高一数学几类不同增长的函数模型3
- 格式:ppt
- 大小:583.50 KB
- 文档页数:24
§3.2.1 几类不同增长的函数模型一、三维目标:1.知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义, 理解它们的增长差异性.2.过程与方法能够借助信息技术, 利用函数图象及数据表格, 对几种常见增长类型的函数的增长状况进行比较, 初步体会它们的增长差异性; 收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幂函数、分段函数等), 了解函数模型的广泛应用.3.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.二、教学重点、难点:1.教学重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.2.教学难点选择合适的数学模型分析解决实际问题.三、学法与教学用具:1.学法:学生通过阅读教材,动手画图,自主学习、思考,并相互讨论,进行探索.2.教学用具:多媒体.四、教学设想:(一)引入实例,创设情景.教师引导学生阅读例1,分析其中的数量关系,思考应当选择怎样的函数模型来描述;由学生自己根据数量关系,归纳概括出相应的函数模型,写出每个方案的函数解析式,教师在数量关系的分析、函数模型的选择上作指导.(二)互动交流,探求新知.1.观察数据,体会模型.教师引导学生观察例1表格中三种方案的数量变化情况,体会三种函数的增长差异,说出自己的发现,并进行交流.2.作出图象,描述特点.教师引导学生借助计算器作出三个方案的函数图象,分析三种方案的不同变化趋势,并进行描述,为方案选择提供依据.(三)实例运用,巩固提高.1.教师引导学生分析影响方案选择的因素,使学生认识到要做出正确选择除了考虑每天的收益,还要考虑一段时间内的总收益.学生通过自主活动,分析整理数据,并根据其中的信息做出推理判断,获得累计收益并给出本例的完整解答,然后全班进行交流.2.教师引导学生分析例2中三种函数的不同增长情况对于奖励模型的影响,使学生明确问题的实质就是比较三个函数的增长情况,进一步体会三种基本函数模型在实际中广泛应用,体会它们的增长差异.3.教师引导学生分析得出:要对每一个奖励模型的奖金总额是否超出5万元,以及奖励比例是否超过25%进行分析,才能做出正确选择,学会对数据的特点与作用进行分析、判断。
课时达标检测几类不同增长的函数模型在数学中,函数可以用来描述变量之间的关系。
而不同类型的函数模型则可以用来描述这些关系的增长方式。
下面将介绍一些常见的函数模型。
1.线性增长模型:线性函数是最简单的一类函数模型,表示为 f(x) = ax + b,其中a和b为常数。
线性函数的图像是一条直线,增长速度恒定且呈直线趋势。
这种模型适用于简单的增长关系,比如物体的匀速直线运动。
2.指数增长模型:指数函数是一种常见的非线性增长模型,表示为f(x)=a^x,其中a为常数。
指数函数的图像是递增或递减的曲线,增长速度随着x的增加而指数级增加。
这种模型适用于一些现实世界中的增长现象,如人口增长和电子器件的寿命。
3.幂函数增长模型:幂函数是另一种常见的非线性增长模型,表示为 f(x) = ax^b,其中a和b为常数。
幂函数的图像是典型的S形曲线,增长速度随着x的增加而减缓。
这种模型适用于一些复杂的增长关系,如生物种群的增长和金融市场的发展。
4.对数增长模型:对数函数是一种特殊的非线性增长模型,表示为 f(x) = logax,其中a为常数。
对数函数的图像是一条递增但增长速度逐渐减缓的曲线。
这种模型适用于一些增长趋势相对缓慢的关系,如细菌的增长和信息传输的速度。
需要注意的是,上述的函数模型只是一些常见的例子,并不能穷尽所有的可能性。
实际问题中,可能需要根据具体情况选择不同的函数模型来描述变量之间的关系。
此外,还可以将不同类型的函数模型进行组合和变换,以适应更复杂的增长过程。
在实际应用中,可以通过观察数据的变化趋势来选择合适的函数模型。
并利用统计方法来估计函数模型的参数,从而得到最佳拟合的函数曲线。
同时,还可以利用函数模型来进行预测和推断,以了解变量之间的关系及其未来的发展趋势。
总之,不同类型的函数模型可以用来描述不同的增长方式。
选择合适的函数模型可以更好地理解和解释数据的背后规律,从而对实际问题做出更准确的预测和分析。
专题38 不同函数增长的差异1.三种函数模型的性质(1)当a>1时,指数函数y=a x是增函数,并且当a越大时,其函数值的增长就越快.(2)当a>1时,对数函数y=log a x是增函数,并且当a越小时,其函数值的增长就越快.(3)当x>0,n>1时,幂函数y=x n显然也是增函数,并且当x>1时,n越大,其函数值的增长就越快.(4)一般地,虽然指数函数y=a x(a>1)与一次函数y=kx(k>0)在区间[0,+∞)上都单调递增,但它们的增长速度不同,随着x的增大,指数函数y=a x(a>1)的增长速度越来越快,即使k的值远远大于a的值,y=a x(a>1)的增长速度最终都会超过并远远大于y=kx的增长速度.尽管在x的一定变化范围内,a x会小于kx,但由于指数函数y=a x(a>1)的增长最终会快于一次函数y=kx(k>0)的增长,因此,总会存在一个x0,当x>x0时,恒有a x>kx.(5)一般地,虽然对数函数y=log a x(a>1)与一次函数y=kx(k>0)在区间(0,+∞)上都单调递增,但它们的增长速度不同.随着x的增大,一次函数y=kx(k>0)保持固定的增长速度,而对数函数y=log a x(a>1)的增长速度越来越慢.不论a的值比k的值大多少,在一定范围内,log a x可能会大于kx,但由于log a x的增长慢于kx的增长,因此总会存在一个x0,当x>x0时,恒有log a x<kx.3.指数函数、对数函数和幂函数的增长差异一般地,在区间(0,+∞)上,尽管函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但它们的增长速度不同,而且不在同一个“档次”上.随着x的增大,y=a x(a>1)的增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢,总会存在一个x0,当x>x0时,就有log a x<x n<a x.题型一几类函数模型增长差异的比较1.下列函数中,增长速度最快的是()A.y=2 019x B.y=2019C.y=log2 019x D.y=2 019x[解析]指数函数y=a x,在a>1时呈爆炸式增长,并且随a值的增大,增长速度越快,应选A.2.下列函数中,随x 的增大,增长速度最快的是( )A .y =1B .y =xC .y =3xD .y =log 3x[解析]结合函数y =1,y =x ,y =3x 及y =l o g 3x 的图象可知(图略),随着x 的增大,增长速度最快的是y =3x . 3.