光学基本知识点总结
- 格式:docx
- 大小:37.43 KB
- 文档页数:3
光学常考知识点总结下面将对光学常考知识点进行总结,包括光的直线传播、光的反射和折射、透镜和光的波动性等内容。
一、光的直线传播1. 光的直线传播是指在均匀介质中,光线遇到不透明物体时,会沿着直线传播。
这是光的基本特性之一,也是光学的基本原理之一。
2. 在光的直线传播中,光线可以沿着直线传播,但也可以被透明介质中的粗糙表面所散射。
同时,如果光线通过介质的边界,如从空气射入玻璃,会发生折射现象。
3. 光的直线传播不仅适用于自然环境中,也可以用来分析光学仪器的工作原理,如显微镜、望远镜等。
二、光的反射和折射1. 光的反射是指光线遇到光滑表面时,会以与表面垂直的角度反射回去。
这是光学中一个重要的现象,也是人们能够看到物体的原因之一。
2. 光的折射是指光线穿过介质的边界时,由于介质折射率的不同,光线的传播方向会发生变化。
这一现象在实际生活中也是很常见的,如水中看到的物体会比在空气中看到的位置更高。
3. 光的反射和折射是光学中的两个重要概念,在教学中需要重点强调和讲解。
三、透镜1. 透镜是一种能够将光线聚焦或发散的光学器件,是光学中的重要组成部分。
在现代工业和科技中,透镜被广泛应用于许多领域,如光学仪器、相机、激光器等。
2. 透镜分为凸透镜和凹透镜两种类型,分别用于光线的聚焦和发散。
3. 透镜的工作原理是通过对光线的折射来实现的,凸透镜和凹透镜分别使光线在一个点聚焦和发散。
四、光的波动性1. 光的波动性是光学中一个非常重要的概念,它能够很好地解释光的折射、干涉和衍射现象。
2. 光的波动性是指光在传播过程中会表现出波动的特性,如干涉和衍射。
这一特性是光学的一个基本原理,也是光学实验中常见的现象。
3. 光的波动性在光学中有着广泛的应用,如激光技术、光纤通信等都涉及到了光的波动性。
以上就是光学常考知识点的总结,光学是一门非常重要的学科,对于中学生来说,掌握这些基本知识对学业以及未来的发展都有着非常重要的意义。
希望学生们能够认真学习光学知识,提高自己的光学素养,为将来的学习和工作打下坚实的基础。
光学必看知识点光学是研究光的传播、干涉、衍射、偏振、折射和吸收等现象的科学。
它在我们日常生活中有着广泛的应用,如光学仪器、光纤通信、激光技术等。
为了更好地理解光学的基本原理和应用,本文将从光的本质、光的传播和折射、光的衍射和干涉以及光的偏振等方面介绍光学的必看知识点。
一、光的本质光是一种电磁波,它由电场和磁场相互作用而产生。
光的频率决定了它所属的光谱区域,如可见光、红外线和紫外线等。
光速是一个常数,约为3×10^8米/秒。
光的波粒二象性理论认为,光既可以看作是波动的电磁波,也可以看作是由光子组成的粒子。
二、光的传播和折射光在真空中传播的速度是最快的,当光从真空射入介质中时,会发生折射现象。
折射现象是由于光在不同介质中传播速度的差异导致的。
根据斯涅尔定律,入射角和折射角之间的正弦比等于两种介质的折射率之比。
这一定律解释了为什么光在从空气射入水中时会发生折射,造成光线弯曲的现象。
三、光的衍射和干涉衍射是光通过一个小孔或者绕过一个障碍物后的扩散现象。
当光通过小孔时,产生的衍射现象可以解释为光波在小孔边缘弯曲并扩散出来。
干涉是指光波的叠加现象,当两个或者多个光波相遇时,会产生一系列干涉条纹。
干涉现象常见于光的波长相近的情况下,例如劈尖干涉和杨氏干涉。
四、光的偏振光的偏振是指光波在传播过程中只在一个方向上振动。
自然光是无偏振的,它的振动方向在各个方向上都有。
偏振片是一种可以选择光波振动方向的光学元件,它可以将自然光转变为偏振光。
偏振光在许多应用中起到重要作用,如液晶显示器和偏振镜等。
总结光学是一门研究光的传播和相互作用的科学,它在日常生活中有着广泛的应用。
