳定的状态,反之其倒置时也是一种稳定状态.链函数是一种特殊的悬链线函数,正链函数表达式为,相应的反链函数表达式为.(1)证明:曲线是轴对称图形,(2)若直线与函数和的图象共有三个交点,设这三个交点的横坐标分别为,证明:;(3)已知函数,其中.若对任意的恒成立,求的最大值.()()31241,1,0,1,,P P P P ⎛⎛- ⎝⎝E E A B 、E l E C D 、AC BD 、12k k 、127k k =l ()e e 2x x D x -+=()e e 2x xR x --=()()()()2222R x y D x R x Dx ⎡⎤=--⎣⎦y t =()y D x =()y R x =123,,x x x (123ln 1x x x ++>()()()2f x D x aR x b =--,a b ∈R ()4f x ≤))ln1,ln1x ⎡⎤∈⎣⎦a b +南宁二中2024年11月高三月考数学参考答案1.【答案】A 【详解】因为,所以,所以.故选:A.2.【答案】D 【详解】故选:D.3.【答案】C 【详解】因为双曲线为,所以它的渐近线方程为,因为有一条渐近线方程为,所以.故选:C.4.【答案】C 【详解】由题,,取,则,故A 错误;,故错误;,故D 错误;因为,所以,即,故C 正确.故选:C.5.【答案】C 【详解】四个孩子向三颗星星许愿,一共有种可能的许愿方式.由于四个人选三颗星星,那么至少有一颗星星被两个人选,这两个人愿望无法实现,至多只能实现两个人的愿望,所以至少有两个孩子愿望成真,只能是有两颗星星各有一个人选,一颗星星有两个人选,可以先从四个孩子中选出两个孩子,让他们共同选一颗星星,其余两个人再选另外两颗星,有种情况,所以所求概率为故选:C.6.【答案】B 【详解】由,解得,故.故选:B.{},1U B xx ==>R ∣{}U 1B x x =≤∣ð(){}U {03}1{3}A B x x x x x x ⋃=≤<⋃≤=<∣∣∣ð()i 1i i 1i 22i z z -=--+=-==()22210y x b b-=>y bx =±y =b =0,0a c ><1,0,1a b c ===-22ab cb =2522a c c a +=-B 0ab bc +=()()()220a b a b a b c a b -=+-=-->22a b >a b >4381=212432C C A 36=364819P ==πtan 12tan 41tan 3θθθ+⎛⎫+==- ⎪-⎝⎭tan 5θ=-()()()()22sin cos sin sin sin cos cos sin sin cos2sin cos sin sin cos sin cos sin cos θθθθθθθθθθθθθθθθθθθ-+-===-+---()2222sin cos sin tan tan 10cos sin tan 113θθθθθθθθ-+--===-++7.【答案】C 【详解】由,令,,要使的零点在区间内,即在内,与有交点,画出与图像,如图:当时,,此时;当时,,此时故.8.【答案】D 【详解】因为函数的图象关于原点对称,并且在区间上是增函数,所以,又,得,令,得,所以在上的图象与直线的第一个交点的横坐标为,第二个交点的横坐标为,所以,解得,综上所述,,故选:D9.【答案】BCD 【详解】对于A 、B ,把10个人的年龄由小到大排列为,这组数据的中位数为32,众数为32,故A 错误,B 正确;对于C ,由,得这组数据的第25百分位数是第3个数,为29,故正确;对于,这组数据的平均数,故D 正确.故选:BCD.10.【答案】AC 【详解】因为,所以平面,平面,所以平面平面,A 项正确;设的中点为,连接,则.平面平面,平面平面平面.()0f x kx kx ==⇒=()[]0,2g x y x ==∈()[],0,2h x kx x =∈(),(02)f x kx x =-<≤31,2⎛⎫ ⎪⎝⎭31,2x ⎛⎫∈ ⎪⎝⎭()g x ()h x ()g x ()h x 1x =()11g =1k =32x =32g ⎛⎫== ⎪⎝⎭k ==k ⎫∈⎪⎪⎭()()2sin 0f x x ωω=>ππ,43⎡⎤-⎢⎥⎣⎦2π4π323T T ≤⇒≥2π0T ωω⎧=⎪⎨⎪>⎩302ω<≤()2sin 2f x x ω==()π2π2k x k ωω=+∈Z ()f x ()0,∞+2y =π2ωπ2π2ωω+πππ2π222ωωω≤<+15ω≤<312ω≤≤28,29,29,32,32,32,36,40,40,4525%10 2.5⨯=C D 28229332362404534.310x +⨯+⨯++⨯+==,,BC CD BC DE CD DE D ⊥⊥⋂=BC ⊥CDE BC ⊂ ABCD ABCD ⊥CDE CD F EF AF 、EF CD ⊥ ABCD ⊥CDE ABCD ⋂,CDE CD EF =⊂CDE平面,设平面所成的角为,则,,故B 项错误;连接,易知平面,由确定的面即为平面,当直线和异面时,若点为底面的中心,则,又平面,则与共面,矛盾,C 项正确;连接平面平面,分别为的中点,则,又,则,D 项错误.故选:AC.11.【答案】ABD 【详解】对于A ,由为奇函数,得,即,因此函数的图象关于点对称,A 正确;由,得,则,又,于是,令,得,即,则,因此函数是周期函数,周期为4,对于B ,由,得,B 正确;对于C ,显然函数是周期为4的周期函数,,,则C 错误;对于D ,,则,D 正确.故选:EF ∴⊥ABCD EA ABCD θEAF θ∠=AF EF AE ======sin EF EA θ==BD BM ⊂BDE B M E 、、BDE BM EN N ABCD N BD ∈E ∈BDE EN BM ,FN FN ⊂ ,ABCD EF ⊥,ABCD EF FN ∴⊥F N 、CD BD 、112FN BC ==EF =2,EN BM ====BM EN ≠()2f x +()()22f x f x -+=-+()()220f x f x -++=()f x ()2,0()()2g x f x '=-'()()2g x f x a =-+()()42g x f x a -=-+()()42f x g x --=()()22f x f x a =-++1x =2a =-()()2f x f x =-()()()()()2,42f x f x f x f x f x +=-+=-+=()f x ()()22g x f x =--()()()()3512324g g f f +=-+-=-()g x ()()()()13354g g g g +=+=-()()()()2402224g g f f +=-+-=-2024411()506()506(8)4048,k k g k g k ====⨯-=-∑∑()()()()130,240f f f f +=+=2024411()506()0k k f k f k ====∑∑ABD12.【答案】3 【详解】因为三角形是正三角形,为中点,所以,所以,又正三角形的边长为2,所以,所以.13.【答案】【详解】要使棱锥体积最大,需保证到面的距离最大,故,此时,又都在面上,故面,且设外接圆半径为,则由余弦定理,所以,即,故其表面积为故答案为:14.【详解】连接,因为分别为正,正的中心,所以,又,所以,又因为,所以,由勾股定理得,即,由余弦定理,即,解得,ABCO BC AO BC ⊥AO OP ⊥ABC AO ==()223AP AO AO OP AO AO OP AO ⋅=+⋅=+⋅==40π3P ABC d max sin60d PB =⋅ PB AB ⊥,,,AB BC PB BC B PB BC ⊥⋂=PBC AB ⊥PBC 60PBC ∠=PBC V r 2222212cos603223272PC PB BC PB BC =+-⋅⋅⋅=+-⋅⋅⋅= PC=2sin60PC r ==r =22211023R r AB ⎛⎫=+= ⎪⎝⎭2404ππ3R =40π313,CO CO 12,O O ACD V ABE V 1331,,30,30CO AC CO BC O CB O CA ∠∠==== 30ACB ∠= 1390O CO ∠= 123213O O O S O ==V 132O O =2221313CO CO O O +=22224,12AC BC AC BC ⎫⎫+=+=⎪⎪⎪⎪⎭⎭2222cos30AB AC BC AC BC =+-⋅ 412BC =-⋅AC BC ⋅=所以..15.【详解】(1)证明:设等差数列的公差为,因为,所以,联立解得:,所以.所以,所以.所以数列是等比数列,首项为2,公比为2.(2)所以数列的前项和.两式相减得.16.【答案】解:(1)根据题意,可得的列联表:队伍是否取得第一名的情况张三是否上场取得第一名未取得第一名合计1sin302ABC S AC BC =⋅=V {}n a d 5108,23a a ==1148,923a d a d +=+=14,3a d =-=()43137n a n n =-+-=-73220n a n nb +==≠11222n n n n b b ++=={}n b 2nn nb n =⋅{}n nb n 23222322nn S n =+⨯+⨯+⋯⋯+⋅()2322222122n n n S n n +=+⨯+⋯⋯+-⋅+⋅212222nn n S n +-=++⋯⋯+-⋅()12212.21n n n +-=-⋅-()1122n n S n +=-⋅+22⨯上场301040未上场61420合计362460零假设:队伍是否取得第一名与张三是否上场无关;,依据小概率值的独立性检验,可以认为队伍是否取得第一名与张三是否上场有关;故张三是这支队伍的明星队员.(2)由张三上场时,作为一棒、二棒、四棒选手参赛的概率分别为,相应队伍取得第一名的概率分别为.设事件:张三作为一棒参赛,事件:张三作为二棒参赛,事件C :张三作为四棒参赛,事件D :张三上场且队伍获得第一名;则;(i )由全概率公式:,即;与联立解得:.(ii )由条件概率公式:.17【详解】(1)证明:【法1】延长,于延长线交于点,因底面是矩形,且是的中点,故,则是中点,.连,连交于点,0H ()()()()2220.1()60(3014106)4511.25 2.706362440204n ad bc x a b c d a c b d χ-⨯-⨯====>=++++⨯⨯⨯0.1α=0.5,,x y 0.7,0.8,0.3A B ()()()()()()0.5,,,0.7,0.8,0.3P A P B x P C y P DA P DB P DC ======∣∣∣()()()()()()()0.50.70.80.30.7PD P A P D A P B P D B P C P D C x y =++=⨯++=∣∣∣83 3.5x y +=0.510.5x y x y ++=⇒+=0.4,0.1x y ==()()()P DC P C D P D =∣()()()0.10.330.770P C P D C P D ⨯===∣DO AB T ABCD O BC 12OB AD ∥B AT EB ET PB F '因是中点,故,由得,,又因,故点即点,所以四点共面.【法2】因底面是矩形,故,过作直线与平行,则与也平行,故直线与共面,直线也与共面,延长与交于点,连接与直线交于点.则,因是中点,由得,于是,因是的中点,则且,由得,又因,故点即点,所以四点共面.