小学奥数几何专地题目
- 格式:docx
- 大小:133.77 KB
- 文档页数:7
小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
小学数学竞赛《几何图形》专题训练30题含答一、单选题1.同同按照一定的规律摆出了下面的四幅图。
如果按照这个规律继续摆,第5幅图用()根小棒。
A.23B.31C.352.一种长方形屏幕长与宽的比是16:9,下面几种规格屏幕合格的()A.长1.6米,宽1米B.长45米,宽920米C.长1.2米,宽80厘米D.以上都不对3.下图中,平行线间梯形A,B的面积相等,梯形B的下底是()cm。
A.5B.3C.3.3D.无法确定4.一条()长8cm。
A.直线B.线段C.射线5.下面哪一组的4根小棒能刚好拼成一个长方形?()A.B.C.D.二、填空题6.最大的—位数是,最小的两位数是,它们的和是.7.一块圆柱形橡皮泥,底面积是9平方厘米,高是6厘米。
把它捏成底面积是9平方厘米的圆锥形,高是厘米、如果捏成高是6厘米的圆锥形,底面积是平方厘米。
8.看图填空有个长方形.有个梯形.9.一个大三角形剪成两个小三角形,每个小三角形的内角和是度。
10.根据百位数表填数。
11.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连接AE、CE,则ΔADE的面积是。
12.数图形。
上图中有个正方体,个圆柱体,个球体。
13.把这个物体放到地面上,观察并填空。
是由个小正方体拼成的。
如果把这个图形的表面涂上绿色,不涂色的有个小正方体、一个面涂绿色的有个小正方体、有2个面涂绿色的有个小正方体、有3个面涂绿色的有个小正方体、有4个面涂绿色的有个小正方体、有5个面涂红色的有个小正方体。
14.观察用完全相同的正方体木块摆出的模型,把观察角度和图结合起来.①从前向后看是②从上向下看是③从左向右看是A.B.C.三、作图题15.按要求用一条线段把下面的图形分成两个图形。
①②③16.下面的长方形中,共有28个小方格,其中有4个小方格中分别写了“我”“爱”“数”“学”四个字,请你把这个长方形沿着格线剪成大小相等的四块,而且每块中要有1个字。
小学奥数几何专题--巧求周长(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】求图中所有线段的总长(单位:厘米)【答案】48【解析】要注意到,题目所求的是图中所有线段的总长,而图中的线段,并不仅仅是、、、四段,还包括、等等,因此不能简单地将图中标示的线段长度进行求和.同时应该注意到,;,等等.因此,为了计算图中所有线段的总长,需要先计算AB、BC、CD 、DE这四条线段分别被累加了几次.这里,可以按照每条线段分别是由几部分组成的加以讨论:由1段组成的线段共有4条,即AB、BC、CD、DE,而求和过程中AB、BC、CD、DE这四条线段各被累加了1次.类似地考虑到,由2段组成的线段共有3条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由3段组成的线段共有2条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由4段组成的线段只有AE,其中AB、BC、CD、DE各被计算了1次.综上所述,AB、DE各被计算了4次,BC、CD各被计算了6次.因而图中所有线段的总长度为:{{9}l先考虑大长方形的长上各边:应用上一道题目的结论,每条边上长为4、3、1、2的线段分别被计算了4、6、6、4次.然后再考虑大长方形的宽:因为共有个长方形,所以长度为2的宽被计算了次.故总周长可以用下式计算得到:.【题文】如图,正方形的边长为,被分割成如下个小长方形,求这个小长方形的所有周长之和.评卷人得分【答案】56【解析】.【题文】如右图,正方形的边长是厘米,过正方形内的任意两点画直线,可把正方形分成个小长方形。