当a >1时,有下列结论:①指数函数y =a x ,当a 越大时,其函数值的增长越快; ②指数函数y =a x ,当a 越小时,其函数值的增长越快; ③对数函数y =log a x ,当a 越大时,其函数值的增长越快; ④对数函数y =log a x ,当a 越小时,其函数值的增长越快. 其中正确的结论是( )A .①③B .①④C .②③D .②④[解析]结合指数函数及对数函数的图象可知①④正确.故选B.4.下面对函数f (x )=log 12x ,g (x )=⎝⎛⎭⎫12x与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是( ) A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢 B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快 C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变 D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快[解析]观察函数f (x )=log 12x ,g (x )=⎝⎛⎭⎫12x 与h (x )=-2x 在区间(0,+∞)上的图象(如图)可知:函数f (x )的图象在区间(0,1)上递减较快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢,同样,函数g (x )的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h (x )的图象递减速度不变. 5.函数y =x 2与函数y =x ln x 在区间(0,+∞)上增长较快的一个是________ . [解析]当x 变大时,x 比ln x 增长要快,∴x 2要比x ln x 增长的要快. 6.四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如表: x 1 5 10 15 20 25 30 y 1 2 26 101 226 401 626 901 y 2 2 32 1 024 37 768 1.05×1063.36×1071.07×109y 3 2 10 20 30 40 50 60 y 424.3225.3225.9076.3226.6446.907[解析]以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.故填y2.7.以固定的速度向如图所示的瓶子中注水,则水面的高度h和时间t之间的关系是()[解析]水面的高度增长得越来越快,图象应为B.8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()[解析]小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除A.因交通堵塞停留了一段时间,与学校的距离不变,故排除D.后来为了赶时间加快速度行驶,故排除B.故选C.9.生活经验告诉我们,当水注入容器(设单位时间内进水量相同)时,水的高度随着时间的变化而变化,在图中请选择与容器相匹配的图象,A对应________;B对应________;C对应________;D对应________.[解析] A容器下粗上细,水高度的变化先慢后快,故与(4)对应;B容器为球形,水高度变化为快—慢—快,应与(1)对应;C,D容器都是柱形的,水高度的变化速度都应是直线型,但C容器细,D容器粗,故水高度的变化为:C容器快,与(3)对应,D容器慢,与(2)对应.题型二指数函数、对数函数、幂函数、一次函数模型的比较1.y1=2x,y2=x2,y3=log2x,当2<x<4时,有()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y2>y3>y1[解析]在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=l o g2x,故y2>y1>y3.2.下列各项是四种生意预期的收益y关于时间x的函数,从足够长远的角度看,更为有前途的生意是___.①y=10×1.05x;②y=20+x1.5;③y=30+lg(x-1);④y=50.[解析]结合三类函数的增长差异可知①的预期收益最大,故填①.3.当2<x<4时,2x,x2,log2x的大小关系是()A.2x>x2>log2x B.x2>2x>log2xC.2x>log2x>x2D.x2>log2x>2x[解析]解法一:在同一平面直角坐标系中分别画出函数y=log2x,y=x2,y=2x,在区间(2,4)上从上往下依次是y=x2,y=2x,y=log2x的图象,所以x2>2x>log2x.解法二:比较三个函数值的大小,作为选择题,可以采用特殊值代入法.可取x=3,经检验易知选B. 4.某地区植被被破坏,土地沙漠化越来越严重,最近三年测得沙漠增加值分别为0.2万公顷、0.4万公顷和0.76万公顷,则沙漠增加数y公顷关于年数x的函数关系较为近似的是()A.y=0.2x B.y=110(x2+2x)C.y=2x10D.y=0.2+log16x[解析]用排除法,当x=1时,排除B项;当x=2时,排除D项;当x=3时,排除A项.5.四人赛跑,假设他们跑过的路程f i(x)(其中i∈{1,2,3,4})和时间x(x>1)的函数关系分别是f1(x)=x2,f2(x)=4x,f3(x)=log2x,f4(x)=2x,如果他们一直跑下去,最终跑在最前面的人具有的函数关系是() A.f1(x)=x2B.f2(x)=4xC.f3(x)=log2x D.f4(x)=2x[解析]显然四个函数中,指数函数是增长最快的,故最终跑在最前面的人具有的函数关系是f4(x)=2x,故选D.6.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为()A B C D[解析]设该林区的森林原有蓄积量为a ,由题意可得ax =a (1+0.104)y ,故y =l o g 1.104x (x ≥1),所以函数y =f (x )的图象大致为D 中图象,故选D.7.某地为加强环境保护,决定使每年的绿地面积比上一年增长10%,那么从今年起,x 年后绿地面积是今年的y 倍,则函数y =f (x )的大致图象是( )[解析]设今年绿地面积为m ,则有my =(1+10%)x m ,∴y =1.1x ,故选D . 8.某工厂8年来某种产品的总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快; ②前三年产量增长的速度越来越慢; ③第三年后这种产品停止生产; ④第三年后产量保持不变. 其中说法正确的序号是________.[解析]由t ∈[0,3]的图象联想到幂函数y =x α(0<α<1).反映了总产量C 随时间t 的变化而逐渐增长但速度越来越慢.由t ∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.9.