风力发电系统的基本原理
- 格式:doc
- 大小:180.50 KB
- 文档页数:9
风力发电机的工作原理风力发电机是一种利用风能进行发电的装置,其工作原理主要可以分为风能转化和电能转化两个过程。
下面我将详细介绍风力发电机的工作原理,以及其中涉及的一些关键技术和装置。
一、风能转化过程风力发电机首先需要将自然界中的风能转化为机械能,这一过程需要通过如风轮、转轴和变速机构等装置完成。
1. 风轮:风轮是风力发电机中最关键的部件之一,它的作用是将空气中的风能转化为旋转动能。
风轮通常由数片叶片组成,叶片的形状和数量会直接影响到风轮的转速和效率。
一般来说,叶片越大、旋转速度越快,风能转化效率就越高。
此外,风轮上还配备了定位装置,可以根据风的方向调整叶片的角度,以便尽可能地捕捉到更多的风能。
2. 转轴和传动系统:叶片转动时,它们会带动转轴一起旋转。
转轴是将叶片旋转动能传递给发电机的关键部件,它通常由钢材制成,具有足够的强度和刚度。
除了转轴外,风力发电机还配备了传动系统,用于调整风轮和发电机之间的转速差异。
传动系统的设计主要有两个目的:一是使风轮的旋转速度能够匹配发电机的工作要求,二是提高发电机的转速并输出更高的电能。
二、电能转化过程风力发电机将机械能转化为电能的过程,需要通过发电机和变流器等装置完成。
1. 发电机:风力发电机选用的是特殊的发电机,称为风力发电机或风能发电机。
这种发电机的工作原理和普通的发电机基本相同,都是通过旋转运动来驱动转子产生磁场,然后通过磁场和线圈之间的电磁感应产生电能。
与普通发电机不同的是,风力发电机需要具有更高的转速、功率因数和效率。
2. 变流器:由于风力发电机产生的电能是交流电,需要将其转换为适应电网输送的直流电。
这一过程需要通过变流器完成,变流器主要功能是将交流电转化为直流电,并通过电压和频率控制,将发电机输出的电能以适合的形式输送到电网中。
总结:风力发电机的工作原理主要包括风能转化和电能转化两个过程,通过风轮、转轴、变速机构、发电机和变流器等装置的协同工作,将自然界中的风能转化为电能。
风能发电系统在微电网中的应用研究随着全球对可再生能源的需求不断增加,风能发电作为一种清洁、可再生且广泛分布的能源,受到了越来越多的关注。
微电网作为一种能够实现分布式电力供应的系统,能够更好地适应风能发电的特点。
本文将介绍风能发电系统在微电网中的应用,并探讨其优势和挑战。
一、风能发电系统的基本原理风能发电是利用风能驱动风力发电机转动,通过转动的机械能转化成电能。
风能发电系统主要由风力发电机、变频器、逆变器、能量存储装置等组成。
当风力发电机受到风的作用时,转动机械产生电能,通过变频器将电能转换成交流电,并经过逆变器转换为直流电,最后通过能量存储装置储存电能或者直接供电。
二、风能发电系统在微电网中的应用1. 增加可再生能源比例微电网中的风能发电系统可以作为一种可再生能源的重要组成部分,通过将多个风能发电系统连接在一起,可以实现电力的共享和互补。
同时,由于风能发电系统具有分布式特点,可以更好地适应微电网的分布式电源结构。
2. 维持微电网平衡微电网中的风能发电系统可以根据风速的变化自动调节发电功率,从而保持微电网的供需平衡。
当风速较大时,风能发电系统会提高发电功率,并将多余的电能储存到能量存储装置中;而当风速较小或者无风时,能量存储装置会释放储存的电能,以满足微电网的需求。
3. 提升微电网的可靠性微电网中的风能发电系统可以通过并联多个风力发电机的方式来提高可靠性。
当某个风力发电机发生故障时,其他风力发电机仍然可以正常发电,保证微电网的供电稳定性。