【法3】,系数和为1,根据平面向量共线定理可知四点共面E PA 12EB PT ∥EBF TPF ''V V ∽2PF F B '='23PF PB = F 'F ,,,O D E F ABCD AD ∥BC P l AD l BC l AD l BC DE l G OG PB F ',PGE ADE PGF BOF ''V V V V ≌∽E PA PGE ADE V V ≌PG AD ∥PG BC ∥O BC PG ∥OB 2PG OB =PGF BOF ''V V ∽2PF BF '='23PF PB = F 'F ,,,O D E F ()()222121221333333333PF PB PO OB PO DA PO PA PD PO PE PD ==+=+=+-=+- ,,,O D E F(2)因为是的中点,所以,又平面平面,平面平面,平面,所以平面.取中点,连接,易知两两相互垂直,如图,分别以为轴建立空间直角坐标系,则,设平面的法向量为,则即,令,则,所以..设,则设与平面所成角为,则,解得此时或,此时18.(1)由椭圆对称性,必过,又横坐标为1,椭圆必不过,所以过三点,,PB PC O =BC PO BC ⊥PBC ⊥ABCD PBC ⋂ABCD BC =PO ⊂PBC PO ⊥ABCD AD Q OQ ,,OQ OC OP ,,OQ OC OP ,,x y z ()()()()(1,1,0,0,1,0,0,1,0,1,1,0,A B C D P --()()(0,2,0,1,0,0,0,AD CD CP ===- PCD (),,a x y z = 0,0,a CD a CP ⎧⋅=⎪⎨⋅=⎪⎩ 00x y =⎧⎪⎨-+=⎪⎩1z =y =()a = (01)PF k k PB=<<((11110,1,1,1,,2222EF PF PE k PB PA k k ⎛⎫=-=-=---=-- ⎪ ⎪⎝⎭ EF PCD θsin cos ,EF a EF a EF a θ⋅====⋅ 13k =12PF BF =23k =2PF BF=34,P P 4P 1P 234,,P P P代入椭圆方程得,解得椭圆的方程为:(2)说明:其他等价形式对应给分.依题意,点(i )若直线的斜率为0,则必有,不合题意(ii )设直线方程为与椭圆联立,整理得:,因为点是椭圆上一点,即,设直线的斜率为,所以,所以,即,因为,所以,222111314b a b ⎧=⎪⎪⎨+=⎪⎪⎩224,1a b ==⋯E 221;4x y +=()()2,0,2,0,A B -l 12k k =-l ()2,x ty n n =+≠±E 2244x y x ty n⎧+=⎨=+⎩()2224240t y nty n +++-=()()122222221222,4Δ44440,4.4tn y y t t n t n n y y t ⎧+=-⎪⎪+=-+->⎨-⎪=⎪+⎩()11,C x y 221114x y +=BC 3k 2121111322111111422444x y y y k k x x x x -⋅=⋅===+---123174k k k =-=23281k k ⋅=-()()()()()()1212122322121212122828282822222(2)y y y y y y k k x x ty n ty n t y y t n y y n ⋅===--+-+-+-++-()()()()()()()2222222222228428244222422(2)44n n t t n t n t n n t t n n n t t -++==-+-+-+--+-++()()2827141422n n n n ++===---32n =-故直线恒过定点;19.【详解】(1),令,则所以为偶函数,故曲线是轴对称图形,且关于轴对称(2)令,得,当时,在单调递减,在单调递增,所以,且当时,,当时,又恒成立,所以在上单调递增,且当时,,当时,且对任意,所以的大致图象如图所示,不妨设,由为偶函数可得,与图象有三个交点,显然,令整理得,解得或所以,即,又因为,所以.l3,02⎛⎫- ⎪⎝⎭()()()()22222e e 1e e x x x xR x y D x R x D x --⎛⎫-⎡⎤=--=- ⎪⎣⎦+⎝⎭()2e e 1e e x x x x g x --⎛⎫-=- ⎪+⎝⎭()()22e e e e 1l ,e e e e x x x x x x x x g x g x ----⎛⎫⎛⎫---=-=-= ⎪ ⎪++⎝⎭⎝⎭()g x ()()()()2222R x y D x R x D x ⎡⎤=--⎣⎦y ()e e 02x xD x --=='0x =0x >()()()0;0,0,D x x D x D x <'><'(),0∞-()0,∞+()()01D x D ≥=x ∞→-()D x ∞→+x ∞→+()D x ∞→+()e e 02x xR x -+=>'()R x R x ∞→-()R x ∞→-x ∞→+(),R x ∞→+⋅()(),x D x R x ∈>R 123x x x <<()D x 120x x +=y t =1t >()e e 1,2x x R x t --==>2e 2e 10x x -->e 1x >e 1x <(ln 1x >(3ln 1x >120x x +=(123ln 1x x x ++>+(3)设,则,所以因为单调递增,所以时,,即由即,该不等式组成立的一个必要条件为:和时同时满足,即,所以,当时等号成立;下面分析充分性:若时,显然对恒成立,从而,满足题意综上所述:的最大值为()e e 2x x R x m --==()222e e 2212x xD x m -+==+()()()2221,f x D x aR x b m am b =--=+--()e e 2x xR x --=))ln 1,ln 1x ⎡⎤∈-+⎣⎦()[]1,1R x ∈-[]1,1,m ∈-()244214f x m am b ≤⇔-≤+--≤22250230m am b m am b ⎧--+≥⎨---≤⎩1m =-1m =7117a b b a -≤--≤⎧⎨-≤-≤⎩7a b +≤4,3a b ==4,3a b ==2222222502435021023024330230m am b m m m m m am b m m m m ⎧⎧⎧--+≥--+≥-+≥⎪⎪⇔⇔⎨⎨⎨---≤---≤--≤⎪⎩⎪⎩⎩[]1,1m ∀∈-()4f x ≤a b +7.。
六安一中2025届高三年级第四次月考数学试卷时间:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知是两个不同的平面,是两条不同的直线,下列命题不正确的是( )A.若,则B.若,则C.若,则D.若,则2.如图所示,在四棱锥中,底面是正方形,为中点,若,则( )A. B.C. D.3.某学校高二年级选择“物化生”,“物化地”和“史地政”组合的同学人数分别为240,90和120.现采用分层抽样的方法选出30位同学进行某项调查研究,则“史地政”组合中选出的同学人数为( )A.8B.12C.16D.64.已知数列的首项,则( )A.48B.80C.63D.655.已知等差数列满足,前项和为,若,则与最接近的整数是( )A.5B.4C.2D.16.已知数列满足,若对于任意都有,则实数的取值范围是(),αβ,m n m ∥,n m α⊥n α⊥,m m αβ⊥⊥α∥β,m m αβ⊥⊂αβ⊥m ∥,n ααβ⋂=m ∥nP ABCD -ABCD E PD ,,PA a PB b PC c === BE =111222a b c -+ 111222a b c -- 131222a b c -+ 113222a b c -+ {}n a 110,1n n a a a +==++8a ={}n a 131,3a a ==n n S 12111n nT S S S =+⋯+9T {}n a *712,8,2,8n n a n n a n a n -⎧⎛⎫-+>⎪ ⎪=∈⎝⎭⎨⎪≤⎩N *n ∈N 1n n a a +>aA. B. C. D.7.在棱长为2的正方体中,是线段上一个动点,则下列结论正确的有()A.不存在点使得异面直线与所成角为B.存在点使得异面直线与所成角为C.存在点使得二面角的平面角为D.当时,平面截正方体所得的截面面积为8.已知一圆柱的轴截面为正方形,母线长为,在该圆柱内放置一个棱长为的正四面体,并且正四面体在该圆柱内可以任意转动,则的最大值为()A.1B.2C.D.4二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图的形状出现在南宋数学家杨辉所著的《详解九章算法∙商功》中,后人称为“三角垛”.“三角垛”最上层有1个球,第二层有3个球,第三层有6个球,,设第层有个球,从上往下层球的总数为,则( )A. B.C. D.1,12⎛⎫⎪⎝⎭113,220⎛⎫ ⎪⎝⎭13,120⎛⎫ ⎪⎝⎭31,2⎛⎫ ⎪⎝⎭1111ABCD A B C D -M 11A C M BM AC 90 M BM AC 30 M M BD C --451114A M AC =BDM 92a a ⋯n n a n n S 34S a =132n n n a a ++-=11n n a a n +-=+1055a =10.在边长为6的菱形中,,现将沿折起到的位置,使得二面角是锐角,则三棱锥的外接球的表面积可以是( )A.B.C.D.11.对于棱长为1(单位:)的正方体容器(容器壁厚度忽略不计),下列说法正确的是( )A.底面半径为高为的圆锥形罩子(无底面)能够罩住水平放置的该正方体B.C.该正方体内能同时整体放入两个底面半径为高为的圆锥D.的圆锥三、填空题:本题共3小题,每小题5分,共15分.12.已知一组数据的平均数是1,则这组数据的中位数为__________.13.已知四棱锥平面,底面是为直角,的直角梯形,如图所示,且为的中点,则到直线的距离为__________.14.若在长方体中,.则四面体与四面体公共部分的体积为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设三角形的内角的对边分别为且.(1)求角的大小;(2)若,求三角形的周长.16.(本小题满分15分)已知无穷等比数列的前项和为(1)求的值;ABCD π3A ∠=ABD V BD PBD V P BD C --P BCD -58π45π48π55πm 1m,1m 0.5m,0.8m 31,2,0,1,,1x -,A EBCD AE -⊥BCDE EBCD E ∠EB ∥DC 224,CD EB AE DE ====F AD F BC 1111ABCD A B C D -13,2,4AB BC AA ===11ABB C 11AC BD ABC A B C 、、a b c 、、()2sin 2AB C +=A 3,b BC =ABC {}n a n 3nn S b=+1,b a(2)设,求数列的前项和.17.(本小题满分15分)如图所示,在三棱柱中,平面,点是的中点(1)证明:;(2)求与平面所成角的正弦值.18.(本小题满分17分)如图1,在等腰梯形中,,点在以为直径的半圆上,且,将半圆沿翻折如图2.(1)求证:平面;(2)当多面体的体积为32时,求平面与平面夹角的余弦值.19.(本小题满分17分)若存在非零常数,使得数列满足,则称数列为“数列”.