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·0.5x +b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品的产量为________万件.[解析]∵y =a ·0.5x +b ,且当x =1时,y =1,当x =2时,y =1.5,则有⎩⎪⎨⎪⎧ 1=a ×0.5+b ,1.5=a ×0.25+b ,解得⎩⎪⎨⎪⎧a =-2,b =2,∴y =-2×0.5x +2.当x =3时,y =-2×0.125+2=1.75(万件).10.画出函数f (x )=x 与函数g (x )=14x 2-2的图象,并比较两者在[0,+∞)上的大小关系.[解析]函数f (x )与g (x )的图象如图所示.根据图象易得:当0≤x <4时,f (x )>g (x );当x =4时,f (x )=g (x );当x >4时,f (x )<g (x ).11.函数f(x)=2x 和g(x)=x 3的图象如图所示.设两函数的图象交于点A(x 1,y 1),B(x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数. (2)结合函数图象,判断f(6),g(6)的大小.[解析] (1)C 1对应的函数为g(x)=x 3,C 2对应的函数为f(x)=2x .(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x 1<2,9<x 2<10,所以x 1<6<x 2. 由图可知g(6)>f(6).12.函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝⎛⎭⎫32与g ⎝⎛⎭⎫32,f (2 019)与g (2 019)的大小. [解析] (1)C 1对应的函数为g (x )=2x ,C 2对应的函数为f (x )=2x .(2)∵f (1)=g (1),f (2)=g (2),从图象上可以看出,当1<x <2时,f (x )<g (x ), ∴f ⎝⎛⎭⎫32<g ⎝⎛⎭⎫32;当x >2时,f (x )>g (x ),∴f (2 019)>g (2 019). 13.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较). [解析] (1)C 1对应的函数为g (x )=0.3x -1,C 2对应的函数为f (x )=lg x .(2)当x <x 1时,g (x )>f (x );当x 1<x <x 2时,f (x )>g (x );当x >x 2时,g (x )>f (x );当x =x 1或x =x 2时,f (x )=g (x ).14.函数f (x )=1.1x,g (x )=ln x +1,h (x )=x 12的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a ,b ,c ,d ,e 为分界点).[解析]由指数爆炸、对数增长、幂函数增长的差异可得曲线C 1对应的函数是f (x )=1.1x ,曲线C 2对应的函数是h (x )=x 12,曲线C 3对应的函数是g (x )=ln x +1.由题图知,当x <1时,f (x )>h (x )>g (x );当1<x <e 时,f (x )>g (x )>h (x );当e <x <a 时,g (x )>f (x )>h (x );当a <x <b 时,g (x )>h (x )>f (x );当b <x <c 时,h (x )>g (x )>f (x );当c <x <d 时,h (x )>f (x )>g (x );当x >d 时,f (x )>h (x )>g (x ). 15.某国2016年至2019年国内生产总值(单位:万亿元)如下表所示:年份 2016 2017 2018 2019 x (年份代码) 0 1 2 3 生产总值y (万亿元)8.206 78.944 29.593 310.239 8(1)画出函数图象,猜想y 与x 之间的函数关系,近似地写出一个函数关系式; (2)利用得出的关系式求生产总值,与表中实际生产总值比较; (3)利用关系式预测2033年该国的国内生产总值. [解析] (1)画出函数图象,如图所示.从函数的图象可以看出,画出的点近似地落在一条直线上,设所求的函数关系式为y =kx +b (k ≠0). 把直线经过的两点(0,8.206 7)和(3,10.239 8)代入上式,解得k =0.677 7,b =8.206 7. ∴函数关系式为y =0.677 7x +8.206 7.(2)由得到的函数关系式计算出2017年和2018年的国内生产总值分别为0.677 7×1+8.206 7=8.884 4(万亿元),0.677 7×2+8.206 7=9.562 1(万亿元). 与实际的生产总值相比,误差不超过0.1万亿元.(3)2033年,即x =17时,由(1)得y =0.677 7×17+8.206 7=19.727 6, 即预测2033年该国的国内生产总值约为19.727 6万亿元.题型三函数模型的选择问题1.某人投资x元,获利y元,有以下三种方案.甲:y=0.2x,乙:y=log2x+100,丙:y=1.005x,则投资500元,1 000元,1 500元时,应分别选择________方案.[解析][将投资数分别代入甲、乙、丙的函数关系式中比较y值的大小即可求出.答案乙、甲、丙2.在某实验中,测得变量x和变量y之间对应数据,如表.x 0.500.99 2.01 3.98y -1.010.010.98 2.00则x,y最合适的函数是()A.y=2x B.y=x2-1C.y=2x-2 D.y=log2x[解析]根据x=0.50,y=-1.01,代入计算,可以排除A;根据x=2.01,y=0.98,代入计算,可以排除B、C;将各数据代入函数y=l o g2x,可知满足题意.故选D.3.某人对东北一种松树的生长进行了研究,收集了其高度h(米)与生长时间t(年)的相关数据,选择h=mt+b与h=log a(t+1)来刻画h与t的关系,你认为哪个符合?并预测第8年的松树高度.t(年)12345 6h(米)0.61 1.3 1.5 1.6 1.7 [解析]据表中数据作出散点图如图:由图可以看出用一次函数模型不吻合,选用对数型函数比较合理.将(2,1)代入到h=log a(t+1)中,得1=log a3,解得a=3.即h=log3(t+1).当t=8时,h=log3(8+1)=2,故可预测第8年松树的高度为2米.4.某学校为了实现60万元的生源利润目标,准备制定一个激励招生人员的奖励方案:在生源利润达到5万元时,按生源利润进行奖励,且资金y(单位:万元)随生源利润x(单位:万元)的增加而增加,但资金总数不超过3万元,同时奖金不超过利润的20%.现有三个奖励模型:y=0.2x,y=log5x,y=1.02x,其中哪个模型符合该校的要求?