此外,风能发电系统还可以与其他的可再生能源系统如太阳能发电系统等相结合,以进一步提高微电网的可靠性。
三、风能发电系统在微电网中的挑战尽管风能发电系统在微电网中具有诸多优势,但也面临一些挑战。
1. 风能的不稳定性风能发电系统的功率输出与风速的变化密切相关,而风速的变化是不可控的。
因此,风能发电系统在微电网中存在一定的不稳定性,可能会对微电网的供电质量产生影响。
2. 储能技术的瓶颈虽然能量存储装置可以解决风能发电系统的不稳定性问题,但目前储能技术仍然存在瓶颈。
风力发电课程总结一、引言风力发电是一种利用风能将其转化为电能的可再生能源技术。
近年来,随着对可再生能源的重视和环境保护的需求,风力发电逐渐成为全球范围内的主要能源之一。
本文将对风力发电课程进行总结,分享课程内容和学习收获。
二、风力发电的原理风力发电的原理是利用风力旋转风轮,通过转子和发电机的转动,将机械能转化为电能。
风力发电系统主要包括风轮、发电机、变频器、变压器和电网等组成部分。
风轮的旋转速度受到风速、风轮叶片的设计和风轮直径的影响。
发电机将机械能转化为电能,并经过变频器和变压器的处理后,将电能传输到电网上。
三、风力发电课程内容1. 风能资源评估:了解风能资源的分布和特点,并学习如何评估风能资源的可利用性。
通过地理信息系统和气象数据分析,确定风力发电项目的可行性。
2. 风机叶片设计:学习风机叶片的结构和设计原理,了解叶片形状、材料和尺寸对风力发电效率的影响。
通过计算和模拟,优化叶片设计,提高风能转化效率。
3. 风力发电机组:掌握风力发电机组的结构和工作原理,学习风力发电机组的选择和布置方法。
了解发电机组的运行参数和性能指标,提高系统效率和可靠性。
4. 风场规划与布局:学习风场规划和布局方法,包括选择合适的场地、确定风机数量和布设位置。
通过优化风场布局,提高风力发电系统的发电量和经济效益。
5. 风力发电系统运维与管理:了解风力发电系统的运维和管理要点,包括设备检修、故障排除和数据监测等。
学习如何提高系统的可靠性和运行效率,降低维护成本。
6. 风力发电的环境影响与可持续发展:研究风力发电对环境的影响和可持续发展问题。
了解风力发电的环境效益和社会经济影响,推动可再生能源的发展和应用。
四、学习收获通过学习风力发电课程,我对风力发电的原理和技术有了更深入的了解。
我学会了评估风能资源的方法,掌握了风机叶片设计和风力发电机组选择的技巧。
我了解了风场规划和布局的重要性,并学会了风力发电系统的运维和管理技术。
在学习过程中,我还对风力发电的环境影响和可持续发展问题有了更全面的认识。
风力发电机组的工作原理及主要组成部分1.风能捕捉:风力发电机组的核心部分是风轮或风叶,它们负责捕捉风能。
当风流通过风轮或风叶时,由于气流的动能和静压力的作用,会导致旋转力矩的产生。
2.动力传输:风能转化为旋转动能后,需要通过轴承和传动系统传输给发电机。
通常情况下,风轮转子和发电机的转子是相互连接的,通过传动系统将转动动能传递给发电机转子。
3.电能转化:传动系统将机械能转化为发电机的转动,进而通过电磁感应原理将机械能转化为电能。
发电机的转子通过旋转感应电流,再通过电磁感应产生电压,最终输出电能。
1.风轮:风力发电机组的核心部分,用于捕捉风能并转化为机械能。
通常采用多片叶片将风流导向转子,并利用气流的动能产生旋转力矩。
风轮的叶片材料通常采用复合材料或金属材料,以提高其耐久性和轻量化。
2.发电机:发电机负责将机械能转化为电能。