这个小长方形的周长之和是多少厘米?【答案】72【解析】从总体考虑,在求这个小长方形的周长之和时,、、、这四条边被用了次,其余四条虚线被用了次,所以个小长方形的周长之和是:(厘米)。
小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。
知识点拨本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角.锐角比直角小,钝角比直角大.直角锐角钝角(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.腰腰下底上底半径直径半圆直径弧半径半径高宽长(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。
2020-01-06小学数学试卷姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、单选题(共6题;共0分)1.小亮有五块积木(如图)请问他再加上下列哪块积木就能拼成一个4×4×4的正方体?(注:这些积木都不能再分拆)正确答案是()A.B.C.D.2.仔细观察如图,如果四只小蚂蚁分别沿着右图中的四个图形走一圈,图()的小蚂蚁走的路程最短.B.C.D.3.下面由4个边长为1厘米的正方形摆成的图形中,()的周长最短.A.B.C.D.4.如图所示3个图形中,每个小正方形都一样大,那么()图形的周长最长.A.B.C.5.将如图折叠成正方体后,应是()B.C.D.6.图中,有()个三角形。
A.3B.5C.6二、填空题(共4题;共0分)7.中共有________个三角形,中共有________个长方形。
8.我会数。
(8分)________________9.有________个正方形。
10.数数下面图形各有多少个小方块?________个 ________个________个三、解答题(共50题;共0分)11.图所示,摆放小正方体。
(1)当摆到第七层时一共有________个小正方体。
(2)当摆到第层时一共有________个小正方体。
12.先找出这组图形的规律,再按规律在括号里填上合适的数。
13.计算下面各图形的面积。
14.在下面的正方形中画一个最大的圆。
15.找规律填数。
16.李奶奶病了,她到那个医院更近一些?17.看图回答(1)请你画一条从蘑菇房到小木屋最近的路。
(2)请你画一条从蘑菇房通向小河最近的路。
18.先把下面的图形分成几个三角形?再求出它们的内角和。
19.你知道他们为什么要这样测量吗?20.求阴影部分面积(单位:厘米)21.数一数图中共有三角形多少个?22.下面两个图形阴影部分的面积相等吗?为什么?23.你能想办法求出这个多边形的内角和吗?24.行1千米需要多长时间?把出行方式和相应的时间连接起来。
5年级奥数几何题
题目:一个长方形,如果长增加2厘米,宽增加5厘米,那么面积就增加60平方厘米,并且这时恰好变成一个正方形。
原来长方形的面积是多少平方厘米?
解析:
1. 设正方形的边长为公式厘米。
因为长增加2厘米,宽增加5厘米后变成正方形,所以原来长方形的长为公式厘米,宽为公式厘米。
2. 根据面积变化列出方程:
原来长方形的面积为公式平方厘米,新正方形的面积为公式平方厘米。
已知长和宽增加后面积增加了60平方厘米,则可得到方程公式。
展开公式。
原方程变为公式。
去括号得公式。
化简得公式,即公式,解得公式。
3. 求原来长方形的面积:
原来长方形的长为公式厘米,宽为公式厘米。
所以原来长方形的面积为公式平方厘米。
小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。
3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。
已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。