[解析]借助工具作出函数y=3,y=0.2x,y=log5x,y=1.02x的图象(如图所示).观察图象可知,在区间[5,60]上,y=0.2x,y=1.02x的图象都有一部分在直线y=3的上方,只有y=log5x的图象始终在y=3和y =0.2x的下方,这说明只有按模型y=log5x进行奖励才符合学校的要求.5.芦荟是一种经济作物,可以入药,有美容、保健的功效.某人准备栽培并销售芦荟,为了解行情,进行市场调研.从4月1日起,芦荟的种植成本Q(单位:元/千克)与上市时间t(单位:天)的数据情况如下表:(1)的变化关系的函数式:①Q =at +b ,②Q =at 2+bt +c ,③Q =a·b t ,④Q =alog b t ;(2)利用你选择的函数,求芦荟种植成本最低时的上市时间及最低种植成本.[解析] (1)由表中所提供的数据可知,反映芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常数函数,故用函数Q =at +b ,Q =a·b t ,Q =alog b t 中的任意一个来反映时都应有a ≠0,而上面三个函数均为单调函数,这与表格提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述.将表格所提供的三组数据分别代入函数Q =at 2+bt +c ,得⎩⎪⎨⎪⎧15.0=2500a +50b +c ,10.8=12100a +110b +c ,15.0=62500a +250b +c ,解得⎩⎪⎨⎪⎧a =12000,b =-320,c =854.所以反映芦荟种植成本Q 与上市时间t 的变化关系的函数为Q =12000t 2-320t +854.故选②.(2)当t =150(天)时,芦荟种植成本最低,为Q =12000×1502-320×150+854=10(元/千克).6.某债券市场发行三种债券,A 种面值为100元,一年到期本息和为103元;B 种面值为50元,半年到期本息和为51.4元;C 种面值为100元,但买入价为97元,一年到期本息和为100元.作为购买者,分析这三种债券的收益,如果只能购买一种债券,你认为应购买哪种?[解析]A 种债券的收益是每100元一年到期收益3元;B 种债券的半年利率为51.4-5050,所以100元一年到期的本息和为100⎝⎛⎭⎪⎫1+51.4-50502≈105.68(元),收益为5.68元;C 种债券的利率为100-9797,100元一年到期的本息和为100⎝⎛⎭⎪⎫1+100-9797≈103.09(元),收益为3.09元.通过以上分析,购买B 种债券.7.某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30000元;方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费,问: (1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明;(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?[解析] 设工厂每月生产x 件产品时,选择方案一的利润为y 1,选择方案二的利润为y 2,由题意知y 1=(50-25)x -2×0.5x -30000=24x -30000. y 2=(50-25)x -14×0.5x =18x.(1)当x =3000时,y 1=42000,y 2=54000,∵y 1<y 2,∴应选择方案二处理污水. (2)当x =6000时,y 1=114000, y 2=108000,∵y 1>y 2,∴应选择方案一处理污水.8.某鞋厂从今年1月份开始投产,并且前四个月的产量分别为1万件、1.2万件、1.3万件、1.37万件.由于产品质量好,款式受欢迎,前几个月的产品销售情况良好.为了使推销员在推销产品时,接受订单不至于过多或过少,需要估测以后几个月的产量.以这四个月的产品数据为依据,用一个函数模拟产品的月产量y 与月份x 的关系,模拟函数有三个备选:①一次函数f (x )=kx +b (k ≠0),②二次函数g (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0),③指数型函数m (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1).厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人,假如你是厂长,将会采用什么办法估计以后几个月的产量?[解析]将已知前四个月的月产量y 与月份x 的关系记为A (1,1),B (2,1.2),C (3,1.3),D (4,1.37). ①对于一次函数f (x )=kx +b (k ≠0),将B ,C 两点的坐标代入,有f (2)=2k +b =1.2,f (3)=3k +b =1.3, 解得k =0.1,b =1,故f (x )=0.1x +1.所以f (1)=1.1,与实际误差为0.1,f (4)=1.4,与实际误差为0.03.②对于二次函数g (x )=ax 2+bx +c (a ,b ,c 为常数,a ≠0),将A ,B ,C 三点的坐标代入,得⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7,故g (x )=-0.05x 2+0.35x +0.7.所以g (4)=-0.05×42+0.35×4+0.7=1.3,与实际误差为0.07.③对于指数型函数m (x )=ab x +c (a ,b ,c 为常数,a ≠0,b >0,b ≠1),将A ,B ,C 三点的坐标代入,得⎩⎪⎨⎪⎧ab +c =1,ab 2+c =1.2,ab 3+c =1.3,解得⎩⎪⎨⎪⎧a =-0.8,b =0.5,c =1.4.故m (x )=-0.8×0.5x +1.4.所以m (4)=-0.8×0.54+1.4=1.35,与实际误差为0.02.比较上述3个模拟函数的优劣,既要考虑到剩余点的误差值最小,又要考虑生产的实际问题,比如增产的趋势和可能性,可以认为m (x )最佳,一是误差值最小,二是由于新建厂,开始随着工人技术、管理效益逐渐提高,一段时间内产量明显上升,但到一定时期后,设备不更新,那么产量必然要趋于稳定,而m(x)恰好反映了这种趋势,因此选用m(x)=-0.8×0.5x+1.4来估计以后几个月的产量比较接近客观实际.。