通常采用异步发电机或同步发电机来生成电能。
发电机的转子和风轮的转子相互连接,通过传动系统将旋转动能传递给发电机转子,产生电能输出。
3.传动系统:传动系统用于将风轮的旋转动能传递给发电机的转子。
传动系统通常由齿轮箱、轴承等组成。
齿轮箱用于调节风轮旋转速度,使其适应发电机的工作条件。
轴承则用于支撑风轮和发电机的转子。
4.控制系统:控制系统负责监测风力发电机组的工作状态,并控制风轮的转速和发电机的输出电压。
通过控制系统,可以使风力发电机组根据实际的风速和电网需求进行工作调节。
总结起来,风力发电机组通过捕捉风能、运用传动系统将机械能传递给发电机,并最终通过电磁感应将机械能转化为电能。
风力发电机组的主要部件包括风轮、发电机、传动系统和控制系统。
通过这些部件的协调工作,可以将风能高效地转化为电能,实现清洁能源的利用。
风力发电机工作原理:风能如何转化为电能
风力发电机是一种将风能转化为电能的设备。
其工作原理涉及风的动能通过旋转风轮(叶片)驱动发电机产生电能。
以下是风力发电机的基本工作原理:
1. 风的动能转化:
风力发电机的关键在于将风的动能转化为旋转机械部件的动能。
风是由地球上的温度和压力差异引起的,其中气流中的空气分子具有动能。
2. 叶片设计:
风力发电机通常包括三片或更多的叶片,这些叶片被设计成具有特定的空气动力学形状,以最大化从风中提取动能的效率。
3. 风轮转动:
当风吹过风力发电机的叶片时,叶片会受到气流的冲击,导致风轮
(转子)开始旋转。
4. 传动系统:
风轮的旋转通过传动系统(通常是齿轮箱)连接到发电机的转子。
这样的连接转换了机械能的形式,使其适用于发电机。
5. 发电机工作:
发电机的转子在旋转时,通过感应产生电流。
这是基于电磁感应的原理,即旋转的导体在磁场中产生感应电动势。
6. 电能产生:
通过电气系统,发电机产生的交流电被转换和调整为适用于输送到电网的电能。
7. 风向和控制:
风力发电机通常配备了风向控制系统,可以自动调整风轮的方向,确保始终朝向风的方向,最大化能量捕获效率。
8. 存储和输送:
有时,通过电能存储系统(如电池)或通过将电能输送到电网,风力发电机的产生的电能可以被存储或用于满足不同时间的用电需求。
风力发电机的工作原理基于通过叶片转动产生的旋转机械能,进而通过发电机产生电能。
这种技术是一种清洁、可再生的能源,对环境影响较小,因此在全球范围内得到广泛应用。
风力发电原理及工作过程风力发电是一种利用风能转化为电能的可再生能源技术,它是一种清洁、环保的能源形式,具有广泛的应用前景。
风力发电原理基于风能转化为机械能,再由发电机将机械能转化为电能的过程。
下面我们将详细介绍风力发电的原理及工作过程。
首先,风力发电的原理是基于风能转化为机械能的物理原理。
当风通过风力发电机的叶片时,叶片受到风的作用力而旋转。
这种旋转运动将风能转化为机械能,而机械能则通过发电机转化为电能。
风力发电机通常采用的是风轮式发电机,其叶片的旋转驱动发电机内的转子旋转,从而产生电能。
其次,风力发电的工作过程可以分为风能捕捉、机械能转化和电能输出三个阶段。
首先是风能捕捉阶段,当风力发电机的叶片受到风的作用力时,叶片开始旋转,将风能转化为机械能。
接着是机械能转化阶段,机械能通过发电机的转子旋转,产生感应电动势,最终将机械能转化为电能。
最后是电能输出阶段,通过电力系统将风力发电机产生的电能输送到用户端,实现电能的利用和供应。
在实际的风力发电系统中,通常会配备风速测量装置、控制系统和储能设备,以实现对风力发电机的监测、控制和稳定运行。
