化学分析样品制备
- 格式:docx
- 大小:37.13 KB
- 文档页数:2
龙源期刊网
化学分析样品的加工制备
作者:许兰张永利
来源:《科技创新导报》2012年第08期
摘要:化学分析样品是为了测定岩石的化学成份及其含量而采取的样品,通过样品的化学分析,确定矿石中主要有用组分及伴生有益、有害组分的含量,用以确定矿体与围岩的边界,圈定矿体,为计算资源储量提供资料依据。
取得准确的样品化学分析结果,规范的样品加工制备是保证化学分析结果的质量关键。
关键词:化学分析样品加工制备质量关键
中图分类号:TG11文献标识码:A 文章编号:1674-098X(2012)03(b)-0000-00。
54、分析样品的制备和制备样品时的注意事项
分析样品的制备和制备样品时的注意事项
(l)粒状样品的破碎与缩分:
将取回的原燃材料,熟料,大颗粒的应先经过颚式破碎机,破碎至2~3毫米后(如果一破粒度大,可进行二级破碎)用多槽形分样器或四分法,缩分至50克左右,再用圆盘粉碎机磨细至全部通过毫米方孔筛,充分均匀混合后,保存于带盖的磨口瓶中或样品袋内(熟料应存于带盖的磨口瓶中)待用。
(2)粉状样品的缩分:
粉状样品经充分搅拌混合均匀,按多点法或四分法多次缩分;取出所需的分析样品,保存待用。
(3)制备样品时的注意事项:
①在破碎样品前,每一件设备,用具都要用刷子剧净(最好有专用设备),然后
用欲处理的样品投刷1~2次后就可以进行正常工作。
②尽量防止小块的样品和粉末飞溅。
如果偶尔跳出大颗粒,仍须拣回继续粉碎或
粉磨。
③细磨时一定使全部样品通过毫米的方孔筛,保证分析结果对原样的代表
性。
④样品制备好后,应保存在磨口瓶中,必要时用胶封好,以免化学组成及水分发
生变化,同时应在样品瓶上贴上标签,编号和试样名称,产地,送样单位及取
样日期,检验项目等。
相关文档:
•
•
•
•
•
•
•
•
•
•
更多相关文档请访问:。
书山有路勤为径,学海无涯苦作舟
化学分析样品制备程序
化学分析样品的加工粒度因矿种的不同而不同,如:硅酸盐要求160-200 目、黄铁矿只要求100-120 目、光栅光谱分析样品要求为200 目。
如样品矿种不明,一般要求至160-200 目。
分析试样的制备原则上可分为三个阶段:即粗碎、中碎和细碎。
每个阶段又包括破碎、过筛、混匀和缩分四道工序。
根据实验室样品的粒度和样品质量的情况,试样制备过程中应留存相应的副样。
样品的烘样温度和最终破碎粒度见表1-3。
一般岩石矿物分析试样的制备流程见图1-1。
1.破碎
破碎可分为粗碎、中碎、细碎和粉碎4 个阶段。
根据实验室样品的颗粒大小、破碎的难易程度,可采用人工或机械的方法逐步破碎,直至达到规定的粒度。
粗碎:将最大颗粒直径碎至25 毫米
中碎:将25 毫米碎至5 毫米
细碎:将5 毫米碎至0.15 毫米
粉碎:将0.15 毫米粉磨至0.075 毫米以下
破碎的目的,是为了把试样破碎至所要求的细度,以便于试样的缩分和在分析时有利于试样的分解。
破碎一般采用机械(锷式粗碎机、锷式轧碎机、圆盘式细碎机或球磨机等)破碎,或手工破碎(如用大锤或手锤在平滑的锰钢板上将物料击碎,以及使用玛瑙研钵等)。
在破碎时要注意破碎设备的清洁和磨损,以免引入杂质,同时要防止颗粒跳出,粉末飞散,也不可随意丢弃难破碎的任何颗粒。