本文从光的本质、光的传播和折射、光的衍射和干涉以及光的偏振等方面介绍了光学的必看知识点。
通过了解这些知识点,我们可以更好地理解光学的基本原理,并应用于实际生活和工作中。
大学光学重要知识点总结一、光的传播1. 光的波动理论光的波动理论是光学的基础理论之一。
光是一种电磁波,具有波长、频率和振幅等特性。
根据光的波动理论,光在空间中传播时会呈现出各种波动现象,如衍射、干涉等。
2. 光的速度光的速度是一个常数,即光速。
经典物理学认为,光在真空中的速度为3.00×10^8m/s,而在介质中的速度会略有变化。
3. 光的直线传播根据光的波动理论,光在各种介质中传播时会呈现出一定的直线传播特性,这是光学成像等现象的基础。
4. 光的衍射光的衍射是光在传播过程中遇到障碍物或小孔时发生的波动现象。
衍射现象是由光的波动特性决定的,可用于解释光的散射、干涉等现象。
二、光的折射1. 光的折射定律光的折射定律是光学的重要定律之一。
它描述了光线在两种介质之间传播时,入射角和折射角之间的关系。
根据折射定律,入射角和折射角满足一个固定的比例关系,即折射率的比值。
2. 光的全反射当光线从折射率较高的介质射向折射率较低的介质时,当入射角达到一定的临界角时,光线将会全部反射回原介质中,这种现象称为全反射。
3. 光的偏振光是一种横波,它的振动方向对于传播方向是垂直的。
当光线在某些条件下只有一个振动方向时,称为偏振光。
三、光的干涉1. 光的干涉现象光的干涉是光学领域中一个重要的现象。
当两束相干光线叠加在一起时,它们会产生明暗条纹的干涉现象。
这种现象是由光的波动特性决定的。
2. 干涉条纹的特性干涉条纹呈现出一定的规律性,包括等倾干涉和等厚干涉等。
在实际应用中,可以通过观察干涉条纹来测量光的波长、介质的折射率等。
3. 干涉仪的应用干涉仪是利用光的干涉现象来测量各种参数的仪器,包括菲涅尔双镜干涉仪、迈克尔逊干涉仪等。
它们在科学研究和工程应用中有着广泛的应用。
四、光的衍射1. 光的衍射现象光的衍射是光学的另一个重要现象。
当光线遇到障碍物或小孔时,会呈现出一系列的衍射现象,包括菲涅耳衍射、费涅尔-基尔霍夫衍射等。
物理高中光学知识点总结一、光的性质1. 光的波动性光既具有波动性,也具有粒子性。
光的波动性体现在光的传播过程中,如光的干涉和衍射现象。
而光的粒子性体现在光的能量是以光子的形式传播的,光的粒子性主要与光的光电效应和康普顿效应等现象有关。
2. 光的传播速度光在真空中传播的速度为299792458m/s,通常用c表示。
而在介质中,光的传播速度会减小,不同介质中的光速不同。
3. 光的颜色白光是由各种不同波长的光波混合而成的,而不同波长的光波对应不同的颜色。
当光通过三棱镜或光栅时,会发生色散现象,将白光分解成不同颜色的光谱。
4. 光的偏振光是一种横波,具有振动的方向。
光振动方向的平面称为偏振面,垂直于偏振面的方向称为偏振光。
在光的偏振现象中,我们主要关注线偏振光和圆偏振光。
二、光的传播1. 光的直线传播在介质中,光具有直线传播的特性,光线可以通过凸透镜、凹透镜的机理可以解释光线的传播和成像。
2. 光的衍射当光通过一个大小与波长相当的孔或障碍物时,会发生衍射现象。
衍射现象可用多缝干涉或单缝衍射公式进行计算。
3. 光的干涉当两道光波相遇时,会发生干涉现象。
光的干涉一般分为相干干涉和非相干干涉,其中激光干涉是一种重要的相干干涉。
三、光的反射与折射1. 光的反射定律光线在与物体表面相遇时,会发生反射现象。
光的反射定律规定了入射角、反射角和法线之间的关系。
2. 光的折射定律当光线从一种介质传播到另一种介质中时,会发生折射现象。
光的折射定律规定了入射角、折射角和介质折射率之间的关系。