风速测量装置可以实时监测风速变化,控制系统可以根据风速的变化调节叶片的角度和转速,以最大限度地捕捉风能。
同时,储能设备可以将风力发电机产生的电能进行储存,以应对风速不稳定或电网负荷波动的情况。
总的来说,风力发电原理及工作过程是基于风能转化为机械能,再由发电机将机械能转化为电能的物理过程。
风力发电系统通过风速测量、控制系统和储能设备的配合,实现对风能的捕捉和利用,为清洁能源的发展做出了重要贡献。
随着技术的不断进步和应用的推广,风力发电将在未来发挥更加重要的作用,成为可再生能源领域的重要组成部分。
风力发电系统的设计和实现在如今环保意识愈发普及的时代,能源问题也日益成为人们关注的话题。
而风力发电,作为一种可再生的清洁能源,其重要性与日俱增。
在这篇文章中,我们将介绍一些关于风力发电系统的设计和实现。
一、风力发电的原理风力发电系统的核心就是风力发电机。
风力发电机的原理是将风能转换成电能。
当风车叶片受到风的作用力时,叶片就会旋转起来,旋转的同时带动发电机产生电能。
所以,在设计风力发电系统的时候,需要考虑:1.风车叶片有多少片?2.叶片的长度、厚度以及叶片的形状如何?3.风车的转动速度应该是多少?4.发电机的额定功率是多少?二、风力发电系统的设计在风力发电系统的设计中,需要考虑如何选择适合的风轮和风叶,并且确定风机的大小和功率。
同时,还要选择适当的发电机和电池组合,以及选择适合的逆变器。
最后,还需要考虑系统的温度和风力这两个因素对系统发电功率的影响。
1.风轮和风叶的选择在设计风力发电系统之前,需要选择适合的风轮和风叶。
风叶的数量、叶片形状和长度的选择都会影响风力发电机的发电能力。
一般来说,风轮的直径越大,发电能力就越强。
风轮的材料也很重要,一般采用优质的玻璃钢或碳纤维制作。
2.风机的大小和功率风机的大小和功率一般都是根据现场环境进行选择的。
在选择风机的大小时,需要考虑周围环境的可用空间和风能资源。
同时,还要考虑风机的功率和转速,以确保风机能够稳定地运转。
3.发电机和电池组合在风力发电系统中,发电机和电池选用需要仔细考虑。
发电机的选择要考虑其额定输出功率和效率,而电池的选择则要考虑电池的容量和输出电压。
同时,还要根据电池组合的选择来确定逆变器的大小和功率。
4.逆变器的选择逆变器是将发电机产生的直流电转换成交流电的关键组件。
逆变器的选择要考虑到所需的输出功率和输出电压,同时要考虑到逆变器的效率和可靠性。
三、风力发电系统的实现风力发电系统的实现一般分为三个步骤:1.安装风机和发电机在进行安装之前,需要确定风机的安装位置,同时还要考虑到风机的高度和安全性。
风力发电系统的建模与分析一、引言风力发电作为一种可再生能源,近年来得到了广泛关注。
随着环境保护意识的增强和对传统能源的需求逐渐减少,风力发电系统的建模与分析成为一个重要的研究领域。
本文旨在探讨风力发电系统的建模方法及其应用,为相关研究和工程实践提供参考。
二、风力发电系统的基本原理风力发电系统是将风能转化为电能的装置。
其基本原理是通过风机叶片受风力推动,驱动发电机发电。
风力发电系统包括风机、变速器、发电机、变流器、电网等组成,其中风机是核心设备。
三、风机建模与性能分析1. 风机建模风机建模是风力发电系统研究的重点之一。
在建模过程中,需要考虑风机的动力学特性、叶片气动特性以及机械传动特性等因素。
常用的建模方法包括力矩控制模型、速度控制模型和功率控制模型等。
2. 风机性能分析风机性能分析是评价风力发电系统性能的重要手段。
通过对风机的输出功率、转速和扭矩等指标进行分析,可以评估系统的运行状态和效率。