3.2.1 几类不同增长的函数模型知识点一常见的增长模型1.线性函数模型线性函数模型y=kx+b(k>0)的增长特点是直线上升,其增长速度不变.2.指数函数模型能利用指数函数(底数a>1)表达的函数模型叫指数函数模型.指数函数模型的特点是随自变量的增大,函数值的增长速度越来越快,常形象地称为指数爆炸.3.对数函数模型能用对数函数(底数a>1)表达的函数模型叫做对数函数模型,对数函数增长的特点是随自变量的增大,函数值增长速度越来越慢.4.幂函数模型幂函数y=x n(n>0)的增长速度介于指数增长和对数增长之间.函数模型的选取(1)当描述增长速度变化很快时,常常选用指数函数模型.(2)当要求不断增长,但又不会增长过快,也不会增长到很大时,常常选用对数函数模型.(3)幂函数模型y=x n(n>0)则可以描述增长幅度不同的变化,n值越小(n≤1)时,增长较慢;n值较大(n>1)时,增长较快.知识点二指数函数y=a x(a>1),对数函数y=log a x(a>1)和幂函数y=x n(n>0)增长速度的比较1.在区间(0,+∞)上,函数y=a x(a>1),y=log a x(a>1)和y=x n(n>0)都是增函数,但增长速度不同,且不在同一个“档次”上.2.在区间(0,+∞)上随着x的增大,y=a x(a>1)增长速度越来越快,会超过并远远大于y=x n(n>0)的增长速度,而y=log a x(a>1)的增长速度则会越来越慢.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)函数y=x2比y=2x增长的速度更快些.( )(2)当a>1,n>0时,在区间(0,+∞)上,对任意的x,总有log a x<x n<a x成立.( )答案:(1)×(2)×2.下列函数中,随x的增大,增长速度最快的是( )A.y=3x B.y=1 000xC.y=log2x D.y=x3解析:指数函数模型增长速度最快.答案:A3.设a=log123,b=⎝⎛⎭⎪⎫130.2,c=213,则( )A.a<b<c B.c<b<a C.c<a<b D.b<a<c解析:∵由指数函数、对数函数的性质可知:a=log123<log121=0,0<b=⎝⎛⎭⎪⎫130.2<1,c=213>1,∴有a<b<c.故选A.答案:A4.某同学最近5年内的学习费用y(千元)与时间x(年)的关系如图所示,则可选择的模拟函数模型是( )A.y=ax+b B.y=ax2+bx+cC.y=a·e x+b D.y=aln x+b解析:由散点图和四个函数的特征可知,可选择的模拟函数模型是y=ax2+bx+c.答案:B类型一几类函数模型的增长差异例1 (1)下列函数中,增长速度最快的是( )A.y=2 018x B.y=x2 018C.y=log2 018x D.y=2 018x(2)四个自变量y1,y2,y3,y4随变量x变化的数据如表:x 1 5 10 15 20 25 30y1 2 26 101 226 401 626 901y2 2 32 1 024 32 768 1.05×106 3.36×107 1.07×109y3 2 10 20 30 40 50 60y4 2 4.322 5.322 5.907 6.322 6.644 6.907 则关于x呈指数型函数变化的变量是________.【解析】(1)比较幂函数、指数函数与对数函数、一次函数可知,指数函数增长速度最快.(2)以爆炸式增长的变量呈指数函数变化.从表格中可以看出,四个变量y1,y2,y3,y4均是从2开始变化,且都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,画出它们的图象(图略),可知变量y2关于x呈指数型函数变化.【答案】(1)A (2)y2,(1)由题意,指数函数增长速度最快.(2)观察变量y1,y2,y3,y4的变化情况→找出增长速度最快的变量→该变量关于x呈指数型函数变化跟踪训练1 分析指数函数y=2x与对数函数y=log2x在区间[1,+∞)上的增长情况.解析:指数函数y=2x,当x由x1=1增加到x2=3时,x2-x1=2,y2-y1=23-21=6;对数函数y=log2x,当x由x1=1增加到x2=3时,x2-x1=2,而y2-y1=log23-log21≈1.585 0.由此可知,在区间[1,+∞)上,指数函数y=2x随着x的增长函数值的增长速度快,而对数函数y=log2x 的增长速度缓慢.在同一平面直角坐标系内作出函数y=2x和y=log2x的图象,从图象上可观察出函数的增长变化情况.如图:类型二三类函数图象综合运用例2 判断方程2x=x2有几个实根.【解析】设y1=x2,y2=2x,作出这两个函数的图象,由图象知,方程一定有一个负根,当x>0时,开始y1=x2在y2=2x图象的下方,但此时由于y1=x2比y2=2x增长的速度快,所以存在x0当x>x0时,y1=x2的图象就会在y2=2x的上方,故此时产生一个实根x0,但最终还是y2=2x比y1=x2增长得快,故存在x1,当x>x1时,y2=2x的图象又在y1=x2的上方,故又产生一个实根x1,以后就永远是y2=2x比y1=x2增长得快了,故再没有实根了,故此方程有三个实根.(1)根据指数函数与幂函数增减得快慢以及图象的上下位置判断出是否有实根.(2)对于较复杂的方程根的个数问题,利用数形结合法较为方便,其解题步骤为:①先设出两个可画图象的函数;②画出两个函数的图象;③由图象观察,其交点横坐标的个数即为方程实数解的个数.方法归纳由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.跟踪训练2 函数f(x)=lg x,g(x)=0.3x-1的图象如图所示.(1)指出曲线C1,C2分别对应哪一个函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).解析:(1)由题图知,C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lg x.(2)当x∈(0,x1)时,g(x)>f(x);当x∈(x1,x2)时,g(x)<f(x);当x∈(x2,+∞)时,g(x)>f(x).f(x)=lgx图象是曲线.g(x)=0.3x-1图象是直线.类型三函数模型的选择问题例3 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双.由于产品质量好、款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受订单不至于过多或过少,需要估计以后几个月的产量.厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程.厂里也暂时不准备增加设备和工人.假如你是厂长,就月份x,产量为y给出三种函数模型: y=ax+b,y=ax2+bx+c,y=ab x+c,你将利用哪一种模型去估算以后几个月的产量?【解析】由题意,将产量随时间变化的离散量分别抽象为A(1,1),B(2,1.2),C(3,1.3),D(4,1.37)这4个数据.(1)设模拟函数为y =ax +b 时,将B,C 两点的坐标代入函数式,得⎩⎪⎨⎪⎧3a +b =1.3,2a +b =1.2,解得⎩⎪⎨⎪⎧a =0.1,b =1.所以有关系式y =0.1x +1.