(1)判断数列:是否为“数列”,并说明理由;(2)若数列是首项为1的“数列”,数列是等比数列,且与满足,求的值和数列的通项公式;(3)若数列是“数列”,为数列的前项和,,证明:221,1,2,3,n n c a n n =+-= {}n c n n T 111ABC A B C -112,AC BC AB AB ===⊥ABC 1,AC AC D ⊥AC 11AC B C ⊥1A D 11BB C C ABCD AD ∥,8,4,60BC AD BC DAB ∠===,E F AD »»»AE EFFD ==AD EF ∥ABCD ABE DCF -ABE CDF t {}n a ()11231,n n a a a a a t n n +-=≥∈N {}n a ()H t 1,3,5,11,152()2H {}n a ()H t {}n b {}n a {}n b 212321log ni n n i aa a a ab ==+∑ t {}n b {}n a ()H t n S {}n a n 11,0a t >>1e n S nn n t S S -+>--六安一中2025届高三年级第四次月考数学试卷参考答案1.D2.C3.A4.C5.C6.C7.D8.D9.ACD 10.AD 11.BD 12.【答案】114.15.(1)因为为的内角,所以,因为,所以可化为:,即,即解得:,即.(另解:由;得.)(2)由三角形面积公式得代入得:,所以,故为正三角形,,周长等于16.(1)当时,,因为是等比数列,所以,又因为,所以(2)由(1)知,43,,A B C ABC V ()sin sin B C A +=21cos sin22A A -=()2sin 2A B C +=)sin 1cos A A =-sin A A =πππ4πsin ,3333A A ⎛⎫⎛⎫+=+∈ ⎪ ⎪⎝⎭⎝⎭π2π33A +=π3A =2sin 2sincos 222A A A A =⋅=πtan 226A A ==11sin ,322b c A b ⋅==1π13sin 232c ⨯⋅=a c =ABC V 3a b c ===9.2n ≥1123n n n n a S S --=-=⨯{}n a 12a =113a S b ==+1b =-123n n a -=⨯因为,且,所以是以6为首项,9为公比的等比数列,.17.解析:(1)由题意,平面平面,所以,又,且平面,所以平面,因为平面,所以.(2)法一(坐标法):由(1)知,又,所以,以为原点建立如图所示的空间直角坐标系,则,,所以,,设平面的法向量为,则,所以,从而故直线与平面法二(几何法):取中点,则,26a =2229n na a +={}2n a ()()2421321n n T a a a n ⎡⎤=+++++++-⎣⎦()291236919124n n n n n -⋅=⨯+=-+-1AB ⊥,ABC AC ⊂ABC 1AC AB ⊥1AC AC ⊥11AB AC ⊂、1111,AB C AB AC A ⋂=AC ⊥11AB C 11B C ⊂11AB C 11AC B C ⊥11AC B C ⊥BC ∥11B C AC BC ⊥C ()()()()10,0,0,2,0,0,0,2,2,0,2,0C B B A ()0,1,0D ()()()12,0,0,2,2,2,0,1,0CB BB DA ==-=()()()1110,1,02,2,22,3,2DA DA AA DA BB =+=+=+-=-11BC C C (),,n x y z =1202220n CB x n BB x y z ⎧⋅==⎪⎨⋅=-++=⎪⎩ ()0,1,1n =- 111cos ,DA n DA n DA n⋅===⋅1A D 11BB C C 11C A M CM ∥1A D记与面所成角为,则由知解得,又,所以18.(1)连由等边三角形可知分布在同一个圆周上,且,则六边形为正六边形,面面(2)在图1中连交于,则,连交于,则,故在图2中面面记面与面所成角为,则故,即面面法一(几何法):延长交于延长交于则为面与面交线且取中点,连接,则即为面与面所成角在中,,故,故面与面所成角的余弦值为法二(坐标法):以为坐标原点,所在的直线为轴,建立空间直角坐标系,则,CM 11BB C C θ1111112sin A CC B BM CC B Bd d CMCMθ--==111111A B C C C A B C V V --=11111111133B C C A A B C S d S AB ⋅=⋅1A d =CM ===sin θ=OB OC 、A B C D F E 、、、、、AE EF FD DC CB BA =====ABCDFE EF ∴∥AD ∥,BC EF ⊄ABCD,BC ⊂ABCD EF ∴∥ABCDEB AD 1O AD EB ⊥FC AD 2O AD FC ⊥AD ⊥1,EO B AD ⊥2FO CABE CDF θ1212,6sin EO B FO C EO B FO C S S ∠∠θθ====V 1221ABE DCF EO B FO C D FO CA EOB V V V V ----=++锥112121132sin 3233EO B EO B FO C S AO S EF S DO θ=⨯+⨯+⨯==V πsin 1,2θθ==AEFD ⊥ABCDAB DC 、,Q F AE D 、,P PQ ABE CDF 8,8AP AQ PD QD ====PQ M AM DM 、AMD ∠ABE CDF AMD V 8AM DM AD ===1cos 5AMD ∠==ABE CDF 151O 111,,O B O D O E ,,x y z ()()(()()(0,2,0,,0,0,,4,0,0,6,0,0,4,A B E C D F -,有令得同理可得面法向量,设面与面所成角为,故19.【详解】(1)根据”数列“的定义,则,故,因为成立,成立,不成立,所以不是”数列“.(2)由是首项为2的”数列“,则,由是等比数列,设公比为,由,则.两式作差可得,即,由是”数列“,则,对于恒成立,所以,即对于恒成立,则,即,因为解得,,又由,则,即,故所求的,数列的通项公式.(3)设函数,则,令,解得,当时,,则在区间单调递减,且,又由是”数列",即,对于恒成立,()(2,0,0,2,AB AE ==2020AB n y AE n y ⎧⋅=+=⎪⎨⋅=+=⎪⎩1,x=()1,n =CDF ()m =ABE CDF α1cos 5m n m n α⋅==⋅ ()H t 2t =11232n n a a a a a +-= 212a a -=3212a a a -=43211113542a a a a -=-⨯⨯=-≠1,3,5,11,152()2H {}n a ()H t 231,21a t a t =+=+{}n b q 212321log nn n i iaa a a ab ==+∑ 121231211log n i n n n i a a a a a a b +++==+∑ ()2112312121log log n n n n n a a a a a a b b +++=-+- ()21123121log n n n a a a a a a q ++=-+ {}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N ()()211121log n n n a a t a q +++=--+()12121log log n n n t a t b b +++=+-1,n n ≥∈N ()()22321log 1log t a t q t a t q ⎧+-=⎪⎨+-=⎪⎩()()222(1)log 121log t t qt t t q ⎧+-=⎪⎨++-=⎪⎩0t ≠1,2t q =-=2111211,log a a a b ==+11b =12n n b -=1t =-{}n b 12n n b -=()ln 1f x x x =-+()11f x x'=-()0f x '=1x =1x >()0f x '<()ln 1f x x x =-+()1,∞+()1ln1110f =-+={}n a ()H t 1123n n a a a a a t +-= 1,n n ≥∈N因为,则,再结合,反复利用,可得对于任意的,则,即,则,即,相加可得,则,又因为在上单调递增,所以,又,所以,即,故.11,0a t >>211a a t =+>121,0,1a t a >>>1123n n a a a a a t +=+ 1,,1n n n a ≥∈>N ()()10n f a f <=ln 10n n a a -+<ln 1n n a a <-1122ln 1,ln 1,,ln 1n n a a a a a a <-<-⋯<-1212ln ln ln n n a a a a a a n +++<+++- ()12ln n n a a a S n <- ln y x =()0,x ∞∈+12en S nn a a a -< 1123n n a a a a a t +-= 1e n S nn a t -+-<1en S nn n S S t -+--<1en S nn n t S S -+>--。
一、选择题(每题5分,共50分)1. 已知函数$f(x) = x^3 - 3x^2 + 4$,则$f(x)$的对称中心为()。
A. $(0, 4)$B. $(1, 2)$C. $(2, 0)$D. $(3, 1)$2. 在等差数列$\{a_n\}$中,$a_1 + a_5 = 10$,$a_3 + a_4 = 12$,则$a_1$的值为()。
A. 1B. 2C. 3D. 43. 已知圆$x^2 + y^2 - 4x - 6y + 9 = 0$的半径为()。
A. 1B. 2C. 3D. 44. 函数$y = \log_2(x - 1)$的图象与直线$y = 3x - 1$的交点个数为()。
A. 1B. 2C. 3D. 45. 若复数$z = a + bi$($a, b \in \mathbb{R}$)满足$|z - 3i| = |z + 2|$,则$z$在复平面内的轨迹是()。
B. 圆C. 直线D. 双曲线6. 在三角形ABC中,$AB = 4$,$AC = 6$,$BC = 8$,则$\cos A$的值为()。
A. $\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{3}{4}$D. $\frac{5}{8}$7. 已知函数$f(x) = ax^2 + bx + c$($a \neq 0$),若$f(-1) = 0$,$f(1) = 0$,则$f(0)$的值为()。
A. $-a$B. $-b$C. $-c$D. $a$8. 若$|x - 1| + |x + 2| = 3$,则$x$的取值范围是()。
A. $-2 \leq x \leq 1$B. $-2 < x < 1$C. $x \leq -2$ 或 $x \geq 1$D. $x > -2$ 且 $x < 1$9. 已知数列$\{a_n\}$的前$n$项和为$S_n$,若$S_n = 3n^2 - 2n$,则$a_5$的值为()。