在性能分析中,常用的方法包括功率曲线分析、风机特性曲线分析和参数优化等。
四、风力发电场的建模与优化1. 风力发电场建模风力发电场是指由多台风机组成的发电系统。
为了实现更高的发电效率和经济性,需要对风力发电场进行整体建模。
建模过程中,需要考虑风机之间的相互关系、布置方式以及与电网的连接等因素。
常用的建模方法包括智能优化算法、复杂网络模型和系统动力学建模等。
2. 风力发电场优化风力发电场优化旨在提高风力发电系统的整体性能和经济效益。
优化过程中,需要考虑风机的选型、布置间距、发电机的容量等因素。
常用的优化方法包括遗传算法、粒子群算法和模拟退火算法等。
五、风力发电系统的可靠性分析风力发电系统的可靠性分析是评估系统运行稳定性和故障概率的重要手段。
通过对风力发电系统进行可靠性分析,可以为系统的设计和运营提供依据。
常用的可靠性分析方法包括故障树分析、可靠性块图分析和Monte Carlo模拟等。
六、风力发电系统的经济性分析风力发电系统的经济性分析是评估系统投资回报和运营成本的关键环节。
风力发电原理及工作过程风力发电是一种利用风能转换成电能的清洁能源。
风力发电机通过叶片受到风的作用而转动,驱动发电机产生电能。
风力发电具有资源广泛、环保、可再生的特点,是未来能源发展的重要方向之一。
风力发电的原理是利用风能转换成机械能,再通过发电机将机械能转换成电能。
风力发电机通常由叶片、轮毂、发电机等部件组成。
当风力作用于叶片上时,叶片开始旋转,带动轮毂一起旋转。
轮毂通过传动装置将旋转运动传递给发电机,发电机内部的线圈在磁场的作用下产生感应电动势,最终输出电能。
整个过程中,风能被转化为机械能,再转化为电能。
风力发电的工作过程可以分为风能捕捉、机械能转换和电能输出三个阶段。
首先是风能捕捉阶段,当风速达到一定程度时,叶片开始受到风力的作用而旋转。
叶片的设计和布置对风能捕捉效率起着决定性作用。
其次是机械能转换阶段,风力作用于叶片,带动轮毂旋转,再通过传动装置将旋转运动传递给发电机,使发电机产生电能。
最后是电能输出阶段,发电机产生的电能通过变压器升压后输入电网,供给用户使用。
风力发电具有很多优点。
首先,风力发电是一种清洁能源,不会产生二氧化碳等温室气体,对环境没有污染。
其次,风能是一种可再生资源,不会像化石能源一样存在枯竭的问题。
再次,风力发电具有较高的适应性,可以建设在陆地、海上甚至高山等不同地形地貌上。
此外,风力发电还可以带动当地经济发展,增加就业机会,促进可持续发展。
然而,风力发电也存在一些问题。
首先,风力发电的发电效率受到风速的限制,风速不稳定时会影响发电效率。
其次,风力发电机占地面积较大,需要大面积的土地或海域进行布局。
再次,风力发电机的建设和运行成本较高,需要较长时间才能收回投资。
此外,风力发电机运行时会产生一定的噪音和对鸟类的影响,需要合理规划和管理。
总的来说,风力发电作为一种清洁、可再生的能源,具有广阔的发展前景。
随着技术的不断进步和成本的不断降低,风力发电将会在未来能源结构中发挥越来越重要的作用。
风力发电系统原理
风力发电系统是一种利用风能进行发电的系统,其主要原理是通过风车将风能转换成机械能,再通过发电机将机械能转换成电能。
风力发电系统主要由风轮、发电机、变频器、控制系统和塔架等部分组成。
风轮是系统中最重要的部分,一般分为水平轴和垂直轴两种类型。
水平轴风轮与地面平行,风向变化时需要通过叶片调整角度;垂直轴风轮则与地面垂直,可以自动适应风向变化。