由此可得结论为:在不增加工人和设备的条件下,产量会每月上升1 000双,这是不太可能的. (2)设模拟函数为y =ax 2+bx +c 时,将A,B,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧a +b +c =1,4a +2b +c =1.2,9a +3b +c =1.3,解得⎩⎪⎨⎪⎧a =-0.05,b =0.35,c =0.7.所以有关系式y =-0.05x 2+0.35x +0.7.结论为:由此法计算4月份的产量为1.3万双,比实际产量少700双,而且由二次函数性质可知,产量自4月份开始将每月下降(图象开口向下 ,对称轴为x =3.5),不合实际.(3)设模拟函数为y =ab x+c 时,将A,B,C 三点的坐标代入函数式,得⎩⎪⎨⎪⎧ab +c =1,①ab 2+c =1.2,②ab 3+c =1.3.③由①,得ab =1-c,代入②③,得⎩⎪⎨⎪⎧b 1-c +c =1.2,b 21-c +c =1.3.则⎩⎪⎨⎪⎧c =1.2-b 1-b ,c =1.3-b21-b 2,解得⎩⎪⎨⎪⎧b =0.5,c =1.4.则a =1-c b =-0.8.所以有关系式y =-0.8×0.5x +1.4.结论为:当把x =4代入得y =-0.8×0.54+1.4=1.35.比较上述三个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,如:增产的趋势和可能性.经过筛选,以指数函数模拟为最佳,一是误差小,二是由于厂房新建,随着工人技术和管理效益逐渐提高,一段时间内产量会明显上升,但经过一段时间之后,如果不更新设备,产量必然趋于稳定,而该指数函数模型恰好反映了这种趋势.因此选用指数函数y =-0.8×0.5x+1.4模拟比较接近客观实际.通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型. 方法归纳数学知识来源于客观实际,服务于实际问题.数学是人们认识世界、改造世界的工具,其中函数是描述客观世界变化规律的基本数学模型,不同的变化规律需要不同的函数模型来描述.面临一个实际问题,选择合适的数学模型是一件非常重要的事情,根据三种不同的增长模型的特点,选择符合自己的模型,才能产生更大的经济效益.跟踪训练3 1626年,有人从印第安人手里以60荷兰基尔特(相当于24美元)的代价借用纽约的曼哈顿岛,并在借据上注明:归还此岛时,对方要还本付息,年利率是6%,但借据上没有注明利息是按单利计算还是按复利计算.事隔354年之后的1980年,双方当事人的后代到法院打官司说是利息支付不公,要求法院判明是非.法官请数学家作了计算,结果使法官大吃一惊.请问按两种方法计算出的本息和分别是多少?解析:若按单利算,本息和是24×6%×354+24=533.76(美元).若按复利算,本息和是24(1+6%)354≈2.2×1010(美元).理解单利、复利的概念.利用公式来计算.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分)1.下列函数中,随x的增大,增长速度最快的是( )A.y=1 B.y=xC.y=2x D.y=log3x解析:结合函数y=1,y=x,y=2x及y=log3x的图象可知,随着x的增大,增长速度最快的是y=2x.答案:C2.如图所示给出了红豆生长时间t(月)与枝数y(枝)的散点图,那么最能拟合诗句“红豆生南国,春来发几枝”所提到的红豆生长时间与枝数的关系的函数模型是( )A.指数函数:y=2t B.对数函数:y=log2tC.幂函数:y=t3 D.二次函数:y=2t2解析:由散点图可知,与指数函数拟合最贴切,故选A.答案:A3.已知a,b,c,d四个物体沿同一方向同时开始运动,假设其经过的路程和时间x的函数关系分别是f1(x)=x2,f2(x)=x 12,f3(x)=log2x,f4(x)=2x,如果运动时间足够长,则运动在最前面的物体一定是( )A.a B.bC.c D.d解析:根据四种函数的变化特点,指数函数是一个变化最快的函数.当运动时间足够长时,最前面的物体一定是按照指数函数运动的物体.答案:D4.在同一坐标系中画出函数y=log a x,y=a x,y=x+a的图象,可能正确的是( )解析:函数y=a x与y=log a x的单调性相同,由此可排除C;直线y=x+a在y轴上的截距为a,则选项A中0<a<1,选项B中a>1,显然y=a x的图象不符,排除A,B,选D.答案:D5.y1=2x,y2=x2,y3=log2x,当2<x<4时,有( )A.y1>y2>y3 B.y2>y1>y3C.y1>y3>y2 D.y2>y3>y1解析:在同一平面直角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.答案:B二、填空题(每小题5分,共15分)6.已知函数f(x)=3x,g(x)=2x,当x∈R时,f(x)与g(x)的大小关系为________.解析:在同一直角坐标系中画出函数f(x)=3x,g(x)=2x的图象,如图所示,由于函数f(x)=3x的图象在函数g(x)=2x图象的上方,则f(x)>g(x).答案:f(x)>g(x)7.据报道,青海湖水在最近50年内减少了10%,如果按此规律,设2013年的湖水量为m,从2013年起,过x年后湖水量y与x的函数关系是________.解析:设湖水量每年为上年的q%,则(q%)50=0.9,所以q%=0.9150,所以x年后湖水量y=m·(q%)x=m·0.950x.答案:y =0.950x ·m8.某工厂8年来某种产品总产量C 与时间t(年)的函数关系如图所示,以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变,其中说法正确的序号是________.解析:由t∈[0,3]的图象联想到幂函数y =x α(0<α<1),反应了C 随时间的变化而逐渐增长但速度越来越慢.由t∈[3,8]的图象可知,总产量C 没有变化,即第三年后停产,所以②③正确.答案:②③三、解答题(每小题10分,共20分)9.每年的3月12日是植树节,全国各地在这一天都会开展各种形式的植树活动,某市现有树木面积10万平方米,计划今后5年内扩大树木面积,现有两种方案如下:方案一:每年植树1万平方米; 方案二:每年树木面积比上一年增加9%. 哪个方案较好?解析:方案一:5年后树木面积为:10+1×5=15(万平方米). 方案二:5年后树木面积是10(1+9%)5≈15.386(万平方米), 因为15.386>15,所以方案二较好.10.某公司拟投资100万元,有两种投资方案可供选择:一种是年利率为10%,按单利计算,5年后收回本金和利息;另一种是年利率为9%,按每年复利一次计算,5年后收回本金和利息.哪一种投资更有利?这种投资比另一种投资5年可多得利息多少元?(结果精确到0.01万元)解析:本金100万元,年利率为10%,按单利计算,5年后的本息和是100×(1+10%×5)=150(万元). 本金100万元,年利率为9%,按每年复利一次计算,5年后的本息和是100×(1+9%)5≈153.86(万元). 