云南师范大学附属中学2024-2025学年高三上学期11月月考数学试题学校:___________姓名:___________班级:___________考号:___________二、多选题9.已知随机事件,,A B C ,则下列说法正确的是( )A .若()()()P AB P A P B =,则事件A 与事件B 相互独立B .若()()1P A P B +=,则事件A 与事件B 互为对立C .若事件,,A B C 两两独立,则()()()()P ABC P A P B P C =D .若事件,,A B C 两两互斥,则()()()()P A B C P A P B P C =++∪∪10.设复数z 在复平面内对应的点为Z ,任意复数z 都可以表示为三角形式()cos sin r i q q +,其中r 为复数z 的模,q 是以x 轴的非负半轴为始边,以OZ 所在的射线为终边的角(也被A .曲线C 只经过4个整数点(即横、纵坐标均为整数的点)B .03232,22x éÎ-êëC .3,6OA éùÎëûD .设曲线C 上一点B ,且0OA OB ×=uuu r uuu r ,则OAB △的面积的最大值为3四、解答题15.记ABC V 的内角,,A B C 的对边分别为,,a b c ,已知()2sin 2sin cos b c C c A C +=.(1)求A ;因为正方体的棱长为3,故正方体的体对角线长为故球仅与3个侧面有截线(如图所示),设与侧面11D C CD 的截线为»EF 则21,AE AF DE DF ===,因ADE V 为直角三角形,故DE。
1、设集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩ B =A. {3, 6}B. {1, 3, 6}C. {3, 6, 9}D. {1, 2, 3, 6}解析:集合A包含小于8的正整数,即A = {1, 2, 3, 4, 5, 6, 7}。
集合B包含所有3的倍数。
取两集合的交集,即找出同时满足小于8且为3的倍数的数,得到A ∩B = {3, 6}。
(答案:A)2、若复数z满足(1 - i)z = 2i,则z等于A. 1 + iB. -1 + iC. 1 - iD. -1 - i解析:由(1 - i)z = 2i,得z = 2i / (1 - i)。
为了消去分母中的虚部,分子分母同时乘以共轭复数(1 + i),得到z = (2i(1 + i)) / ((1 - i)(1 + i)) = (2i + 2i2) / (1 - i2) = (2i - 2) / 2 = -1 + i。
(答案:B)3、已知等差数列{an}的前n项和为Sn,且a1 = 1,S3 = -3,则a4 =A. -3B. -5C. -6D. -7解析:等差数列前n项和公式为Sn = n/2 * (2a1 + (n-1)d)。
由S3 = -3,代入a1 = 1,n = 3,得-3 = 3/2 * (21 + 2d),解得公差d = -2。
因此,a4 = a1 + 3d = 1 + 3(-2) = -5。
(答案:B)4、下列命题中正确的是A. 若直线l平行于平面α内的无数条直线,则l∥αB. 若直线l在平面α外,则l//αC. 若直线l与平面α平行,则l与平面α内的直线平行或异面D. 若直线l与平面α平行,且l⊂平面β,则平面α//平面β解析:A选项错误,因为直线l也可能在平面α内;B选项错误,直线l也可能与平面α相交;C选项正确,根据线面平行的性质定理,直线l与平面α平行意味着l与平面α内的任意直线要么平行,要么异面;D选项错误,平面α与平面β可能相交。
河南省部分学校2024-2025学年高三上学期11月月考数学试题一、单选题1.函数tan y x =的值域可以表示为()A .{tan }xy x =∣B .{tan }yy x =∣C .{(,)tan }x y y x =∣D .{tan }y x =2.若“sin 2θ=”是“tan 1θ=”的充分条件,则θ是()A .第四象限角B .第三象限角C .第二象限角D .第一象限角3.下列命题正确的是()A .x ∃∈R ,20x <B .(0,4)x ∀∈,20log 2x <<C .(0,)x ∃∈+∞,132x x <D .π0,2x ⎛⎫∃∈ ⎪⎝⎭,4sin cos x x =4.函数24()f x x x =-的大致图象是()A .B .C .D .5.已知向量1e ,2e 满足121e e == ,120e e ⋅= ,则向量1e 与12e e - 的夹角为()A .45︒B .60︒C .120︒D .135︒6.已知5πtan210α+=,则4π5tan 5α-=()A .125B .125-C .43D .43-7.已知0a >,0b >,9a b +=,则36a ba+的最小值为()A .8B .9C .12D .168.若0x ∀>,()()()21ln 10x ax ax ---≥,则a =()AB C D 二、多选题9.已知函数sin()()2x f x -=,则()A .()f x 的值域为1,22⎡⎤⎢⎥⎣⎦B .()f x 为奇函数C .()f x 在ππ,22⎡⎤-⎢⎥⎣⎦上单调递增D .()f x 的最小正周期为2π10.国庆节期间,甲、乙两商场举行优惠促销活动,甲商场采用购买所有商品一律“打八四折”的促销策略,乙商场采用“购物每满200元送40元”的促销策略.某顾客计划消费(0)x x >元,并且要利用商场的优惠活动,使消费更低一些,则()A .当0200x <<时,应进甲商场购物B .当200300x ≤<时,应进乙商场购物C .当400500x ≤<时,应进乙商场购物D .当500x >时,应进甲商场购物11.已知函数()f x 满足:①x ∀,R y ∈,()[()]y f xy f x =;②(2)1f ->,则()A .(0)0f =B .()()()f x y f x f y +=⋅C .()f x 在R 上是减函数D .[1,3]x ∀∈,()2(3)1f x kx f x -⋅-≥,则3k ≥三、填空题12.已知函数()1ln(2)f x x =-+,则曲线()y f x =在点(1,(1))f --处的切线方程为.13.已知函数()cos (0)f x x ωω=>,若π2f x ⎛⎫+ ⎪⎝⎭为偶函数,且()f x 在区间(0,π)内仅有两个零点,则ω的值是.14.若ABC V 内一点P 满足PAB PBC PCA α∠=∠=∠=,则称P 为ABC V 的布洛卡点,α为布洛卡角.三角形的布洛卡点是法国数学家和数学教育家克洛尔于1816年首次发现,1875年被法国军官布洛卡重新发现,并用他的名字命名.如图,在ABC V 中,AB AC =,3cos 5BAC ∠=,若P 为ABC V 的布洛卡点,且2PA =,则BC 的长为.四、解答题15.在ABC V 中,内角,,A B C 的对边分别为,,a b c ,且π2sin 6a C b c ⎛⎫+=+ ⎪⎝⎭.(1)求A ;(2)若O 为ABC V 的外心,D 为边BC 的中点,且1OD =,求ABC V 周长的最大值.16.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,且tan tan tan tan 1B C B C ++=,1b =,c =(1)求a ;(2)如图,D 是ABC V 外一点(D 与A 在直线BC 的两侧),且AC CD ⊥,45CBD ∠= ,求四边形ABDC 的面积.17.已知平面向量(,)m a b = ,(sin ,cos )n x x ωω=,且2m n = ,其中0a >,0ω>.设点(0,1)和11π(,0)12在函数()f x m n =⋅ 的图象(()f x 的部分图象如图所示)上.(1)求a ,b ,ω的值;(2)若()G x y ,是()y f x =图象上的一点,则1(2,)2K x y 是函数()y g x =图象上的相应的点,求()g x 在[0,π]上的单调递减区间.18.已知函数()2()e xf x x mx n =++,m ,n ∈R .(1)当24m n =时,求()f x 的最小值;(2)当2m =-时,讨论()f x 的单调性;(3)当0m n ==时,证明:0x ∀>,()ln 1f x x >+.19.已知非零向量(,)a m n =,(,)b p q = ,a ,b 均用有向线段表示,现定义一个新的向量c以及向量间的一种运算“※”:(,)c a b mp nq mq np ==-+※.(1)证明:c 是这样一个向量:其模是a 的模的 b 倍,方向为将a绕起点逆时针方向旋转β角(β为x 轴正方向沿逆时针方向旋转到b所成的角,且02πβ≤<),并举一个具体的例子说明之;(2)如图1,分别以ABC V 的边AB ,AC 为一边向ABC V 外作ABD △和ACE △,使π2BAD CAE ∠=∠=,(01)AD AEAB AC λλ==<<.设线段DE 的中点为G ,证明:AG BC ⊥;(3)如图2,设(3,0)A -,圆22:4O x y +=,B 是圆O 上一动点,以AB 为边作等边ABC V (A ,B ,C 三点按逆时针排列),求||OC 的最大值.。
2024-2025学年度高三10月月考数学试题参考答案一、选择题题号1234567891011答案DDBCCABDABDBCDABD二、填空题12.5013.2433ππ⎛⎫ ⎪⎝⎭,14.(1)1327;(2)13425153n -⎛⎫-⋅- ⎪⎝⎭三、解答题15、解:(1)由题3sin 21==∆θbc S ABC ,可得θsin 6=bc ,又36cos 0≤=⋅≤θbc AC AB ,所以36sin cos 60≤≤θθ,得到33tan ≥θ或2πθ=因为()πθ,0∈,所以,62ππθ⎡⎤∈⎢⎥⎣⎦6分(2)()2cos sin cos34f πθθθθ⎛⎫=⋅++ ⎪⎝⎭,化简得()21sin 2cos 4f θθθ=进一步计算得()1sin 223f πθθ⎛⎫=- ⎪⎝⎭,因为,62ππθ⎡⎤∈⎢⎥⎣⎦,故22033ππθ⎡⎤-∈⎢⎥⎣⎦,故可得()102f θ⎡⎤∈⎢⎥⎣⎦,13分16、解:(1)过点P 作PO 垂直于平面ABCD ,垂足为O ,连接BO 交AD 于E ,连接PE ,则有AD PB AD PO ⊥⊥,,又P PB PO =⋂,所以POB AD 平面⊥,因为POB PE 平面⊂,所以PE AD ⊥,又PD P A =,所以E 为AD 得中点依题侧面P AD 与底面ABCD 所成的二面角为120°,即有32π=∠PEB ,所以3π=∠PEO ,因为侧面P AD 为正三角形,所以323sin 4=⋅=πPE ,则323323sin =⋅=⋅=πPE PO ,所以38323443131=⋅⋅⋅⋅==-PO S V ABCD ABCD P 7分(2)如图,在平面ABCD 内过点O 作OB 得垂线Ox ,依题可得Ox OB OP ,,两两垂直,以Ox OB OP ,,为轴轴,轴,x y z 建立空间直角坐标系可得()0,3,2A ,()0,0,0P ,()0,33,0B ,取PB 得中点为N ,则⎪⎪⎭⎫⎝⎛23,233,0N 因为AB AP =,所以PB AN ⊥,由(1)POB AD 平面⊥,AD BC //,知POB BC 平面⊥所以PB BC ⊥,可得NA BC ,所成角即为二面角A PB C --的平面角,求得⎪⎪⎭⎫ ⎝⎛-=23,23,2AN ,()0,0,2=BC,则72724-=-==BC NA则21sin 7A PBC --=15分17、解:(1)当a e =时,1()e lnx e f x x -=+,0(1)e ln 2f e =+=,11()e ,(1)0x f x f x-''=-=所求切线方程为:)1(02-=-x y ,即2y =5分(2)()2≥x f 转化为ln 2e ln ln 2a x a x +-+-≥,可得ln 2e ln +2ln 0a x a x x x x +-+-≥+>,构造函数()e x g x x =+,易得()g x 在R 单调递增所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()∞+,0恒成立令()2ln +-=x x x h ,()011=-='xx h ,得到1=x ,可得()10,∈x 时,()0>'x