风轮将风能转化成机械能后,通过轴传递给发电机,使发电机转动产生电能。
变频器的作用是将变化的风能转化成稳定的电能,控制系统可以监测风速、转速和功率等参数,并根据实时情况调整风轮叶片的角度和发电机的输出功率。
塔架则起到支撑整个系统的作用。
风力发电系统的优点在于可再生、清洁、零污染,同时具有较高的可靠性和安全性。
不过由于其发电量与风速的关系密切,需要选择适合的地点和设计合理的风轮,才能发挥最大的效益。
- 1 -。
风力发电系统的基本原理风力发电的基本原理风能具有一定的动能,通过风轮机将风能转化为机械能,拖动发电机发电。
风力发电的原理是利用风带动风车叶片旋转,再通过增速器将旋转的速度提高来促使发电机发电的。
依据目前的风车技术,大约3m/s的微风速度便可以开始发电。
风力发电的原理说起来非常简单,最简单的风力发电机可由叶片和发电机两部分构成如图1-1所示。
空气流动的动能作用在叶轮上,将动能转换成机械能,从而推动片叶旋转,如果将叶轮的转轴与发电机的转轴相连就会带动发电机发出电来。
风力发电的特点(1)可再生的洁净能源风力发电是一种可再生的洁净能源,不消耗化石资源也不污染环境,这是火力发电所无法比拟的优点。
(2)建设周期短一个十兆瓦级的风电场建设期不到一年。
(3)装机规模灵活可根据资金情况决定一次装机规模,有一台资金就可以安装一台投产一台。
(4)可靠性高把现代高科技应用于风力发电机组使其发电可靠性大大提高,中、大型风力发电机组可靠性从80年代的50%提高到了98%,高于火力发电且机组寿命可达20年。
(5)造价低从国外建成的风电场看,单位千瓦造价和单位千瓦时电价都低于火力发电,和常规能源发电相比具有竞争力。
我国由于中大型风力发电机组全部从国外引进,造价和电价相对比火力发电高,但随着大中型风力发电机组实现国产化、产业化,在不久的将来风力发电的造价和电价都将低于火力发电。
(6)运行维护简单现代中大型风力发电机的自动化水平很高,完全可以在无人职守的情况下正常工作,只需定期进行必要的维护,不存在火力发电的大修问题。
(7)实际占地面积小发电机组与监控、变电等建筑仅占火电厂1%的土地,其余场地仍可供农、牧、渔使用。
(8)发电方式多样化风力发电既可并网运行,也可以和其他能源如柴油发电、太阳能发电、水利发电机组形成互补系统,还可以独立运行,因此对于解决边远地区的用电问题提供了现实可行性。
(9)单机容量小由于风能密度低决定了单台风力发电机组容量不可能很大,与现在的火力发电机组和核电机组无法相比。
另外风况是不稳定的,有时无风有时又有破坏性的大风,这都是风力发电必须解决的实际问题。
风力机发电机组分类水平轴风力机水平轴风力发电机组按风力机功率调节方式可分为:•定桨距失速型风力发电机组•变桨距失速型风力发电机组•变速恒频型风力发电机组1)定桨距失速型风力发电机组定桨距失速型风力发电机组通过风轮叶片失速来控制风力发电机组在大风时的功率输出,通过叶尖扰流器来实现极端情况下的安全停机问题。
2)变桨距失速型风力发电机组变桨距失速型(主动失速型)风力发电机组在低于额定风速时通过改变桨距角,使其功率输出增加,或保持一定的桨距角运行;在高于额定风速时通过改变叶片桨距角来控制功率输出,稳定在额定功率。
3)变速恒频型风力发电机组变速恒频型风力发电机组的风轮叶片桨距角可以调节,同时发电机可以变速,并输出恒频恒压电能。
在低于额定风速时,它通过改变风轮转速和叶片桨距角使风力发电机组在最佳尖速比下运行,输出最大的功率;在高于额定风速时通过改变叶片桨距角使风力发电机组功率输出稳定在额定功率。