由此可见,按年利率为9%每年复利一次计算的投资方式要比按年利率为10%单利计算的更有利,5年后多得利息3.86万元. [能力提升](20分钟,40分)11.四个函数在第一象限中的图象如图所示,a 、b 、c 、d 所表示的函数可能是( )∵8lg 3-lg 2=80.477-0.301≈45.45,∴x>45.45.故经过46 h,细胞总数超过1010个.14.某医疗研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y 与时间t 之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定,每毫升血液中含药量不少于4 μg 时治疗疾病有效,假若某病人一天中第一次服药为上午7:00,问:一天中怎样安排服药时间(共4次)效果最佳?解析:(1)依题意得y =⎩⎪⎨⎪⎧6t ,0≤t≤1,-23t +203,1<t≤10.(2)设第二次服药时在第一次服药后t 1小时,则-23t 1+203=4,解得t 1=4,因而第二次服药应在11:00.设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为前两次服药后的含药量的和,即有-23t 2+203-23(t 2-4)+203=4,解得t 2=9,故第三次服药应在16:00.设第四次服药在第一次服药后t 3小时(t 3>10),则此时第一次服进的药已吸收完,血液中含药量应为第二、第三次的和,即有-23(t 3-4)+203-23(t 3-9)+203=4,解得t 3=13.5,故第四次服药应在20:30.。
3.2函数模型及其应用3.2.1几类不同增长的函数模型【知识提炼】三种函数模型的性质y=a x(a>1)y=log x(a>1)y=x n(n>0)a在(0,+∞)上增函数增函数 增函数的增减性______________图象的变化随x 增大逐渐近似 随x 增大逐渐近随n 值而不同 趋势与 y 轴 平行 似与 x 轴平行②存在一个x0,当x>x0时,有x n a【即时小测】1.思考下列问题(1)在区间(0,+∞)上,当a>1,n>0时,是否总有log a x<x n<a x成立?提示:不是,但总存在x0,使得当a>1,n>0,x>x0时,log a x<x n<a x成立.(2)能否举例说明“指数爆炸”增长的含义?提示:如1个细胞分裂x次后的数量为y=2x,此为“指数增长”,其“增长量”是成倍增加的,从图象上看出,存在x0,当x>x0时,数量增加特别快,足以体现“爆炸”的效果.2.已知变量y=1+2x,当x减少1个单位时,y的变化情况是()A.y减少1个单位B.y增加1个单位C.y减少2个单位D.y增加2个单位【解析】选C.由y=1+2x可知,当x减少1个单位时,y相应减少2个单位.3.某超市每月的利润的平均增长率为2%,若12月份的利润是当年1月份利润的m倍,则m等于()A.(1.02)12B.(1.02)11C.(0.98)12D.(0.98)11【解析】选B.设1月份的利润为a,则当年12月份的利润为a(1+2%)11,故m=(1.02)11.4.在函数y=3x,y=log3x,y=3x,y=x3中增长速度最快的是. 【解析】由指数函数、对数函数、幂函数、一次函数的增长差异可判断出y=3x的增长速度最快.答案:y=3x5.如图所示曲线反映的是函数模型的增长趋势.【解析】由图象知,此函数的增长速度越来越慢,因此反映的是幂函数模型或对数型函数模型的增长速度.答案:幂函数或对数型【知识探究】知识点几类函数模型的增长差异观察图形,回答下列问题:问题1:函数t(x),f(x),g(x),h(x)随着x的增大,函数值有什么共同的变化趋势?问题2:函数t(x),f(x),g(x),h(x)增长的速度有什么不同?【总结提升】1.四类不同增长的函数模型(1)增长速度不变的函数模型是一次函数模型.(2)增长速度最快即呈现爆炸式增长的函数模型是指数型函数模型.(3)增长速度较慢的函数模型是对数型函数模型.(4)增长速度平稳的函数模型是幂函数模型.2.几类函数模型的选择(1)一次函数模型:当x增加一个单位时,y增加或减少的量为定值,则y是x的一次函数,一次函数的图象为直线.(2)二次函数模型:二次函数是常用的重要模型,y是x或其他量的二次函数,常用来求最大值或最小值问题,要注意定义域.(3)指数函数模型、对数函数模型:当问题中每期(或每年、每段等)的增长率相同,则为指数函数模型或对数函数模型,一般与增长率、衰减率、利息等现实生活联系紧密.【知识拓展】求解数学应用题必须突破的三关(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题.(3)数理关:运用恰当的数学方法去解决已建立的数学模型.【题型探究】类型一几类函数模型的增长差异【典例】1.(2015·怀柔高一检测)四个变量y1,y2,y3,y4随变量x变化的数据如下表:关于x呈指数函数变化的变量是.2.函数f(x)=1.1x,g(x)=lnx+1,h(x)=的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,e,a,b,c,d为分界点).【解题探究】1.典例1表格中四个变量y1,y2,y3,y4随变量x变化最快的是哪一组?提示:由表中的数据可以看出y2随着x变化,数值增长的速度最快.2.典例2中判断各曲线对应的函数的关键是什么?1,e,a,b,c,d的含义是什么?提示:关键是依据指数函数、对数函数、幂函数的增长速度,判断各曲线对应的函数.1,e,a,b,c,d的含义是相应曲线交点的横坐标.【解析】1.从表格观察函数值y1,y2,y3,y4的增加值,哪个变量的增加值最大,则该变量关于x呈指数函数变化.从表格中可以看出,变量y2,y3,y4均是从2开始变化,变量y1,y2,y3,y4都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,根据指数函数变化的特点,可知变量y2随着x变化呈指数函数变化.答案:y22.由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)= ,曲线C3对应的函数是g(x)=lnx+1.由题图知,当0<x<1时,f(x)>h(x)>g(x);当1<x<e时,f(x)>g(x)>h(x);当e<x<a时,g(x)>f(x)>h(x);当a<x<b时,g(x)>h(x)>f(x);当b<x<c时,h(x)>g(x)>f(x);当c<x<d时,h(x)>f(x)>g(x);当x>d 时,f(x)>h(x)>g(x).【方法技巧】常见的函数模型及增长特点(1)线性函数模型:线性函数模型y=kx+b(k>0)的增长特点是直线上升, 其增长速度不变.(2)指数函数模型:能用指数型函数f(x)=ab x+c(a,b,c为常数,a>0,b>1)表达的函数模型,其增长特点是随着自变量x的增大,函数值增长的速度越来越快,常称之为“指数爆炸”.