h ;()∞+∈,1x 时,()0<'x h ,所以()x h 在1=x 时取最大值所以()ln 11a h ≥=,得到ea ≥15分18、解:(1)∵椭圆E 经过点A 52,3⎛⎫⎪⎝⎭,23e =∴222222549123a b a b c c e a ⎧⎪+=⎪⎪⎨=+⎪⎪==⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩E :22195x y +=;4分(2)由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意,1:512100AF l x y -+=,2:2AF l x =设角平分线上任意一点为(),P x y ,则51210213x y x -+=-得9680x y --=或2390x y +-=∵斜率为正,∴21AF F ∠的角平分线所在直线为9680x y --=思路二:椭圆在点A 52,3⎛⎫⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,21AF F∠的角平分线所在直线l 的斜率为32l k =,∴,21AF F ∠的角平分线所在直线34:23l y x =-即9680x y --=10分(3)思路一:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,设2:3BC l y x m =-+,∴2222195912945023x y x mx m y x m ⎧+=⎪⎪⇒-+-=⎨⎪=-+⎪⎩∴线段BC 中点为25,39m mM ⎛⎫⎪⎝⎭在21AF F ∠的角平分线上,即106803m m --=得3m =∴52,3M ⎛⎫⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点()()1122,,,B x y C x y ,线段BC 中点()00,Mx y ,由点差法,2211222212122222195095195x y x x y y x y ⎧+=⎪⎪⇒+=⎨⎪+=⎪--⎩,∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,∴0065OM y k x ==,:968052,63:5AM OM l x y M l y x --=⎧⎪⎛⎫⇒⎨⎪=⎝⎭⎪⎩与点A 重合,舍去,故不存在满足题设条件的相异的两点.17分19、解:(1)①()()()222121()111b f x x bx x x x x +=-=-+'++,∵1x >,()()2101h x x x =>+恒成立,∴函数()f x 具有性质()P b ;3分②设()()211u x x bx x =-+>,(i)当0b -≥即0b ≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;(ii)当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()0f x '>,故此时()f x 在区间()1,+∞上递增;当240b ∆=->即2b >时,12441122b b x x +===,,∴x ⎛⎫∈⎪ ⎪⎝⎭时,()0u x <,()0f x '<,此时()f x在1,2b ⎛⎫⎪ ⎪⎝⎭上递减;4,2b x ∞⎛⎫+∈+ ⎪ ⎪⎝⎭时,()0u x >,()0f x '<,此时()f x在∞⎫+⎪⎪⎝⎭上递增.综上所述,当2b ≤时,()f x 在()1,+∞上递增;当2b >时,()f x在⎛⎫⎪ ⎪⎝⎭上递减,在∞⎫+⎪⎪⎝⎭上递增.9分(2)由题意,()()22()()21()1g x h x x x h x x =-+=-',又()h x 对任意的()1,x ∈+∞都有()0h x >,所以对任意的()1,x ∈+∞都有()0g x '>,()g x 在()1,+∞上递增.10分∵12(1)mx m x α=+-,12(1)m x mx β=-+,∴()()1212,21x x m x x αβαβ+=+-=--1先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<∴1212()()(),()()()g x g g x g x g g x αβ<<<<∴12()()()()g g g x g x αβ-<-满足题意13分2当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,∴12x x αβ≤<≤∴12()()()()g g x g x g αβ≤<≤,∴12()()()()g g g x g x αβ-≥-,不满足题意,舍去16分综上所述,01m <<17分。
武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|230A x x x =+-≥,{}|22B x x =-≤<,则A B = ( )A. []2,1--B. [)1,2- C. []1,1- D. [)1,22. 复数2i12i-+的共轭复数是( )A. 3i 5- B. 3i 5 C. i- D. i3. 若2b a = ,=- c a b ,且c a ⊥,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π64. 已知π(0,)2αβ∈∈,则下列不等关系中不恒成立的是( )A. ()sin sin sin αβαβ+<+ B. ()sin cos cos αβαβ+<+C ()cos sin sin αβαβ+<+ D. ()cos cos cos αβαβ+<+5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A. 3B.C.D.6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A. 114B. 120C. 126D. 1327. 已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A. []0,1 B. []0,2 C. []0,e D. []1,e 8. 已知函数()(),R f x f x x =-∈,()5.51f =,函数()()()1g x x f x =-⋅,若()1g x +为偶函数,则()0.5g -的值为( ).A. 3B. 2.5C. 2D. 1.5二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列关于概率统计的知识,其中说法正确的是( )A. 数据1-,0,2,4,5,6,8,9的第25百分位数是1B. 已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C. 若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-D. 若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立10. 连接抛物线上任意四点组成的四边形可能是( )A. 平行四边形B. 梯形C. 有三条边相等的四边形D. 有一组对角相等的四边形11. 设函数32()231f x x ax =-+,则( )A. 当0a =时,直线1y =是曲线()y f x =的切线B. 若()f x 有三个不同的零点123,,x x x ,则12312x x x ⋅=-⋅C. 存在,a b ,使得x b =为曲线()y f x =的对称轴D. 当02ax ≠时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点三、填空题:本题共3小题,每小题5分,共15分.12. 已知n S 是等差数列{}n a 的前n 项和,若320S =,990S =,则6S =____________.13. 已知函数()()sin ,0,2π2cos xf x x x=∈+,写出函数()f x 的单调递减区间____________.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为____________;(2)恰好得n 分的概率为____________.(用与n 有关的式子作答)四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC ∆的面积为3,且满足0AB AC ≤⋅≤ 设AB 和AC的夹角为θ,(1)求θ的取值范围;(2)求函数()2πcos sin 3fθθθθ⎛⎫=⋅+- ⎪⎝⎭值域.16. 如图,已知四棱锥P ABCD -,PB AD ⊥,侧面PAD 为正三角形,底面ABCD 是边长为4菱形,侧面PAD 与底面ABCD 所成的二面角为120︒.(1)求四棱锥P ABCD -的体积;(2)求二面角A PB C --的正弦值.17. 已知函数f(x)=a e x−2+ln ax (a >0)(1)当e a =时,求曲线y =f (x )在点(1,f (1))处切线方程;(2)若不等式()2f x ≥恒成立,求a 的取值范围.18. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为23,且经过点52,3A ⎛⎫ ⎪⎝⎭(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.19. 设()f x 使定义在区间(1,)+∞上的函数,其导函数为()f x '.如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()h x >0,使得()()()21f x h x x ax '=-+,则称函数()f x 具有性质()P a .(1)设函数()f x 2ln (1)1b x x x +=+>+,其中b 为实数① 求证:函数()f x 具有性质()P b ;② 讨论函数()f x 单调性;(2)已知函数()g x 具有性质(2)P ,给定1212,(1,),,x x x x ∈+∞<设m 为正实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1,1αβ>>,若12()()()()g g g x g x αβ-<-,求m 的取值范围.的的的的武汉外国语学校2024—2025学年度上学期10月月考高三数学试卷考试时间:2024年10月9日 考试时长:120分钟 试卷满分:150分一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}2|230A x x x =+-≥,{}|22B x x =-≤<,则A B = ( )A. []2,1--B. [)1,2- C. []1,1- D. [)1,2【答案】D 【解析】【分析】根据一元二次不等式求集合A ,即可得交集.【详解】由题意可得:{}(][)2|230,31,A x x x =+-≥=-∞-+∞U ,且{}|22B x x =-≤<,所以A B = [)1,2.故选:D.2. 复数2i12i-+的共轭复数是( )A. 3i 5- B. 3i5C. i -D. i【答案】D 【解析】【分析】先根据复数的除法求解,再根据共轭复数的概念求解.【详解】因为()()()()2i 12i 2i5i i 12i 12i 12i 5----===-++-,所以其共轭复数是i .故选:D.3. 