3. 透镜的成像规律凸透镜和凹透镜分别具有不同的成像规律。
通过透镜成像公式可以计算物体和像的位置关系。
四、光的使用与应用1. 显微镜显微镜是一种使用透镜放大微小物体的仪器,通过显微镜可以观察到微生物、细胞等微小物体。
2. 望远镜望远镜是一种用透镜或反射镜放大远处物体的仪器,通过望远镜可以观察到远处的星星、行星等天体。
3. 激光技术激光技术是一种利用激光放大器产生激光束的技术,激光技术广泛应用于通信、医疗、制造等领域。
光学体系知识点梳理总结一、光学基础知识1. 光的本质光是电磁波的一种,是一种由电场和磁场交替而成的波动现象。
光是由光源发出,经过介质传播,最终影响我们的视觉系统。
2. 光的特性(1)波动特性:光具有波动性,可以表现为干涉、衍射、偏振等现象。
(2)微粒特性:光也具有微粒性,可以用光子模型解释光电效应、康普顿效应等现象。
3. 光的传播(1)直线传播:在均匀介质中,光沿着直线传播,遵循光的直线传播定律。
(2)折射现象:当光线从一种介质进入另一种介质时,会发生折射现象,遵循折射定律。
(3)反射现象:当光线从介质表面反射时,遵循反射定律。
4. 光的颜色白光是由所有可见光波长组成的,当光通过色散介质时,不同波长的光会按不同程度发生偏折,从而产生色散现象。
5. 光学仪器(1)凸透镜:透镜是一种光学元件,可以将平行入射的光线聚焦或发散。
(2)凹透镜:凹透镜同样可以将平行入射的光线聚焦或发散,与凸透镜形成对称。
(3)棱镜:通过对光的折射和衍射,可以实现光的分光和复合。
二、光学成像1. 成像原理成像是光学系统中非常重要的一部分,成像原理是指当物体放在一定位置时,通过透镜、镜面等光学元件可以在另一位置产生与实物相似的像。
2. 透镜成像透镜成像是指通过透镜实现对物体的成像,分为凸透镜和凹透镜成像。
3. 成像公式成像公式是描述透镜成像的数学关系式,可以根据物距、像距、焦距等参数计算成像的位置和大小。
4. 像的性质像的性质包括实像与虚像、正像与负像、放大与缩小等,是成像过程中需要了解的重要内容。
5. 透镜组成像透镜组成像是指通过不同透镜的组合实现对物体的成像,常见的透镜组包括双凸透镜组、凹凸透镜组等。
6. 成像畸变(1)球差:由于透镜的非理想性,会出现球差现象,导致成像的模糊和色差。
(2)色差:不同波长的光经过透镜时折射角度不同,会导致色差现象,影响成像的清晰度。
三、光学仪器1. 望远镜望远镜是一种基于透镜或镜面的光学仪器,可以放大远处物体的像,包括折射望远镜和反射望远镜。
光学知识点总结光学是物理学的一个重要分支,它研究光的性质、传播以及与物质的相互作用。
下面我们来详细总结一下光学的主要知识点。
一、光的直线传播光在同种均匀介质中沿直线传播。
这是光的一个基本传播规律。
生活中,小孔成像、日食月食等现象都可以用光的直线传播来解释。
小孔成像中,所成的像是倒立的实像,像的大小与孔到光屏的距离以及物体到孔的距离有关。
日食是月球挡住了太阳射向地球的光,月食则是地球挡住了太阳射向月球的光。
二、光的反射当光射到物体表面时,有一部分光会被反射回来,这种现象叫做光的反射。
反射定律指出:反射光线、入射光线和法线在同一平面内,反射光线和入射光线分居法线两侧,反射角等于入射角。
平面镜成像就是光的反射的一个典型应用。
平面镜所成的像是虚像,像与物体大小相等、像与物体到平面镜的距离相等、像与物体的连线与平面镜垂直。
我们照镜子时看到的像就是平面镜所成的像。
三、光的折射光从一种介质斜射入另一种介质时,传播方向发生偏折,这种现象叫光的折射。
折射定律表明:折射光线、入射光线和法线在同一平面内,折射光线和入射光线分居法线两侧;入射角的正弦与折射角的正弦成正比。
在生活中,我们常见的折射现象有插入水中的筷子看起来“折断”了、从岸上看水中的鱼位置变浅了等。