风资源及风轮机概述1.2.1 风资源概述(1)风的起源风的形成乃是空气流动的结果。
风就是水平运动的空气,空气运动主要是由于地球上各纬度所接受的太阳辐射强度不同而形成的。
大气的流动也像水流一样,是从压力高处往压力低处流,太阳能正是形成大气压差的原因。
由于地球自转轴与围绕太阳的公转轴之间存在66.5°的夹角,因此对地球上不同地点太阳照射角度是不同的,而且对同一地点一年中这个角度也是变化的。
地球上某处所接受的太阳辐射能与该地点太阳照射角的正弦成正比。
(2)风的参数风向和风速是两个描述风的重要参数。
风向是指风吹来的方向,如果风是从东方吹来就称为东风。
风速是表示风移动的速度即单位时间内空气流动所经过的距离。
风速是指某一高度连续10min所测得各瞬时风速的平均值。
一般以草地上空10m高处的10min内风速的平均值为参考。
风玫瑰图是一个给定地点一段时间内的风向分布图。
通过它可以得知当地的主导风向。
(3)风能的基本情况[1]○1风能的特点风能的特点主要有:能量密度低、不稳定性、分布不均匀、可再生、须在有风地带、无污染、分布广泛、可分散利用、另外不须能源运输、可和其它能源相互转换等。
○2风能资源的估算 风能的大小实际就是气流流过的动能,因此可以推导出气流在单位时间内垂直流过单位截面积的风能,即风功率为30.5V ωρ= (1-1)式中 ω为风能(w);ρ为空气密度(kg/m );v 为风速(m/s)。
由于风速是一个随机性很大的量,必须通过一段时间的观测来了解它的平均状况,一个地方风能潜力的多少要视该地常年平均风能密度的大小。
因此需要求出在一段时间内的平均风能密度,这个值可以将风能密度公式对时间积分后平均来求得。
在风速V 的概率分布p(V)知道后,平均风能密度还可根据下式求得30.5()V P V dV ωρ= (1-2)1.2.2 风轮机的理论[4]风轮机又称为风车,是一种将风能转换成机械能、电能或热能的能量转换装置。
风轮机的类型很多通常将其分为水平轴风轮机垂直轴风轮机和特殊风轮机三大类。
但应用最广的还是前两种类型的风轮机。
1.3 风力发电机的结构与组成1.3.1 风力发电机的分类[5]风力发电机组是将风能转化为电能的装置,按其容量分可分为:小型(10kw 以下)、中型(10—100kw )和大型(100kw 以上)风力发电机组。
按主轴与地面相对位置又可分为:水平轴风力发电机组和垂直轴风力发电机组。
水平轴风力发电机是目前世界各国风力发电机最为成功的一种形式,主要优点是风轮可以架设到离地面较高的地方,从而减少了由于地面扰动对风轮动态特性的影响。
它的主要机械部件都在机舱中,如主轴、齿轮箱、发电机、液压系统及调向装置等。
而生产垂直轴风力发电机的国家很少,主要原因是垂直轴风力发电机效率低,需启动设备,同时还有些技术问题尚待解决。
在本文中以后不做特殊说明时所指的风力发电机组即为大中型的水平轴风力发电机组。
1.3.2 水平轴风力发电机的结构大中型风力发电机组是由叶片、轮毂、主轴、增速齿轮箱、调向机构、发电机、塔架、控制系统及附属部件(机舱机座回转图体制动器等)组成的。
(1)机舱机舱包含着风力发电机的关键设备,包括齿轮箱、发电机等。
(2)风轮叶片安装在轮毂上称作风轮,它包括叶片、轮毂、主轴等。
风轮是风力发电机接受风能的部件。
叶片是风力发电机组最关键的部件,现代风力发电机上每个转子叶片的测量长度大约为20米叶片数通常为2枚或3枚,大部分转子叶片用玻璃纤维强化塑料(GRP)制造。