书山有路勤为径,学海无涯苦作舟化学分析样品制备化学分析试样主要用来确定所取物料中某些元素或成分的含量,多用于原矿、精矿、尾矿或生产过程中其它产品的分析,以便检查数、质量指标并编制金属平衡表,它是选矿试验和生产检查中经常要取的试样。
在选矿厂取样中,所取原矿为干的粗物料,将其加工制备成化学试样,具体过程是:混匀缩分研磨过筛混匀缩分装袋(分正样和副样)送化验分析。
选矿产品一般为湿浆状,将其加工制备成化学试样,具体过程是:压滤烘干混匀缩分研磨过筛混匀缩分装袋(分正样和副样)送化验分析。
供化学分析用的试样,粒度要细。
按规定精矿过180 目以上筛子,原矿和尾矿过160 目以上筛子。
测定亚铁的样品,一般破碎至过100 目筛。
过筛后试料的混匀和缩分,一般多在胶布或油、漆布上用滚移法进行;或者在研磨板上用移锥法进行。
缩分多用薄圆盘四分法,取对角线的两份作为正样,其余两份为副样;方格法可一批连续分出多份小份试样,也常用于分析试样的缩取操作。
样品装袋前,在样袋上把试样名称、编号、班次、日期、要求分析元素的内容等一一写明,样品加工者在样袋上签名。
化学分析试样的质量一般为10~200g,最多不过几百克。
通常分析原、精、尾矿样品位时,单一元素要求的样品质量为15~20g;两种以上的元素为25~40g;供物相分析用的样品为50 g;供多元素分析的样品,视分析元素数目的多少而定,一般要在100g 以上。
化学分析试样的粒度应为-100μm 或-160μm。
最好的方法是由粒度- 250μm 的缩分大样中(最小质量500g)制成-100μm、不少于50g 的化学分析试样。
如果使用一台适当的研磨机,可从粒度比-250μm 粗的样品中,直接制备成-100μm 或-160μm 的化学分析试样。
一般试样粒度为-。
第二章定量分析的一般步骤一、分析试样的采集与制备1.试样的采集与制备:是指从大批物料中采取少量的样本作为原始试样,然后再制备成供分析用的最终式样。
采样的基本原则:均匀、合理、具有代表性试样的形态:气体、液体、固体2.取样方法:气体样品:集气法(eg.工厂废气中有毒气体的分析)、富集法(eg.大气污染物的测定、室内甲醛的含量测定)固体样品:抽样样品法(“四角+中央”)、圆锥四分法液体样品:混合均匀后按照上中下分层取样二、试样的分解(预处理)1.分解试样的原则:①式样分解必须完全,处理后的溶液中不得残留原试样的细屑或粉末②式样分解过程中待测组分不应挥发③不应引入待测组分和干扰物质2.分解方法:溶解法、熔融法、消解法(1)溶解法:水:例(NH4)2SO4中含氮量的测定酸:HCl、H2SO4、HNO3、HF等及混合酸分解金属、合金、矿石等碱:例:NaOH溶解铝合金分析Fe、Mn、Ni含量有机溶剂:相似相溶原理(2)熔融法:酸溶:K2S2O7、KHSO4溶解氧化物矿石碱溶:Na2CO3、NaOH、Na2O2溶解酸性矿物质(3) 消解法——测定有机物中的无机元素湿法消解:通常用硝酸和硫酸混合物与试样一起置于克氏烧瓶中,一定温度下分解,属于氧化分解法常用试剂:HNO3、H2SO4、HClO4、H2O2和KMnO4等。
干法灰化:待测物质加热或燃烧后灰化、分解,余留残渣用适当的溶剂溶解。
适用范围:有机物和生物试样中金属元素、硫、卤素等无机元素。
常用方法:坩埚灰化法、氧瓶燃烧法和低温灰化法。
