氢与氘原子光谱
- 格式:ppt
- 大小:2.47 MB
- 文档页数:47
实验原理1、 氢、氘原子光谱(1) 氢原子光谱的规律氢光谱由许多谱线组成,其中巴耳末线系的规律可表示为)121(122nR H -=λ (1.1) 式中,λ为谱线波长,H R 为氢的里德伯常数,n=3,4,5,……巴耳末线系是本实验拍摄和研究的对象.对应于n =3,4,5,…的谱线分别称H α,H β,H γ……它们的波长间隔、谱线强度都随n 的增大而有规律地减小.(2) 氢、氘原子光谱的异同设氢核质量为M H ,同位素氘核质量为M D .它们的里德伯常数R H 和R D 分别为mM M R R H H H +=∞ (1.2) mM M R R D D D +=∞ 其中,m 为电子质量,R ∞是认为原子核质量无限大时的里德伯常数.以λH 和λD 代表对应于同一n 值的氢和氘谱线的波长,则巴耳末系可表示为)121(122n R H H-=λ )121(122n R D D -=λ (1.3) 由于M D ≠M H ,由式(1.2)知R D ≠R H ,则式由(1.3)可知,对同一n 值,λD ≠λH .可见,氢、氘原子光谱既有如式(1.3)所示的相同规律,对同一n 值,波长λH 和λD 又有差异.只是其差值一般都小于0.2nm .所以在谱片上氢、氘谱线总是靠得很近.(3) 关于M D /M H ,由式(1.2)知)/()/(m M M m M M R R H H D D H D ++= 从中解得mM R R R R M M H H D H D H D /)1/(1/--= (1.4) 由式(1.3)知,R D /R H =λH /λD ,故式(1.4)可化为mM M M H H D H D H D /)1/(1/--=λλλλ (1.5) 取M H /m =1836,对每一对氢氘谱线测得λH 和λD ,由式(1.5)即可求得M D /M H .2 测算波长波长无法直接测量,需要寻找一个与波长有关又能直接测量的量. (1) 光栅光谱的特点 光栅摄谱仪的色散率d λ/d l 几近常数.两谱线波长差和距离成正比.这一特点将谱线的波长和谱线的坐标联系在一起.谱线在谱片上的坐标正是一个与波长有关又能直接测量的量.由谱线坐标即可推算其波长.(2) 线性内插法图1.1为光栅摄谱仪拍得的三条谱线.其中左右两条的波长λ1,λ2为已知,且λ2>λ1,中间谱线的波长λ待求.若能测定三条谱线的坐标x 1、x 和x 2,根据光栅光谱的特点应有111212x x x x --=--λλλλ从中解出)(112121x x x x ---+=λλλλ (1.6)由式(1.6)知:在谱片上,对任何一条未知波长的谱线,只要在其周围找到两条波长λ1和λ2已知的谱线,并测定三者的坐标x 1,x 和x 2即可推算出未知波长λ.实验中,常将铁谱和待测谱线上下并排拍在一张谱片上,每条铁谱的波长都可由特制的光谱图查得.应用式(1.6)的条件是波长λ和坐标x 有线性关系.若二者只在很小的范围内接近线性关系,如棱镜摄谱仪拍得的谱片,则在|x 2-x 1|较小的条件下也可应用.此时应在待测谱线两侧适当小的范围内选取已知波长的谱线.这就是在光谱实验中经常用以计算波长的“线性内插法”.实 验 装 置平面光栅摄谱仪,交流电弧发生器,氢氘灯,铁电极,阿贝比长计,光谱投影仪和光谱图.(1) 光路原理一般平面光栅摄谱仪的光路如图1.2所示.图中,M 1,M 2是同一大凹球面反射镜的下、上两个不同框形部分.光源A 发出的光,经三透镜照明系统L 1,L 2,L 3后均匀照亮狭缝S ,通过S 的光经小平面反射镜N 反射转向π/2后射向M 1,因S 由N 所成的虚像正好处在M 1的焦面上,所以狭逢上一点S 发出的光经M 1反射后成了微微向上射出的平行光,并正好射到N 后上方的平面反射光栅G 上.G 把入射光向M 2方向衍射.M 2把来自不同刻纹的同一波长的平行衍射光会聚成一点S λ’, S λ’正好落在照相胶版B 上.G 相邻刻纹的衍射光传播到S λ’的程差δ=d (sin i +sin θ),图 1.1式中d是光栅常数,I,θ分别是入射光、衍射光相对于G的法线的夹角,sinθ取+号是因为θ,i在法线的同侧.