解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。
最新小学奥数几何专题训练附答案奥数,即奥林匹克数学竞赛,是培养学生逻辑思维和解决问题能力的重要途径。
而几何作为奥数竞赛中的一个重要领域,对学生的几何直观和推理能力提出了较高的要求。
为此,我们特别准备了最新的小学奥数几何专题训练,并附上了详细的答案。
通过这个专题训练,相信学生们在几何方面的能力将得到有效提升。
1. 三角形的性质三角形是几何学中最基础的图形之一,具有诸多性质。
在本专题中,我们将针对三角形的内角和、外角和以及角平分线等性质进行训练。
在题目中,我们通过图形的给定或条件的陈述,要求学生运用已知的性质推导出未知的结果。
例如:题目:如图1所示,三角形ABC中,∠ABC=80°,∠ACB=50°。
求∠BAC的度数。
解答:由于三角形的内角和为180°,设∠BAC=x,则∠ACB=80°-x,∠ABC=50°。
将三角形的内角和代入等式中,得到:x + (80°-x) + 50° = 180°130° = 180°-xx = 180°-130°x = 50°因此,∠BAC的度数为50°。
2. 直线与平行线直线和平行线是几何学中的重要概念。
在这个专题中,我们将训练学生在应用直线与平行线性质解决问题时的能力。
例如:题目:如图2所示,AB、CD和EF是三条平行线。
若∠AGE=40°,求∠EDF的度数。
解答:由于AB和EF是平行线,所以∠AGE=∠EDF。
因此,∠EDF的度数为40°。
3. 三角形的相似性质相似三角形是指具有对应角相等且对应边成比例的三角形。
相似三角形在数学和实际生活中具有重要应用。
在这个专题中,我们将训练学生识别和应用相似三角形的能力。
例如:题目:如图3所示,△ABC与△DEF相似,且比例尺为1:2。
已知AC=4,求EF的长度。
解答:由于△ABC与△DEF相似,所以AB/DE = BC/EF = AC/DF。
小学几何面积问题一 姓名引理:如图1中;P 是AD 上一点,连接PB,PC 则S △PBC =S △ABP +S △pcD =21S ABCD 1,是PC △ABP =4,求:平行四边形ABCD 的面积 4..四边形ABCD 中,BF=EF=ED,如图1 若S 四边形ABCD 则S 阴 =2若S △AEF + S △BFC =15 则S 四边形ABCD =3若S △AEF= 3 S △BFC =2 则S 四边形ABCD =5. 四边形ABCD 的对角线BD 被E,F,G 三点四等份,如图若四边形AECG=15 则S 四边形ABCD =6.四边形ABCD 的对角线BD 被E,F,G 三点四等份, 则S 四边形ABCD =7.若ABCD 为正方形,F 是DC 的中点,已知:S △BFC = 11则S 四边形ADFB =2 S △DFE =3 S △AEB =8.直角梯形ABCD 中.AE=ED,BC=18,AD=8,CD=6,且=小学几何面积问题二姓名 1.如图S △AEF= 2, AB=3AE CF=3EF 则S △ABC=2. 如图S △BDE=30 ,AB=2AE, DC=4AC图1 适应长方形、正方形BB ABE AB第1题 第2题B C则S△ABC=3.正方形ABCD中,E,F,G为BC边上四等份点,M,N,P为对角线AC上的四等份点如图若S正方形ABCD=32 则S△NGP=4.已知:S△ABC=30 D是BC的中点AE=2ED 则S△BDE=5. 已知:AD=DB DE=3EC AF=3FE若S△ABC=160求S△EFC=6.已知:在△ABC中,FC=3AF EC=2BE BD=DF 若S△DFE=3则S△ABC=为平行四边形,AG=GC,BE=EF=FC,若S△GEF=2,则 S ABCD =是梯形,AD ABCD 是梯形,AD如图若△DFE的面积等于1 则△ABC的面积为第11题小学几何面积问题三姓名CBCFC1.在梯形ABCD中,AD 在梯形ABCD中,AD梯形ABCD中,ADA若直线L1图二△ACM的AC边上的高H1是△NCB的CB边上的高H2的一半,且AC=CB,若S△NBC =100 则S△ACM=3.