三、常用的分离、富集方法1. 分离:让试样中的各组分互相分开的过程(纯化)分离的作用:提高方法的选择性、提高方法的灵敏度、准确度分离方法:沉淀分离、萃取分离、挥发分离、色谱分离2. 富集:待测组分含量低于测定方法的检测限时,在分离时将其浓缩使其能被测定富集方法:萃取富集、吸附富集、共沉淀富集四、测定方法的选择分析对象(样品性质、组分含量、干扰情况)→分析方法(准确度、灵敏度、选择性、适用范围)→用户(用户对分析结果的要求和对分析费用的承受度)→成本(时间、人力、设备、消耗品)五、分析结果的计算与评价1. 分析结果的计算及评价的目的:判断分析结果的准确度、灵敏度、选择性等是否达到要求2. 含量计算方法:根据分析过程中有关反应的化学计量关系及分析测量所得数据进行计算3. 测定结果及误差分布情况的分析:可采取统计学方法进行评价,如平均值、相对标准偏差、置信度、显著性检查等。
ftir光谱样品制备
傅里叶变换红外光谱(FTIR)是一种用于分析样品化学结构的技术,通过检测样品吸收的红外光的频率和强度来确定分子的振动模式和官能团。
在进行FTIR 光谱分析之前,需要对样品进行适当的制备,以确保获得准确可靠的光谱数据。
以下是一般的FTIR 光谱样品制备步骤:
1. 选择合适的样品:FTIR 光谱适用于分析固体、液体和气体样品。
确保选择的样品适合于光谱分析,并符合仪器的要求。
2. 确保样品的纯度:在进行光谱分析之前,确保样品是纯净的,没有杂质或污染物。
如果样品中存在杂质,可能会干扰光谱结果的解释。
3. 样品的尺寸和形状:对于固体样品,通常需要将其研磨成细粉或切成小块,以确保足够的表面积与红外光相互作用。
对于液体样品,可以使用光谱池或液体样品支架。
4. 样品的浓度:根据样品的性质和分析需求,选择适当的浓度进行测量。
对于高浓度样品,可能需要进行稀释以避免光谱的饱和。
5. 干燥处理:如果样品含有水分,需要进行干燥处理以去除水分对光谱的干扰。
可以使用干燥剂或真空干燥器进行干燥。
6. 均匀化处理:确保样品在光谱测量前是均匀的。
对于固体样品,可以将其混合或研磨以获得均匀的分布。
7. 背景测量:在进行样品测量之前,通常需要进行背景测量。
将空的光谱池或无样品的支架放入仪器中,进行背景光谱的采集。
具体的样品制备方法可能因样品的性质和分析需求而有所不同。
在进行FTIR 光谱分析之前,最好参考相关的实验手册或咨询专业人士,以获得针对特定样品的最佳制备方法。
掌握化学技术实验中样品制备与提取技巧化学技术实验中样品的制备与提取技巧是进行准确实验分析的基础。
本文将从样品的选择、制备与提取技巧、注意事项等方面展开讨论。
一、样品的选择在进行化学技术实验前,首先需要明确要研究的目标物质是什么。
根据目标物质的性质,选择合适的样品进行制备。
样品可以是固体、液体或气体。
如果选择的是固体样品,需要将其研磨成细粉末,以增加接触面积,便于反应进行。
液体样品可以直接用量筒或移液管进行提取,而气体样品则需要使用气体收集器。
二、样品的制备与提取技巧1. 固体样品的制备与提取对于固体样品,首先需要将其研磨成细粉末,使用研磨杵和研钵进行研磨。
研磨后的固体样品可以通过溶解、浸泡、萃取等方法进行提取。
溶解是将固体样品溶解于适当的溶剂中,制备溶液。
浸泡是将固体样品直接浸泡在溶剂中,待一定时间后收集溶液。
萃取是将固体样品与萃取剂混合,通过萃取剂与目标物质之间的相互作用将目标物质提取出来。
2. 液体样品的提取对于液体样品,可以使用离心机进行离心分离、挥发物吹扫、萃取等方法进行提取。
离心分离是利用样品中各组分的密度差异,通过离心作用将它们分离开来。