四、透镜透镜分为凸透镜和凹透镜。
凸透镜对光有会聚作用,凹透镜对光有发散作用。
凸透镜成像规律是光学中的一个重点内容。
当物距大于二倍焦距时,成倒立、缩小的实像,像距在一倍焦距和二倍焦距之间,应用如照相机;当物距在一倍焦距和二倍焦距之间时,成倒立、放大的实像,像距大于二倍焦距,应用如投影仪;当物距小于焦距时,成正立、放大的虚像,应用如放大镜。
五、光的色散太阳光通过三棱镜后,被分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光,这种现象叫光的色散。
这表明白光是由各种色光混合而成的。
彩虹就是自然界中的光的色散现象。
六、眼睛和眼镜人的眼睛好像一架照相机,晶状体和角膜的共同作用相当于一个凸透镜,视网膜相当于光屏。
光学的知识点总结一、光的波动性和粒子性1. 光的波动性:光是一种电磁波,具有波动性。
光的波长、频率和速度是其波动特性的重要参数。
根据光的波长,可以将光分为可见光、紫外光、红外光等不同波长范围的光谱。
2. 光的粒子性:光也具有粒子性,即光子。
光子是光的传播媒介,通过光子理论可以解释光的干涉、衍射等现象。
二、光的反射和折射1. 光的反射:当光线遇到一个光滑的表面时,会发生反射。
根据反射定律,入射角等于反射角。
2. 光的折射:当光线从一种介质进入另一种介质时,会发生折射。
根据折射定律,入射角、折射角和介质的折射率之间存在一定的关系。
三、透镜和成像1. 透镜的类型:透镜可以分为凸透镜和凹透镜。
凸透镜将光线汇聚到一个焦点,而凹透镜是分散光线。
2. 成像规律:透镜成像遵循一些规律,例如物距、像距、物高、像高之间的关系可以通过透镜成像公式进行计算。
四、干涉和衍射1. 干涉:当两束光波相遇时,它们会发生干涉现象。
根据干涉现象可以制作干涉仪,用于测量光的波长、薄膜厚度等参数。
2. 衍射:当光波通过一个小孔或物体边缘时,会发生衍射现象。
衍射可以用来解释光的弯曲现象,并且是激光技术中的重要原理。
五、光的偏振1. 偏振现象:光在传播过程中会发生偏振现象,即光振动方向的归一化。
根据偏振现象可以制作偏振片,用于光学仪器中的光控制和分析。
2. 偏振方向:偏振片能够将非偏振光或自然光转化为具有特定偏振方向的偏振光。
六、光的吸收和发射1. 光的吸收:物质对光的吸收能力与物质的性质有关,一些物质对特定波长的光具有很强的吸收能力。
2. 光的发射:当物质受到激发时,会发射出特定波长的光,这被称为发射现象。
发射光谱可以用来分析物质的组成和结构。
七、光学系统和光学仪器1. 光学系统:由一系列光学元件(例如透镜、棱镜、偏振片、镜面等)构成的光学装置称为光学系统。
光学系统广泛应用于望远镜、显微镜、光学显微镜、激光器等光学仪器中。
2. 光学仪器:使用光学系统进行光学成像、测量、分析等目的的装置称为光学仪器。
初中物理光学知识点总结一、光的基础知识1. 光的传播- 光在同种均匀介质中沿直线传播。
- 光速在真空中约为3×10^8 m/s,在其他介质中速度会减小。
2. 光的反射- 反射定律:入射光线、反射光线和法线在同一平面内,且入射角等于反射角。
- 镜面反射:光滑表面反射光线规律性强,反射光线与入射光线平行。
- 漫反射:粗糙表面反射光线规律性弱,反射光线向各个方向散射。
3. 光的折射- 折射现象:光线从一种介质进入另一种介质时,传播方向发生改变。
- 折射定律:斯涅尔定律,n1sinθ1 = n2sinθ2,其中n1和n2分别为两种介质的折射率,θ1和θ2分别为入射角和折射角。
- 折射率:表示光在介质中传播速度相对于真空中速度的比值。
4. 光的颜色- 可见光是电磁波谱中的一部分,波长大约在380 nm到750 nm之间。
- 颜色由光的波长决定,不同波长的光对应不同的颜色。