(3)对数函数模型:能用对数型函数f(x)=mlog a x+n(m,n,a为常数,m>0,x>0,a>1)表达的函数模型,其增长的特点是开始阶段增长得较快,但随着x的逐渐增大,其函数值变化得越来越慢,常称之为“蜗牛式增长”.(4)幂函数模型:能用幂型函数f(x)=axα+b(a,b,α为常数,a≠0, α≠1)表达的函数模型,其增长情况由a和α的取值确定,常见的有二次函数模型和反比例函数模型.【变式训练】有一组数据如下表:现准备用下列函数中的一个近似表示这些数据满足的规律,则其中最接近的一个是()A.v=log2tB.v=tC.v=D.v=2t-2【解析】选C.取t=1.99≈2,代入A,得v=log22=1≠1.5,代入B,得v==-1≠1.5,代入C,得v==1.5,代入D,得v=2×2-2≠1.5.经计算可知最接近的一个是选项C.类型二指数函数、对数函数与幂函数模型的比较【典例】(2015·赤峰高一检测)函数f(x)=2x和g(x)=x3的图象如图所示.设两函数的图象交于点A(x1,y1),B(x2,y2),且x1<x2.(1)请指出图中曲线C1,C2分别对应的函数.(2)结合函数图象,判断f(6),g(6),f(2011),g(2011)的大小.【解题探究】本例图中两图象分别过哪几个关键点?增加的速度怎样?它们交点的横坐标x1,x2大约在什么范围内?提示:曲线C1过原点,曲线C2与y轴有交点,曲线C2增加的速度快.又因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10.【解析】(1)C1对应的函数为g(x)=x3,C2对应的函数为f(x)=2x.(2)因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<6<x2,2011>x2.从图象上可以看出,当x1<x<x2 时,f(x)<g(x),所以f(6)<g(6).当x>x2时,f(x)>g(x),所以f(2011)>g(2011).又因为g(2011)>g(6),所以f(2011)>g(2011)> g(6)>f(6).【延伸探究】1.(改变条件)若将“函数f(x)=2x”改为“f(x)=3x”,又如何求解(1) 呢?【解析】由图象的变化趋势以及指数函数和幂函数的增长速度可知:C1对应的函数为g(x)=x3,C2对应的函数为f(x)=3x.2.(改变问法)本例条件不变,(2)中结论若改为:试结合图象,判断f(8),g(8),f(2015),g(2015)的大小.【解析】因为f(1)>g(1),f(2)<g(2),f(9)<g(9),f(10)>g(10),所以1<x1<2,9<x2<10,所以x1<8<x2,2015>x2.从图象上可以看出,当x1<x<x2时,f(x)<g(x),所以f(8)<g(8).当x>x2时,f(x)>g(x),所以f(2015)>g(2015).又因为g(2015)>g(8),所以f(2015)>g(2015)>g(8)>f(8).【方法技巧】由图象判断指数函数、对数函数和幂函数的方法根据图象判断增长型的指数函数、对数函数和幂函数时,通常是观察函数图象上升得快慢,即随着自变量的增长,图象最“陡”的函数是指数函数,图象趋于平缓的函数是对数函数.【补偿训练】(2015·包头高一检测)函数f(x)=lgx,g(x)=0.3x-1的图象如图所示:(1)试根据函数的增长差异指出曲线C1,C2分别对应的函数.(2)比较两函数的增长差异(以两图象交点为分界点,对f(x),g(x)的大小进行比较).【解析】(1)曲线C1对应的函数为g(x)=0.3x-1,C2对应的函数为f(x)=lgx.(2)当0<x<x1时,g(x)>f(x);当x1<x<x2时,f(x)>g(x);当x>x2时,g(x)>f(x);当x=x1或x=x2时,g(x)=f(x).【延伸探究】1.(改变问法)本题条件不变,试根据图象确定x1与1,x2与10的大小关系 .【解析】根据C2对应的函数关系式为f(x)=l gx,结合图象与x的交点为(1,0)可知,x1<1;由于f(10)=l g10=1,g(10)=0.3×10-1=2,g(10)>f(10),根据图象,可知x2<10.2.(改变问法)本题条件不变,试根据图象比较f(1.5),g(1.5),f(2015),g(2015)的大小.【解析】由于f(3)=lg3>0,g(3)=0.3×3-1<0,f(10)=lg10=1,g(10)=0.3×10-1=2,g(10)>f(10),结合图象可知3<x2<10,由于当1<x<3时,f(x)>g(x),故f(1.5)>g(1.5);由于x2<10,故当x>10时,g(x)>f(x),故g(2015)>f(2015),又因为f(2015)>f(1.5),所以g(2015)>f(2015)>f(1.5)>g(1.5).类型三函数模型的选择问题【典例】1.(2015·临汾高一检测)某公司为了适应市场需求,对产品结构做了重大调整.调整后初期利润增长迅速,后来增长越来越慢,若要建立恰当的函数模型来反映该公司调整后利润y与产量x的关系,则可选用()A.一次函数B.二次函数C.指数型函数D.对数型函数2.(2015·邯郸高一检测)某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中平均每生产一件产品有0.5立方米污水排出,为了净化环境,工厂设计两套方案对污水进行处理,并准备实施.方案一:工厂的污水先净化处理后再排出,每处理1立方米污水所用原料费2元,并且每月排污设备损耗费为30000元;方案二:工厂将污水排到污水处理厂统一处理,每处理1立方米污水需付14元的排污费.问:(1)工厂每月生产3000件产品时,你作为厂长,在不污染环境,又节约资金的前提下应选择哪种方案?通过计算加以说明.(2)若工厂每月生产6000件产品,你作为厂长,又该如何决策呢?【解题探究】1.典例1中由“初期利润增长迅速,后来增长越来越慢”,联想到哪类函数的增长特性?提示:符合对数函数的增长特点.2.典例2中要进行两种方案的选择,需对两种方案进行什么比较?提示:需分为每月生产3000件产品,每月生产6000件产品两种情况下分别计算出两种方案的利润,进行比较利润大小,作出选择.【解析】1.选D.一次函数保持均匀的增长,不符合题意;二次函数在对称轴的两侧有增也有降;而指数函数是爆炸式增长,不符合“增长越来越慢”;因此,只有对数函数最符合题意,先快速增长,后来越来越慢.2.设工厂每月生产x件产品时,依方案一的利润为y1,依方案二的利润为y2,由题意知y1=(50-25)x-2×0.5x-30000=24x-30000,y2=(50-25)x-14×0.5x=18x.(1)当x=3000时,y1=42000,y2=54000,因为y1<y2,所以应选择方案二处理污水.(2)当x=6000时,y1=114000,y2=108000,因为y1>y2,所以应选择方案一处理污水.【方法技巧】解函数应用题的四个步骤第一步:阅读、理解题意,认真审题.读懂题中的文字叙述,理解叙述所反映的实际背景,领悟从背景中概括出来的数学实质.审题时要抓住题目中的关键量,善于联想、化归,实现应用问题向数学问题的转化.。