挥发物吹扫是将液体样品放入挥发性溶剂中,然后利用气流将目标物质吹扫到收集器中。
萃取是将液体样品与萃取剂混合,通过两者之间的相互作用将目标物质提取出来。
3. 气体样品的提取对于气体样品,可以使用吸附剂、膜分离等方法进行提取。
吸附剂可以选择有选择性吸附目标气体的材料,将气体吸附到材料表面。
膜分离是通过选择性透过性较好的膜,将目标气体从混合气体中分离出来。
三、注意事项在进行样品制备与提取实验时,需要注意以下事项:1. 样品的处理应该避免受到外界环境的干扰,如尘埃、湿气等。
尽量在无尘、干燥的环境下进行实验。
2. 样品的制备过程中应该避免交叉污染,使用干净的容器和仪器,严格控制实验条件。
3. 在进行固体样品研磨时,应该控制研磨的时间和力度,避免过度研磨造成样品的损失和污染。
化学分子结构分析方法化学分子结构分析是化学学科中非常关键和基本的一个领域。
通过分析化学分子的基本结构,可以更深入地研究化学反应和化学物质的特性,对于新材料的开发以及医药业也具有重要的应用价值。
本文将着重介绍化学分子结构分析的方法。
一、元素分析法元素分析法是一种通过分析元素的含量来确定分子结构的方法。
这种方法通常用于有机化合物的结构分析,可以确定化合物中各种元素的含量,并推断化合物的基本结构。
元素分析法的原理是利用分析化学中的定量分析方法,为各种元素设定准确的定量方法,从而确定样品中的各种元素的含量。
基于这些数据,可以进一步确定样品的分子式和分子结构。
二、紫外-可见分光光度法紫外-可见分光光度法是一种测定化合物的电子能级和电磁波长的方法,常用于分析含有共轭体系的物质的分子结构。
这种方法可以通过分析物质的分子结构和化学键的能量来确定物质的吸收和反射光谱,从而得到物质的荧光和光谱数据。
紫外-可见分光光度法的原理是利用物质对于某些波长范围内的光的吸收特性来确定物质的分子结构和基本特性。
这种方法可以通过分析物质的吸收光谱和反射光谱来推断物质的分子结构。
三、样品制备和NMR分析法样品制备和NMR分析法通常用于分析含有核磁共振信号的复杂化学物质的分子结构。
这种方法可以通过NMR技术对样品进行分析,从而确定样品的分子结构和基本特性。
样品制备和NMR分析法的原理是制备样品,并将其添加到核磁共振谱仪器中进行分析。
这种方法通常涉及到样品的制备、样品的处理、样品的转换和样品的输入到核磁共振谱仪器中等多个步骤。
四、拉曼分析法拉曼分析法是一种分析物质分子的振动能量的方法,可以通过测量分子的拉曼散射信号来确定分子的结构和基本特性。
这种方法通常用于分析含有非常小的化学分子的化学物质的结构。
拉曼分析法的原理是利用光密度和拉曼散射信号之间的差异来确定物质的分子结构。
这种方法可以通过分析样品的拉曼散射信号和分子振动数据来推断物质的分子结构。
气相色谱法的操作步骤和分离原理气相色谱法(Gas Chromatography, GC)是一种重要的分析技术,广泛应用于化学、医学、环保等领域。
它通过样品在气体载气流动下的分离,利用化学物质在固定相上吸附的不同特性,实现对混合物中各组分的定性和定量分析。
下面将介绍气相色谱法的操作步骤和分离原理。
一、气相色谱法的操作步骤气相色谱法的基本操作步骤包括样品制备、进样、分离、检测和数据处理等几个环节。
1. 样品制备首先,需要将待分析的样品制备成可气化的状态。
对于固体或液体样品,常用的制备方法包括溶解、萃取和衍生化。
将样品溶解于适宜的溶剂中,或者利用萃取剂将目标化合物从复杂基质中提取出来。