若2b a = ,=- c a b ,且c a ⊥,则a 与b 的夹角为( )A.π6B.π3C.2π3D.5π6【答案】B 【解析】【分析】根据向量垂直列方程,结合向量数量积的运算以及向量夹角的知识求得正确答案.【详解】因为c a ⊥,所以()22cos ,0a c a a b a a b a a b a b ⋅=⋅-=-⋅=-⋅⋅= ,由于2b a = ,所以212cos ,0,cos ,2a a a a b a b -⋅⋅== ,由于0,πa b ≤≤ ,所以π,3a b = .故选:B4. 已知ππ(0,),(0,)22αβ∈∈,则下列不等关系中不恒成立的是( )A. ()sin sin sin αβαβ+<+ B. ()sin cos cos αβαβ+<+C. ()cos sin sin αβαβ+<+ D. ()cos cos cos αβαβ+<+【答案】C 【解析】【分析】由两角和的正弦、余弦公式展开后结合不等式的性质可判断ABD ,举反例判断C .【详解】,αβ都是锐角,则sin (0,1),cos (0,1),sin (0,1),cos (0,1)ααββ∈∈∈∈,sin()sin cos cos sin sin sin αβαβαβαβ+=+<+,A 正确;sin()sin cos cos sin cos cos αβαβαβαβ+=+<+,B 正确;15αβ==︒时,cos()cos30αβ+=︒=,sin15︒====,sin sin sin15sin15αβ+=︒+︒=>C 错误;()cos cos cos sin sin cos cos cos cos cos αβαβαβαβααβ+=-<<<+,D 正确.故选:C .5. 将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A. 3B.C.D.【答案】C 【解析】【分析】反向思考,求出边长为a 的正方体的最大内接正四面体的体积,结合条件,即可求解.【详解】反向思考,边长为a 的正方体,其最大内接正四面体的体积为33311141323a a a -⨯⨯⨯==,得到33a =,解得a =故选:C.6. 武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A. 114 B. 120 C. 126 D. 132【答案】A 【解析】【分析】依据值班3天的为分类标准,逐类解决即可.【详解】因为有三位老师值班7天,且每人至少值班两天,每天安排一人值班,同一人不连续值两天班,所以必有一人值班3天,另两人各值班2天.第一类:值班3天在(1,3,5)、(1,3,6)、(1,4,6)、(2,4,7)、(2,5,7)、(3,5,7)时,共有1113226C C C 72⨯=种不同的值班方法;第二类:值班3天在(1,3,7)、(1,5,7)时,共有11322C C 12⨯=种不同的值班方法;第三类:值班3天在(1,4,7)时,共有111322C C C 12=种不同的值班方法;第四类:值班3天在(2,4,6)时,共有1234C C 18=种不同的值班方法;综上可知三位老师在国庆节7天假期共有72121218114+++=种不同的值班方法.故选:A7. 已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A. []0,1 B. []0,2 C. []0,e D. []1,e 【答案】C 【解析】【分析】先判断0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,转化为ln xa x≤在(1,)+∞上恒成立.【详解】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->,当1a >时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立,令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故()()min g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立;综上可知,a 的取值范围是[0,]e ,故选C .【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析.8. 已知函数()(),R f x f x x =-∈,()5.51f =,函数()()()1g x x f x =-⋅,若()1g x +为偶函数,则()0.5g -的值为( )A. 3B. 2.5C. 2D. 1.5【答案】D 【解析】【分析】由()1g x +为偶函数,推得()()2g x g x =-,再由()()()1g x x f x =-⋅,求得()f x 关于(1,0)对称,结合()()f x f x =-,推得(4)()f x f x -=,得到()f x 是周期为4的周期函数,根据(5.5)1f =,得到(2.5)1f =,进而求得(0.5)g -的值,得到答案.【详解】因为函数()1g x +为偶函数,可()g x 的图象关于1x =对称,所以()()2g x g x =-,由()()()1g x x f x =-⋅,可得()()()()112x f x x f x -⋅=-⋅-,即()()20f x f x +-=,所以函数()f x 关于(1,0)对称,又因为()()f x f x =-,所以()f x 是定义在R 上的偶函数,所以()()2(2)f x f x f x =--=--,所以()4[(2)2](2)[()]()f x f x f x f x f x -=--=--=-=,即(4)()f x f x -=,所以函数()f x 是周期为4的周期函数,所以(5.5)(1.54)(1.5)( 2.5)(2.5)1f f f f f =+==-==,则(0.5)(2.5)(2.51)(2.5) 1.5g g f -==-=.故选:D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列关于概率统计知识,其中说法正确的是( )A. 数据1-,0,2,4,5,6,8,9的第25百分位数是1B. 已知随机变量(),X B n p ,若()40E X =,()30D X =,则160n =C. 若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12-D. 若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立【答案】ABD 【解析】【分析】根据百分位数的定义计算判断A ,由二项分布的数学期望与方差公式计算可判断B ,根据相关系数的定义可判断C, 根据相互独立事件及条件概率的概率公式计算可判断D.【详解】对于选项A ,8个数据从小到大排列,由于825%2⨯=,所以第25百分位数应该是第二个与第三个的平均数0+2=12,故A 正确;对于选项B ,因为(),X B n p ,()40E X =,()30D X =,所以40(1)30np np p =⎧⎨-=⎩,解得1,1604p n ==,故B 正确;对于选项C ,因为样本点都在直线132y x =-+上,说明是负相关且线性相关性很强,所以相关系数为1-,故C 错误.的对于选项D ,由()()1P N M P N +=,可得()()1P N M P N =-,即()()()N P NM P P M =,即()()()N P NM P P M =,所以M 与N 相互独立,故D 正确;故选:ABD.10. 连接抛物线上任意四点组成的四边形可能是( )A. 平行四边形B. 梯形C. 有三条边相等的四边形D. 有一组对角相等的四边形【答案】BCD 【解析】【分析】根据题意作出相应的图形,结合抛物线的性质逐项分析判断.【详解】对于选项A :作两条平行线与抛物线均相交,根据抛物线的性质可知:截得的弦长一定不相等,所以所得的四边形不可能为平行四边形,故A 错误;对于选项C :任作一条直线垂直与抛物线的对称轴,交抛物线与,A B 两点,则OA OB =,再以A 圆心,OA 为半径作圆,该圆以抛物线必有一个异于坐标原点的交点C ,此时可得OA OB OC ==,符合题意,故C 正确;对于选项B :任作两条直线垂直与抛物线的对称轴,分别与交抛物线交于,A B 和,C D ,此时AB CD ≠,即ABCD 为梯形,故C 正确;对于选项D :如图,以AC 为直径作圆,与抛物线交于,,,A B C D ,此时90ABC ADC ∠=∠=︒,符合题意,故D 正确;故选:BCD.11 设函数32()231f x x ax =-+,则( )A. 当0a =时,直线1y =是曲线()y f x =的切线B. 若()f x 有三个不同的零点123,,x x x ,则12312x x x ⋅=-⋅C. 存在,a b ,使得x b =为曲线()y f x =的对称轴D. 当02ax ≠时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点【答案】ABD 【解析】【分析】根据曲线的切线、函数的零点、曲线的对称轴,直线和曲线的交点个数等知识对选项进行分析,从而确定正确答案.【详解】A 选项,当0a =时,()321f x x =+,令()260f x x ='=解得0x =,且()01f =,此时()f x 在0x =处的切线方程为10y -=,即1y =,正确.B 选项,()()322()231,666f x x ax f x x ax x x a '=-+=-=-,.要使()f x 有三个零点,则0a ≠,若32()231f x x ax =-+有三个不同的零点123,,x x x ,则()()()()1232f x x x x x x x =---()()32123122313123222x x x x x x x x x x x x x x x =-+++++-,通过对比系数可得1231231212x x x x x x -=⇒=-,正确.C 选项,若存在,a b ,使得x b =为曲线()y f x =的对称轴,则()()2f x f b x =-,即()()323223122321x ax b x a b x -+=---+,即3232232223162412212123x ax b b x bx x ab ab ax -=-+--+-,即()3222364330x bx b x b ab a b -+--+=,此方程不恒为零,所以不存在符合题意的,a b ,使得x b =为曲线()y f x =的对称轴,错误.D 选项,当02a x ≠时,()322()231,66f x x ax f x x ax =-+=-',则()322000000()231,66f x x ax f x x ax =-+=-',所以()f x 在0x x =处的切线方程为()()()3220000023166y x ax x ax x x --+=--,()()()2320000066231y x ax x x x ax =--+-+,由()()()232000003266231231y x ax x x x ax y x ax ⎧=--+-+⎪⎨=-+⎪⎩,消去y 得()()323220000023123166x ax x ax x ax x x -+=-++--①,由于()()()333322000002222x x x x x x x xx x -=-=-++,()()()222200003333ax ax a x x a x x x x -+=--=--+,所以①可化为()()()()()()2220000000023660x x x xx x a x x x x x ax x x -++--+---=,提公因式0x x -得()()()()22200000023660x x x xx x a x x x ax ⎡⎤-++-+--=⎣⎦,化简得()()()220000223430x x x x a x x ax ⎡⎤-+---=⎣⎦,进一步因式分解得()()2002430x x x x a -+-=,解得010234,2a x x x x -==,由于02a x ≠,所以020x a -¹,所以()0001203234630222x a a x x a x x x ----=-==≠,所以12x x ≠,所以当02a x ≠时,()f x 在0x x =处的切线与函数y =f (x )的图象有且仅有两个交点,正确.