- 光谱:通过棱镜可以将白光分解为不同颜色的光,形成彩虹般的光谱。
二、透镜及其成像1. 透镜的类型- 凸透镜:两侧向外凸起,能使平行光线汇聚于一点。
- 凹透镜:两侧向内凹陷,能使平行光线发散。
2. 透镜成像规律- 凸透镜成像:- 当物体位于焦点之内,成正立、放大的虚像。
- 当物体位于焦点之外,成倒立、缩小的实像。
- 凹透镜成像:- 成正立、缩小的虚像。
3. 透镜的光学参数- 焦距:透镜中心到焦点的距离。
- 视距:透镜中心到成像位置的距离。
- 放大倍数:成像与物体大小的比值。
三、光的干涉和衍射1. 光的干涉- 干涉现象:两束或多束相干光波相遇时,光强增强或减弱的现象。
- 干涉条件:两束光波的频率相同,相位差恒定。
2. 光的衍射- 衍射现象:光波遇到障碍物或通过狭缝时,传播方向发生偏离直线的现象。
- 单缝衍射:光波通过一个狭缝时产生的衍射图样。
四、光的偏振1. 偏振光- 偏振光是振动方向受到限制的光波。
- 通过偏振片可以获得只在一个方向上振动的线偏振光。
光学必备知识点总结图解光学是研究光的传播、反射、折射以及与物质相互作用的一门学科。
在现代科技中,光学应用广泛,包括光纤通信、激光技术、光学显微镜、望远镜、光学测量等方面。
因此,了解光学的基本知识对于我们理解现代科技、发展科学技术至关重要。
在本文中,将对光学的基本知识点进行总结,包括光的性质、光的传播、折射、反射、色散、光学仪器等方面的知识点,希望对读者有所帮助。
一、光的性质1. 光的波动性光具有波动性质,即光是以波的形式传播的。
光波的传播方式可以用波长、频率、波速来描述。
光的波长决定了光的颜色,不同波长的光对应不同的颜色。
波长和频率之间有着一定的关系,即速度等于波长乘以频率。
在真空中,光的波速是一个恒定值,即光速等于约299,792,458米/秒,记作c。
2. 光的粒子性光也具有粒子性质,即光是由一些微小的粒子组成的。
这些粒子被称为光子,是光的一个基本单位。
光的粒子性质可以用来解释一些光学现象,如光电效应、康普顿散射等。
3. 光的干涉和衍射干涉是指两束相干光叠加在一起时会产生明暗条纹的现象。
衍射是指光通过狭缝或物体边缘时会发生偏折的现象。
这两个现象是光的波动性质的重要体现。
二、光的传播1. 光的直线传播在均匀介质中,光沿着一条直线传播。
这是光学的一个基本原理,也是光学成像的基础。
2. 光的折射当光线从一种介质射入到另一种介质中时,光线会发生折射。
折射定律表明了入射角、折射角和介质折射率之间的关系。
这个定律对于理解光在介质中的传播有着重要的意义。
3. 光的反射当光线与界面垂直入射时,光线会发生反射。
反射定律规定了入射角和反射角之间的关系。
反射还可以产生镜面反射和漫反射两种形式。
三、光的折射1. 透镜透镜是一种光学器件,主要分为凸透镜和凹透镜两种。
透镜可以将平行光线汇聚成一个点,也可以将一点光源产生的光线汇聚成一个点。
透镜的焦距决定了透镜的成像性能。
2. 成像原理成像原理是指由透镜成像的规律。
通过透镜,可以将物体成像到焦平面上,形成实物像或虚物像。
光学知识点经典归纳总结光学是研究光的行为和性质的物理学门。
它涉及到光的产生、传播和作用等方面的研究。
光学在科学研究、工程技术、医学影像、天文观测等领域都有着广泛的应用。
本文将对光学的相关知识点进行经典归纳总结,包括光的传播、折射、色散、透镜、干涉和衍射等方面的内容。
一、光的传播1. 光的概念光是一种以波动形式传播的电磁波。
它不需要介质来传播,可以在真空中传播。
光的波长范围为380nm到780nm,主要分为可见光和不可见光两种。
2. 光的速度光速是一切物质和能量传播的极速,为3.00×10^8m/s。
光速在不同介质中会发生变化,一般情况下光速在空气中速度最快。