对于一些高沸点、不易挥发的化合物,可以通过衍生化反应,将其转化为易于挥发的衍生物。
2. 进样样品制备完成后,需要将样品进样到气相色谱仪中进行分析。
气相色谱仪通常采用自动进样装置,将样品定量地引入分析系统。
常用的进样方式包括气态进样、液态进样和固态进样。
3. 分离分离是气相色谱法的核心步骤。
分离是基于样品中各组分在固定相上吸附的不同特性进行的。
气相色谱仪中的色谱柱是关键设备,其中填充有固定相材料。
当样品进入色谱柱后,不同组分在固定相上的吸附程度不同,由此实现了分离。
4. 检测气相色谱法的检测方式多样,常见的检测器包括火焰离子化检测器(FID)、热导检测器(TCD)、质谱检测器(MS)等。
这些检测器通过检测色谱柱出口的化合物,给出样品中各组分的信号,从而实现定性和定量分析。
5. 数据处理最后,根据检测器给出的信号,进行数据处理。
常用的数据处理方法包括峰面积计算、质谱图解析等。
通过与标准品比对,可以得到样品中目标化合物的相对含量。
二、气相色谱法的分离原理气相色谱法的分离原理基于固定相和移动相之间的相互作用。
色谱柱中的固定相通常是高表面活性的吸附剂,如硅胶、活性炭等。
移动相是气体载气,常用的有氦气、氮气等。
在样品进入色谱柱后,各组分与固定相发生相互作用。
化学分析样品制备
化学分析是一种常见的实验方法,用于确定物质的成分和性质。
在进行化学分析前,我们需要制备合适的样品,以确保分析结果准确可靠。
本文将介绍化学分析样品制备的一些常用方法。
一、固体样品制备
1. 研磨法:将固体样品研磨成细粉末,以增加样品与试剂的接触面积,加快反应速率。
可使用研钵、研钉等工具进行研磨,注意避免样品受潮。
2. 熔融法:对于难熔的固体样品,可采用熔融法。
将样品加热至熔点,使其变为液体状态,然后冷却后得到固体样品。
这种方法适用于高熔点的样品。
3. 气相法:某些固体样品在常温下难以分析,可通过气相法将其转化为气体样品。
如将固体样品加热至升华点,将其直接转化为气体状态。
二、液体样品制备
1. 溶液制备:将固体样品加入溶剂中,搅拌或加热溶解,得到溶液样品。
溶解时应控制溶剂的用量和浓度,避免过浓或过稀的溶液对分析结果产生影响。
2. 蒸发法:对于含溶质浓度较低的液体样品,可采用蒸发法进行浓缩。
将样品加热,使溶剂蒸发,留下溶质浓缩的样品。
注意控制温度,避免样品的损失或分解。
三、气体样品制备
1. 气体采样:直接收集空气中的气体样品。
可使用玻璃净化棉、活
性炭等材料吸附空气中的气体,然后进行分析。
2. 气相法:将液体或固体样品加热至升华点,使其直接转化为气体
状态。
或将溶液样品加入适当的容器中,通过加热或通入惰性气体使
其挥发,得到气体样品。
四、有机样品制备
1. 溶剂提取法:将固体样品与适当的溶剂混合,振荡或加热搅拌,
使样品中的有机成分溶解于溶剂中,然后通过滤液或离心分离。
2. 蒸馏法:对于液体样品中含有不同挥发性的有机化合物,可采用
蒸馏法进行分离。
通过加热使样品挥发,并在不同温度下收集不同组分。
综上所述,化学分析样品制备是确保分析结果准确可靠的关键步骤
之一。
根据不同的样品性质和分析要求,选择合适的制备方法非常重要。
在制备过程中,需要注意操作规范,控制温度、溶剂用量等因素,以保证样品的质量和分析结果的可靠性。
通过合理选择和操作,我们
能够得到满足分析需要的样品,为后续的化学分析工作打下坚实的基础。