故选:ABD 【点睛】关键点点睛:D 选项的解答涉及到切线与曲线交点的个数,利用联立方程组和因式分解的方法,最终得出交点个数的结论,过程完整而严谨.三、填空题:本题共3小题,每小题5分,共15分.12. 已知n S 是等差数列{}n a 的前n 项和,若320S =,990S =,则6S =____________.【答案】50【解析】【分析】设{}n a 首项为1a ,公差为d ,后由等差数列求和公式可得答案.【详解】设{}n a 首项为1a ,公差为d ,由题,则111503320993690109a a d a d d ⎧=⎪+=⎧⎪⇒⎨⎨+=⎩⎪=⎪⎩.则6161550S a d =+=.故答案为:5013. 已知函数()()sin ,0,2π2cos x f x x x =∈+,写出函数()f x 的单调递减区间____________.【答案】2π4π33⎛⎫⎪⎝⎭,【解析】【分析】利用导数判断函数的单调性即可.【详解】()()()()222cos 2cos sin 2cos 12cos 2cos x x xx f x x x +++'==++,()0,2πx ∈,令()()22cos 102cos x f x x +'==+,即2cos 10x +=,解得2π3x =或4π3x =.当2π0,3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则()f x 在2π0,3⎛⎫ ⎪⎝⎭上单调递增;当2π4π,33x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则()f x 在2π4π,33⎛⎫ ⎪⎝⎭上单调递减;当4π,2π3x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则()f x 在4π,2π3⎛⎫ ⎪⎝⎭上单调递增.综上可知,函数()f x 的单调递减区间为2π4π,33⎛⎫⎪⎝⎭.故答案为:2π4π,33⎛⎫ ⎪⎝⎭.14. 掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为____________;(2)恰好得n 分的概率为____________.(用与n 有关的式子作答)【答案】 ①. 1327 ②. 13425153n -⎛⎫-⨯- ⎪⎝⎭【解析】【分析】因为一次得2分,另一次得1分或三次的1分时恰好得3分,进而利用独立重复试验的概率可求(1);令n P 表示“恰好得n 分”的概率,不出现n 分的唯一情况是得到1n -分以后再掷出一次不小于3的情况,则有1213n n P P --=,进而利用构造等比数列可求(2).【详解】(1)掷一个质地均匀的骰子,向上的点数不小于3的概率4263=,掷一个质地均匀的骰子,向上的点数小于3的概率2163=.因为一次得2分,另一次得1分或三次得1分时恰好得3分,所以恰好得3分的概率等于21023********C +C ==3332727+⎛⎫⋅⨯⋅ ⎪⎝⎭.(2)令n P 表示“恰好得n 分”的概率,不出现n 分的唯一情况是得到1n -分以后再掷出一次不小于3的情况,因为“不出现n 分”的概率是1n P -,所以“恰好得到1n -分”的概率是1n P -.因为“掷一次得2分”的概率是23,所以有1213n n P P --=,即1213n n P P -=-+,则构造等比数列{}n P λ+,设()123n n P P λλ-=-++,即13532n n P P λ--=-,则513λ-=,35λ=-,所以1323535n n P P -⎛⎫-=-- ⎪⎝⎭,又113P =,1313453515P -=-=-,所以35n P ⎧⎫-⎨⎬⎩⎭是首项为415-,公比为23-的等比数列,即13425153n n P -⎛⎫-=-⨯- ⎪⎝⎭,13425153n n P -⎛⎫=-⨯- ⎪⎝⎭.故恰好得n 分的概率为13425153n -⎛⎫-⨯- ⎪⎝⎭.故答案为:(1)1327;(2)13425153n -⎛⎫-⨯- ⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知ABC ∆的面积为3,且满足0AB AC ≤⋅≤ 设AB 和AC 的夹角为θ,(1)求θ的取值范围;(2)求函数()2πcos sin 3f θθθθ⎛⎫=⋅+- ⎪⎝⎭的值域.【答案】(1)ππ,62⎡⎤⎢⎥⎣⎦ (2)10,2⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据题意由三角形面积公式可得6cos 0sin θθ≤≤,继而可得tan θ≥或π2θ=,结合θ的范围即可求解;(2)利用和差公式、降幂公式、倍角公式及辅助角公式化简可得1π()sin 223f θθ⎛⎫=- ⎪⎝⎭,由(1)所求的θ的范围可得π23θ-的范围,继而即可求得值域.小问1详解】由题1sin 32ABC S bc θ∆==,【可得6sin bc θ=,又0cos AB AC bc θ≤⋅=≤ ,所以6cos 0sin θθ≤≤得到tan θ≥或π2θ=,因为()0,πθ∈,所以ππ,62θ⎡⎤∈⎢⎥⎣⎦.【小问2详解】()2πcos sin 3f θθθθ⎛⎫=⋅++ ⎪⎝⎭21cos (sin cos 2θθθθ=⋅+21sin 24θθ=+11cos 2sin 242θθ+=-1πsin 223θ⎛⎫=- ⎪⎝⎭,因为ππ,62θ⎡⎤∈⎢⎥⎣⎦,故π2π20,33θ⎡⎤-∈⎢⎥⎣⎦,故可得()10,2f θ⎡⎤∈⎢⎥⎣⎦.16. 如图,已知四棱锥P ABCD -,PB AD ⊥,侧面PAD 为正三角形,底面ABCD 是边长为4的菱形,侧面PAD 与底面ABCD 所成的二面角为120︒.(1)求四棱锥P ABCD -的体积;(2)求二面角A PB C --的正弦值.【答案】(1)(2【解析】【分析】(1)作出四棱锥P ABCD -的高,并计算出高的长度,进而计算出四棱锥P ABCD -的体积.(2)建立空间直角坐标系,利用向量法来求得二面角A PB C --的余弦值,进而计算出正弦值.【小问1详解】过点P 作PO 垂直于平面ABCD ,垂足O ,连接BO 交AD 于E ,连接PE ,因为AD ⊂平面ABCD ,PO AD ⊥,又PB AD ⊥,又,,PO PB P PO PB =⊂ 平面POB ,所以AD ⊥平面POB ,因为,PE BE ⊂平面POB ,所以AD PE ⊥,AD BE ⊥,又PA PD =,所以E 为AD 得中点,所以4BD BA ==,因为侧面PAD 与底面ABCD 所成的二面角为120︒,即有120PEB ∠=︒,所以60PEO ∠=︒,因为侧面PAD 为正三角形,所以4sin 60PE =⋅︒=sin 603PO PE =⋅︒==,所以1144333P ABCD ABCD V S PO -=⋅⋅=⋅⋅=.【小问2详解】在平面ABCD 内过点O 作OB 的垂线Ox ,依题可得,,OP OB Ox两两垂直,为以,,OP OB Ox 为z 轴,y 轴,x 轴建立空间直角坐标系,可得()A ,()0,0,3P,()B,()C -,取PB 得中点为N,则32N ⎛⎫ ⎪ ⎪⎝⎭,因为AP AB =,所以AN PB ⊥,由(1)AD ⊥平面POB ,//BC AD ,知⊥BC 平面POB ,PB ⊂平面POB ,所以BC PB ⊥,可得,BC NA 所成角即为二面角A PB C --的平面角,记为θ,求得32,2NA ⎛⎫=- ⎪ ⎪⎝⎭,()4,0,0BC =-,则cos ,NA BC NA BC NA BC ⋅===⋅则sin θ==17. 已知函数()()2e ln 0x a f x a a x-=+>(1)当e a =时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若不等式()2f x ≥恒成立,求a 的取值范围.【答案】(1)2y =(2)ea ≥【解析】【分析】(1)根据导数的几何意义,根据导数求切线的斜率,再代入点斜式方程,即可求解;(2)首先根据指对公式,变形不等式为e ln a +x−2+ln a +x−2≥ln x +e ln x ,x >0,再构造函数()e x g x x =+,结合函数的单调性,转化为不等式ln 2ln a x x +-≥恒成立,再利用参变分离,转化为函数最值问题,即可求解.【小问1详解】当e a =时,()1e e ln x f x x -=+,()01e ln e 2f =+=,()()11e ,10x f x f x-=-'=',所求切线方程为:20(1)y x -=-,即2y =;【小问2详解】()2f x ≥转化为ln 2e ln ln 2a x a x +-+-≥,可得e ln a +x−2+ln a +x−2≥ln x +e ln x ,x >0,构造函数()e x g x x =+,易得()g x 在R 单调递增,所以有()(ln 2)ln g a x g x +-≥,由()g x 在R 单调递增,故可得ln 2ln a x x +-≥,即有ln ln 2a x x ≥-+在()0,∞+恒成立,令()ln 2h x x x =-+,()110h x x-'==,得到1x =,可得()0,1x ∈时,ℎ′(x )>0;()1,x ∞∈+时,()0h x '<,所以ℎ(x )在1x =时取最大值,所以()ln 11a h ≥=,得到e a ≥.18. 已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为23,且经过点52,3A ⎛⎫ ⎪⎝⎭(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由.【答案】(1)22195x y += (2)9680x y --=(3)不存在,理由见解析【解析】【分析】(1)根据椭圆经过的点的坐标以及离心率解方程组可求得椭圆E 的方程;(2)思路一:利用角平分线上的点的性质,由点到直线距离公式整理可得结论;思路二:求得椭圆在点A 处的切线方程,再由椭圆的光学性质可得平分线所在直线方程;(3)思路一:假设存在关于直线l 对称的相异的两点,联立直线与椭圆方程可得线段BC 中点52,3M ⎛⎫ ⎪⎝⎭与点A 重合,假设不成立;思路二:利用点差法求出65OM k =,联立直线方程可得点52,3M ⎛⎫ ⎪⎝⎭与点A 重合,不合题意,可得结论.