叶片可分为变浆距和定浆距两种叶片,其作用都是为了调速,当风力达到风力发电机组设计的额定风速时,在风轮上就要采取措施,以保证风力发电机的输出功率不会超过允许值。
轮毂是连接叶片和主轴的零部件。
轮毂一般由铸钢或钢板焊接而成,其中不允许有夹渣、砂眼、裂纹等缺陷,并按桨叶可承受的最大离心力载荷来设计。
主轴也称低速轴,将转子轴心与齿轮箱连接在一起,由于承受的扭矩较大,其转速一般小于50r/min,一般由40Cr或其他高强度合金钢制成。
(3)增速器增速器就是齿轮箱,是风力发电机组关键部件之一。
由于风轮机工作在低转速下,而发电机工作在高转速下,为实现匹配采用增速齿轮箱。
使用齿轮箱可以将风电机转子上的较低转速、较高转矩转换为用于发电机上的较高转速、较低转矩。
(4)联轴器增速器与发电机之间用联轴器连接,为了减少占地空间,往往联轴器与制动器设计在一起。
(5)制动器制动器是使风力发电机停止转动的装置,也称刹车。
(6)发电机发电机是风力发电机组中最关键的部件,是将风能最终转变成电能的设备。
发电机的性能好坏直接影响整机效率和可靠性。
大型风电机(100-150千瓦)通常产生690伏特的三相交流电。
然后电流通过风电机旁的变压器(或在塔内),电压被提高至1-3万伏,这取决于当地电网的标准。
风力发电机上常用的发电机有以下几种:①直流发电机,常用在微、小型风力发电机上。
②永磁发电机,常用在小型风力发电机上。
现在我国已经发明了交流电压440/240V的高效永磁交流发电机,可以做成多对极低转速的,特别适合风力发电机。
③同步或异步交流发电机,它的电枢磁场与主磁场不同步旋转,其转速比同步转速略低,当并网时转速应提高。
(7)塔架塔架是支撑风力发电机的支架。
塔架有型钢架结构的,有圆锥型钢管和钢筋混凝土的等三种形式,风电机塔载有机舱及转子。
(8)调速装置风速是变化的,风轮的转速也会随风速的变化而变化。
为了使风轮运转所需要额定转速下的装置称为调速装置,调速装置只在额定风速以上时调速。
目前世界各国所采用的调速装置主要有以下几种:○1可变浆距的调速装置;○2定浆距叶尖失速控制的调速装置;○3离心飞球调速装置;○4空气动力调速装置;○5扭头、仰头调速装置。
(9)调向(偏航)装置调向装置就是使风轮正常运转时一直使风轮对准风向的装置。
借助电动机转动机舱以使转子正对着风。
偏航装置由电子控制器操作,电子控制器可以通过风向标来感觉风向。
通常在风改变其方向时,风电机一次只会偏转几度。
(10)风力发电机微机控制系统[11]风力发电机的微机控制属于离散型控制,是将风向标、风速计、风轮转速、发电机电压、频率、电流、发电机温升、增速器温升、机舱振动、塔架振动、电缆过缠绕、电网电压、电流、频率等传感器的信号经A/D转换,输送给单片机再按设计程序给出各种指令实现自动启动、自动调向、自动调速、自动并网、自动解列、运行中机组故障的自动停机、自动电缆解绕、过振动停机、过大风停机等的自动控制。
自我故障诊断及微机终端故障输出需维修的故障,由维修人员维修后给微机以指令,微机再执行自动控制程序。
风电场的机组群可以实现联网管理、互相通信,出现故障的风机会在微机总站的微机终端和显示器上读出、调出程序和修改程序等,使现代风力发电机真正实现了现场无人职守的自动控制。
(11)电缆扭缆计数器电缆是用来将电流从风电机运载到塔下的重要装置。
但是当风电机偶然沿一个方向偏转太长时间时,电缆将越来越扭曲,导致电缆扭断或出现其他故障。
因此风力发电机配备有电缆扭曲计数器,用于提醒操作员应该将电缆解开了。
风力发电机还会配备有拉动开关在电缆扭曲太厉害时被激发,断开装置或刹车停机,然后解缆。