把下面的三角形分成三个小三角形,4.△ABC是等边三角形,AD是BC边上的高,若S△ABC =2,则S△=5. △ABC是等边三角形,D是AB的中点,且DH垂直于BC,H为垂足.若S△BDH =2,则S△ABC=CEA FC D Bj F小学几何面积问题四 姓名1.在△ABC 中,AE=BE,BD=2DC,FC=3AF 若△ABC 的面积为1,则S △EFD =2.△ABC 中,三边BC,CA,AB 上分别有点D,E,F,且BC=3CD AB=2BE AC=4AF若△ABC 的面积为240平方厘米,则S △DEF 平方厘米.3.. 如图BD=DE, EC=3EF AF=2FD若△DFE 的面积等于1 则△ABC4.两个正方形拼成如图,则阴影部分的面积为5.两个正方形拼成如图,则阴影部分的面积为6.三个正方形拼成如图,求阴影部分的面积为7.如图ABCD 是矩形,EF ∥AB 如果S 矩形ABCD =24 则S 阴= 8.在平行四边形ABCD 中,EF ∥AC,若 △AED 是平行四边形.直线CF 与AB 交于E,与DA 于4cm 2,那么三角形EDA 阴影部分的面积是 cm 小学几何面积问题五 姓名1.有两种自然放法,将正方形内接于等腰直角三角形.如果按左图的放法,那么可求得这个正方形面积为441. 如果按右图的放法,那么可求得这个正方形面积应为2.下图是一块长方形的草地,长方形的长是18米.宽是10米.中间有两条宽2米的路,一条是长方形,另一条是平行四边形,那么草地的面积是 平方米.第2题图3.如图大正方形的边长是20厘米.E,F,G,H 分别是各边中点,问:中间小正方形的面积是 平方厘米.4.“十字架”由五个边长相等的正方形拼成,若AB=20厘米. 求:这个“十字架”的面积是 平方厘米.5.一个边长为21厘米的正方形,被分成了四个长方形如图它们的面积分别是这个正方形面积的101,51,103,52在占52的这一4 5D1厘米块长方形里有一个小正方形是阴影部分.求这个阴影部分的面积为 平方厘米. 6.一个面积小于100的整数的长方形中,它的内部有三个小正方形,边长都是整数.已知正方形二的边长是长方形长的2/5,正方形一的边长是长方形宽的1/8;那么图中阴影部分的面积为 平方单位7. 如图所示ABCD 为正方形,且AB 、8.在长方形ABCD 中,长是宽的4倍,对角线BD=17厘米,求该长方形的面积是 .小学几何面积问题六姓名 1.一个长方形ABCD,向它的形外分别作正方形如图若所作的四边形的周长之和为264厘米,面积之和是1378求原来的长方形的面积是 平方厘米.2. 两个长方形叠放如图,小长方形宽是2厘米,A 是大长方形一边的中点,△ABC 是等腰直角三角形,图中阴影部分的面积和为 平方厘米.3.在边长为10的正方形的四边上分别取E,F,G,H.已知E 与G 的水平距离是5厘米,H 与F 的水平距离是4厘米,求四边形EFGH 的面积为 平方厘米.4.长方形ABCD 的长DC 是8厘米,宽方形,5.如图在直角梯形中,AB=10厘米,梯形面积的一半.6.已知:ABCD 是平行四边形,P 在AD 米,CP=6厘米;米.7. 梯形ABCD 与梯形A /B /C /D /大小相同若EC=4厘米,D /C /=24厘米,高EF=5求阴影部分的面积是 8.在一个梯形内,别是6平方厘米和8平方厘米,阴影部分的面积和是7厘米EBA小学几何面积问题七 姓名1.求图中阴影部分的面积2. 求图中阴影部分的面积3.已知:EF 是梯形ABCD 的中位线,4.求梯形的面积5.求下图四边形的面积6.在下图中,长方形内有一个钝角三形,按照图示的数,求这个三角形的面.7.三个边长为10厘米、12厘米、8厘米的正方形拼放在一起,直线BC 将整个图形面积平分,求线段AB 的长. 8. 如图有两个边长都是10厘米的正方形ABCD 和A /B /C /D /,且正方形A /B /C /D /的顶点A /恰好是正方形ABCD 的中心,那么:阴影部分的面积是 平方厘米.