【小问1详解】椭圆E 经过点52,3A ⎛⎫ ⎪⎝⎭,23e =可得222222549123a b a b c c e a ⎧⎪+=⎪⎪⎪=+⎨⎪⎪==⎪⎪⎩,解得32a b c =⎧⎪=⎨⎪=⎩因此可得椭圆E 的方程为22195x y +=;【小问2详解】由(1)可知,1(2,0)F -,2(2,0)F 思路一:由题意可知1:512100AF l x y -+=,2:2AF l x =,如下图所示:设角平分线上任意一点为P (x,y ),则51210213x y x -+=-得9680x y --=或2390x y +-=又易知其斜率为正,∴12F AF ∠的角平分线所在直线为9680x y --=思路二:椭圆在点52,3A ⎛⎫ ⎪⎝⎭处的切线方程为2319x y +=,23k =-切根据椭圆的光学性质,12F AF ∠的角平分线所在直线l 的斜率为32l k =,所以12F AF ∠的角平分线所在直线34:23l y x =-,即9680x y --=【小问3详解】思路一:假设存在关于直线l 对称的相异两点B (x 1,y 1),C (x 2,y 2),设2:3BC l y x m =-+,联立2219523x y y x m ⎧+=⎪⎪⎨⎪=-+⎪⎩可得229129450x mx m -+-=,∴线段BC 中点为25,39m m M ⎛⎫⎪⎝⎭在12F AF ∠的角平分线上,即106803m m --=,解得3m =;因此52,3M ⎛⎫ ⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件的相异的两点.思路二:假设存在关于直线l 对称的相异两点B (x 1,y 1),C (x 2,y 2),线段BC 中点()00,M x y ,由点差法可得22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,即22221212095x x y y --+=;∴0121212120552993BC x y y x x k x x y y y -+==-=-=--+,因此0065OM y k x ==,联立:96806:5AM OM l x y l y x --=⎧⎪⎨=⎪⎩可得52,3M ⎛⎫ ⎪⎝⎭与点A 重合,舍去,故不存在满足题设条件相异的两点.19. 设()f x 使定义在区间(1,)+∞上的函数,其导函数为()f x '.如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()h x >0,使得()()()21f x h x x ax '=-+,则称函数()f x 具有性质()P a .的(1)设函数()f x 2ln (1)1b x x x +=+>+,其中b 为实数① 求证:函数()f x 具有性质()P b ;② 讨论函数()f x 的单调性;(2)已知函数()g x 具有性质(2)P ,给定1212,(1,),,x x x x ∈+∞<设m 为正实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1,1αβ>>,若12()()()()g g g x g x αβ-<-,求m 的取值范围.【答案】(1)①证明见解析;②答案见解析(2)01m <<【解析】【分析】(1)①对()f x 求导,可得ℎ(x)=1x (x +1)2>0恒成立,即可函数()f x 具有性质()P b ;②设u (x )=x 2−bx +1(x >1),f ′(x )与()u x 符号相等,对b 讨论,可知f ′(x )符号,即可得出函数()f x 的单调区间;(2)对()g x 求导,()()()()()22211g x h x x x h x x ='=-+-,分析可知()g x '其在(1,)+∞恒成立,对m 讨论,再根据αβ,与12,x x 大关系进行讨论,验证是否满足条件,可求解m 的取值范围.【小问1详解】① ()()()()222121111b f x x bx x x x x +=-=-+'++,所以1x >,ℎ(x )=1x (x +1)2>0恒成立,则函数()f x 具有性质()P b ;② 设u (x )=x 2−bx +1(x >1),(i) 当0b -≥即0b ≤时,()0u x >,()'0f x >,故此时()f x 在区间(1,)+∞上递增;(ii) 当0b >时当240b ∆=-≤即02b <≤时,()0u x >,()'0f x >,故此时()f x 在区间(1,)+∞上递增;当240b ∆=->即2b >时,1211x x ==<=>,,所以x ⎛∈ ⎝时,()0u x <,()0f x '<,此时()f x 在⎛ ⎝上递减;x ∞⎫∈+⎪⎪⎭时,()0u x >,()0f x '<,此时()f x 在∞⎫+⎪⎪⎭上递增.综上所述,当2b ≤时,()f x 在(1,)+∞上递增;当2b >时,()f x 在⎛ ⎝上递减,在∞⎫+⎪⎪⎭上递增.【小问2详解】由题意,()()()()()22211g x h x x x h x x ='=-+-,又()h x 对任意的,(1)x ∈+∞都有()0h x >,所以对任意的,(1)x ∈+∞都有()0g x '>,()g x 在(1,)+∞上递增. 所以12(1)mx m x α=+-,12(1)m x mx β=-+,因为()()1212,21x x m x x αβαβ+=+-=--先考虑12x x αβ-<-的情况即()()121221m x x x x --<-,得01m <<,此时1122(1)x mx m x x α<=+-<,1122(1)x m x mx x β<=-+<所以1212()()(),()()()g x g g x g x g g x αβ<<<<所以12()()()()g g g x g x αβ-<-满足题意当1m ≥时,11112(1)(1)mx m x mx m x x α--≤==++,12222(1)(1)m x mx m x mx x β=--+≥=+,所以12x x αβ≤<≤所以12()()()()g g x g x g αβ≤<≤,则12()()()()g g g x g x αβ-≥-,不满足题意,舍去综上所述,01m <<。
高三数学月测试题
一、选择题〔06125'=⨯'〕
1、 全集为R ,集合}0lg {>=x x M ,=N }11
|
{>x
x ,那么 A .N M ⊃ B .N M ⊂ C .Φ=N M D .-
=R N M 2、函数)21(cos 2
x y -=的导数='y
A .)42sin(x --
B .)42sin(x -
C .)21cos(2x -
D .)42sin(2x -
3、=-+→x
x x 1
1lim
A .1
B .
21
C . 0
D .1- 4、甲射击命中目标的概率是21,乙射击命中目标的概率是31,丙射击命中目标的概率是4
1
.
现在三人同时射击目标,命中目标的概率为 A .
43 B . 32 C .54 D .10
7
5、函数mx x f 2
cos 23)(-=的最小正周期为π,且)(log 2m -有意义,那么m 的值是
A .1
B . 1-
C . 2
D .2- 6、把函数)3
2sin(π
+
=x y 的图象想右平移)0(>p p 个单位所得图象关于y 轴对称,那么p 的最小值为
A .3π
B . 32π
C . 65π
D .6
π
7、0≠ab ,那么1>b a 是1<a
b
的
A .充分不必要条件
B .充要条件
C .必要不充分条件
D .不充分不必要条件
8、现有198根相同的圆钢,把它们堆成三角形垛,要使剩下的圆钢尽可能少,那么剩余的圆钢数为
A .7根
B .8根
C .9根
D .10根 9、等比数列}{n a 的公比为)1(<q q ,假设k n k k k n a a a a 2)(lim 21=++++++∞
→ ,那么=q
A .
31 B . 31- C .32 D .3
2- 10、x
x x f 2
2log 14log )(+
=的定义域为)1,0(,那么)(x f 有
A .最小值222+
B .最小值222-
C .最大值222+
D .最大值222-
11、定义在R 上的函数)(x f y =在)2,(-∞上是增函数,且函数)2(+=x f y 的图象的对称轴是0=x ,那么
A .)3()1(f f <-
B .)3()0(f f >
C .)3()1(-=-f f
D .)3()2(f f < 12、一批物资要用11辆汽车从甲地运往360公里外的乙地,假设车速为v 公里每小时,且任意两辆之间的距离不小于2
)10
(
v 公里,那么运完这批物资至少需要 A .10小时 B .11小时 C .12小时 D .13小时
二、填空题〔〕 13、αα,53sin =
为第二象限的角,那么)4
2tan(π
α-等于________ 14、曲线3
3x x y -=在点)2,2(-A 处的切线方程是________ 15、离散型随机变量ξ的分布列为:
那么________=ξE
16、等差数列}{n a 的公差0≠d ,前n 项和为n S ,又621,,a a a 成等比数列且3lim 2
=∞→n S n
n 那
么此数列的通项公式是______=n a 三、解做题〔6题,共74分〕 17、〔21'〕函数x x x f 2cos 1)4
tan()(-
+
=π
,〔1〕
求)(x f 的最小正周期;〔2〕假设2
1
cot =x ,求)(x f 的值.
18、〔21'〕函数x
a
x x f +
=2)(,〔1〕当1=a 时,求)(x f 的极值;〔2〕假设)(x f 在区间),2(+∞内为增函数,求a 的取值范围.
19、〔21'〕数列}{n a 的前n 项和为12-=n
n S ,〔1〕求证数列}{n a 是等比数列;
〔2〕解关于正整数n 的不等式n n S a a a a 82
232221<++++ .
20、〔21'〕投掷2枚骰子,当至少有一个“1点〞或一个“2点〞出现时,就说这次试验成功,否那么称试验失败,求在20次试验中成功次数η的期望与方差.
21、〔41'〕如图ABCD 是一块边长为m 100的正方形地皮,其中AST 是一块半径为m 80 的扇形小山,其余局部都是平地,一开发商想在平地上建一个矩形停车场,使矩形的一个顶点
P 在弧ST 上,相邻两边CR CQ ,落在正方形的边CD BC ,上,设θ=∠TAP ,矩形停车场
PQCR 的面积为)(θS .
C
D
T
(1) 求)(θS 的表达式; (2) 求)(θS 的最大值,最小值.
22、〔21'〕二次函数)0()(2
>++=a c bx ax x f ,对于任意R x x ∈21,且21x x <都有
)()(21x f x f ≠,求证:方程)()()(221x f x f x f +=有不等的两实根,且必有一实根属
于区间),(21x x .
参考答案:
一、选择题:1-5 CDBAB 6-10 DABCD 11-12 AC 二、填空题:13、21; 14、169+-=x y ; 15、3
1
-; 16、46-=n a n 三、解做题:
17、x x f 2tan )(=
∴ 〔1〕 2
π
=
T ; 〔2〕3
4
)(-
=x f 18、〔1〕22-=极大f 22=极小f 〔2〕4≤a 19、〔1〕易;〔2〕{1,2,3,4} 20、95=
p 9100=ηE 81
400
=ηD 21、〔1〕θθθθθcos sin 6400)cos (sin 800010000)(++-=S )2
0(π
θ≤≤
〔2〕令18002000==最小最大,S S
22、 证实分两步:〔1〕证有两个不等的实根,此时0>∆即可;〔2〕证必有一根在),(21x x
内,只须令)()()(2)(21x f x f x f x g --=,证0)()(21<⋅x g x g 即可.。