3. 光的直线传播光在各向同性均匀介质中呈直线传播。
光线是指用箭头表示,表示光线传递的方向,光线每一点的方向与该点的波矢相同。
4. 光的散射光在传播过程中会与各种物质发生相互作用,产生反射、折射、散射等现象。
其中散射是指光在特定物质表面上发生分散现象,通常颗粒发生尺度要比光波长大。
5. 光的损失在光的传播过程中,会存在一定程度的损失。
根据不同的物质特性和光的传播距离,会导致光的损失。
常见的损失方式有散射、吸收和热效应等。
二、光的折射1. 折射定律当光线从一个均匀介质进入另一个均匀介质时,光线的入射角和折射角之比是一个恒定值,这个恒定值被称为介质的折射率。
光的折射定律可以用来解释光在介质之间传播时的折射规律。
2. 折射率介质对光的折射能力大小可以用折射率来表示。
不同介质的折射率不同,一般情况下折射率大于1。
折射率可以通过折射定律和斯涅尔定律来计算。
3. 全反射当光从折射率较大的介质射入折射率较小的介质时,入射角大于临界角时发生全反射。
全反射可以用来解释光在光纤中传播时的反射规律。
4. 折射率与波长光的波长与介质的折射率有关,根据折射率公式可以计算出不同波长光的折射率。
5. 折射率与光的速度光在不同介质中的传播速度不同,而折射率与速度成反比关系。
光学基本知识点总结
光学是一门研究光传播、控制和利用的学科,以光为研究对象,是物理学的重要分支之一。
在现代科学技术中,光学在激光、光
电子技术、光通信、光存储、光制造等领域得到广泛应用。
本文
将介绍光学的基本知识点,包括光的本质、光的传播、折射、反射、干涉、衍射等内容,帮助读者全面了解光学。
一、光的本质
光是一种电磁波,具有波粒二象性。
光的波长决定了它的颜色,短波长的光呈蓝色,长波长的光呈红色。
光的速度约为每秒300000公里,在真空中传播速度不受模式、光源、光线方向等影响,光在介质中传播速度会发生变化,即出现光的折射现象。
二、光的传播
光在空气中是直线传播的,在其他介质中会发生光的折射。
光
线的传播方向和传播速度都是沿着光线法线的垂直方向,在不同
介质中光的速度不同,根据斯涅尔定律可以计算光线折射角度。
光的传播还可以遵循菲涅耳衍射规律,即光经过一个小孔、缝隙
或边缘会形成衍射,这种现象称为菲涅耳衍射。
三、折射
折射是指光线从一种介质进入另一种介质时,由于光速的不同
而改变传播方向的现象,即光线偏离的现象。
在光线通过界面进
入另一种介质时,会出现折射率不同,折射角度不同的现象,这
个现象也可以被称之为光的折射现象。
根据斯涅尔定律,可以计
算出光线折射的角度。
四、反射
反射是光线遇到障碍物或界面时,发生方向改变的现象。
光线
在遇到界面时可能会发生反射和折射两种现象,反射光线会遵守
反射定律,即入射角等于反射角。
在反光镜、平面镜等物体上,
反射光线起着重要作用,它可以形成影像,产生特定的影像效果。
五、干涉
干涉是指两束光线相遇时,由于它们的波长、相位、方向、强
度等参数不同,会出现相互作用的现象。
干涉分为光程差干涉和
振幅干涉。
光程差干涉是指两束光线走过的路程不同,产生相位
的差别,形成明纹和暗纹。
振幅干涉是指两束光线的干涉是由于
它们的波长、强度和相对相位不同而产生的。
六、衍射
衍射是指光线通过一个孔或缝隙时,光线经过弯曲、扩散等变化,从孔径周围发散出去,产生向不同方向辐射的现象。
衍射是
一个广泛存在于光学现象中的物理现象。
它在红外线检测、X射
线晶体分析、液晶显示器等领域有广泛应用,在物理实验中具有
重要地位。
综上所述,光学是一个重要的物理学分支,它以光为研究对象,探索光的传播、折射、反射、干涉、衍射等现象。
了解基本光学
知识对于科学研究和现代技术的发展都具有重要意义,也有助于
让人们更好地理解光的奥妙所在。