小学几何面积问题八 姓名1. 平行四边形ABCD 的面积是32厘米,AD=8B=45○,求阴影部分的面积是平方厘米.2.如图所示平行四边形ABCD 中阴影部分的面积为7平方厘米,那么,面积是 平方厘米.3.平行四边形ABCD 已知:三角形AHB 米,三角形DFC 的面积是6平方厘米.求阴的面积是 平方厘米. 4. 平行四边形ABCD 中有一点E,已知,三角形ABE 的面积是73平方厘米,三角形BEC 的面积是10平方厘米;求阴影部分三角形BED 的面积是 平方厘米.5.一个45度的直角三角板.最长边为12厘米,那么,它的面积为 平方厘米.6.如图长方形内画了一些直线,已知边上有三块面积分别为13平方厘米,35平方厘米,49平方厘米,那么图中的阴影部分面积是 平方厘米.7.在长方形ABCD 中,DE,DF 份,即三角形ADE 的面积等于三角形DFC BEDF 的面积.如果这个长方形的面积是54平方厘米,那么三角形BEF 的面积是 平方厘米.8.如图三角形ABC 是等腰直角三角形.它与一个正方形叠放在一起;已知AE,EF,FB,三条线段相等.三角形EFD 阴影部分面积是15平方厘米,求:S △ABC = 小学几何面积问题九姓名1..已知平行四边形ABCD 的面积是18平方厘米形DEF 的面积阴影部分是 平方厘米.2.在直角梯形ABCD 中AD=8厘米,DC=6厘米,BC=10厘米,且S △ADE =S △AFB =S 四AFCE 求三角形EFC 的面积为 平方厘米.DCCEC3.已知P 是长方形ABCD 的对角线上一点,M 为线段PC 的中点,如果三角形APB 的面积是2平方厘米,那么三角形BMC 的面积是 平方厘米. 4.长方形ABCD 的面积是48平方厘米; S △ABE =8cm 2 S △AFD =6cm 2求三角形EFC 的 面积是 平方厘米.5. 如图长方形ABCD 中,宽AD=6厘米,长DC=8厘米;E 在DC 的延长线上,AE 交BC 于F 点,如果三角形BFE 的面积是8平方厘米;求:阴影部分的面积是 平方厘米.6.把四边形ABCD 的各边延长一倍,得到一个大四边形A /B /C /D /,如果四边形ABCD 的面积是3平方厘米,那么大四边形A /B /C /D /的面积是 平方厘米.7.四边形ABCD 两条对角线交于E,延长CA 到F,使AF=AE;延长DB 到E,使BE=DE.如果四边形ABCD 的面积是3平方厘米. 求三角形EFG 的面积为 平方厘米.8.如图△ABC 中BD=2DC,AE=2ED,如果FC=12厘米. 那么:AF= 厘米.9.如图△ABC 中,△AEF,△ABE,△EBD 的面积分别是5cm 2,10cm 2,8cm 2 求四边形EDCF 的面积是 平方厘米.小学几何面积问题十 姓名1.如图长方形ABCD 中,AB=15厘米,BC=8厘米,三角形AFD 的面积比三角形FEC 的面积大30平方厘米,求CE 的长是 厘米.2. 如图正方形ABCD 中,边长为6厘米,三角形AFD FEC 的面积小6平方厘米,求CE 的长是 厘米.3.如图ABCD 是长方形,AD=4厘米,AB=9厘米,阴影部分△DEF 的面积是6平方厘米,求梯形ABED 的面积是平方厘米.4.如图,已知阴影部分的面积是120平方厘米,E,F 分别是AB,BC 的中点,长方形宽AB 为16厘米,那么,长方形的长AD 为 厘米.5.如图,ABCD 是梯形,BECE,AD=9厘米, BE ⊥EC,BE=8米,EC=6厘米.求这个梯形的面积是 平方厘米. 6.长方形ABCD 中,E 为BC 的中点, 阴影部分△AFD 的面积是4平方厘米.是 平方厘米.7.正方形ABCD 中,E 为BC 的中点,F 为DC 的中点 已知正方形边长是5厘米.则阴影部分△AGD 积是 平方厘米.8. 正方形ABCD 中,E 为BC 上的四等份点,F 为DC 的中点已知正方形边长是4厘米.则阴影部分△AGB 的面积是 平方厘米.。