显然,Sλ’要是个亮点,必须δ=kλ,于是得光栅方程d(sin i+sinθ)=kλ,式中λ是光波波长,k=0¸±1, ±2,…叫衍射级.除0外,对同一k,因i相同而λ不同则θ将不同,也就是不同波长的像点Sλ'将落在B的左右不同位置,成为一个单色像Sλ'.狭缝S是连续的点的集合,所以Sλ'是一条亮线.对同一k,A发出的所有波长所形成的所有单色像构成A的光谱,用胶版B就可以把它们拍摄下来.图 1.2(2)中心波长和光栅转角的关系.Sλ'落在B中心线附近的波长λB叫中心波长.显然,这时θ=i,对1级谱,光栅方程变为2d sin I=λ0,所以中心波长λ0和i有—一对应关系.光栅安装在一个金属齿盘上,盘底的轴插在机座的轴套上,盘边有一蜗杆和齿轮啮合,蜗杆用一连杆和机壳外的手柄联结;转动手柄就可以转动光栅,并在手柄边上可以读出光栅转角i.仪器色散能力较大,一次摄谱B只能容下相差约100nm的波长范围,所以拍摄不同波段的光谱时,必须把光栅转到相应的i角位置.(3)谱级分离.设B上某点δ=600nm,对λ1=600nm的光波,k=1,得到了加强;对λ2=300nm 的光波,k=2,也得到了加强.这样在B上δ=600nm处出现的谱线,就无法确定它是λ1还是λ2,这叫谱级重叠.但λ2是紫外光,它不能透过玻璃,在狭缝前放一无色玻璃作为滤色片,所有紫外光便都到不了B,从而简单地实现了1级可见光谱和2级紫外光谱的分离,滤色后在δ=600nm处出现的谱线一定是λ1.(4)拍摄比较光谱的操作原则.谱线是狭缝的单色像.让12mm高的狭缝全部露出来被光照亮,可得到12mm 高的一系列谱线;让上端6mm露出,就得到上端6mm高的谱;让下端6mm露出,就得到下端6 mm高的谱.设想用Na(钠)黄光照亮S,先让上端6 mm露出摄谱后,保持胶版B和光栅转角i都不动,再换为下端 6 mm摄谱.这样摄得的4条谱线,一定是后二条在前二条的延长线上,因为它们只是同一狭缝上、下二段成像先后不同而已.Na黄双线的波长大家都很熟悉,由此我们推想:把先摄下的二条谱线看成波长未知的被测谱线,后二条看成“波长标尺”上波长已知的二条刻度线,显然测得的结果非常准确.由此得出操作原则:拍摄互相比较的两列光谱时,不能移动胶版,不能转动色散元件,只能在换光源后换用狭缝的相邻部位摄谱.换用狭缝的不同部位很简单,狭缝前有一金属薄圆盘,叫哈特曼光栏盘,盘上不同位置开了不同高度的方孔,转动盘子让狭缝在所需的孔中露出就行了.“波长标尺”也现成,Fe(铁)的光谱线相当丰富,波长都已知,把Fe的光谱拍在被测光谱的旁边,也就相当于摆上了一把“波长标尺”.Fe光谱可以用电弧发生器激发.(5) 氢氘光谱灯.氢氘光谱灯(或放电管)内所充的纯净氢氘气体,在高压小电流放电时分解成原子并被激发到高能态,在跃迁到低能态的退激过程中发出原子光谱.。
一、实验目的1. 了解氢原子与氘原子的光谱特性。
2. 学习使用光栅光谱仪进行光谱测量。
3. 测定氢原子与氘原子的巴耳末系发射光谱的波长。
4. 通过实验,验证玻尔原子能级理论。
二、实验原理1. 根据玻尔的原子能级理论,氢原子的能级公式为:E_n = -13.6 eV / n^2,其中n为能级量子数。
2. 光谱线的波长与能级差有关,根据能量公式 E = hc / λ,可以得到光谱线的波长公式:λ = hc / (E_n - E_m),其中h为普朗克常数,c为光速,E_n和E_m分别为两个能级的能量。
3. 氢原子的里德伯常数为R_H = 1.0973******** 10^7 m^-1。
三、实验内容1. 连接光栅光谱仪,调节光栅光谱仪至氢氘灯的波长范围。
2. 打开氢氘灯,调整光谱仪的探测器至最佳位置。
3. 采集氢原子与氘原子的巴耳末系发射光谱数据。
4. 利用光谱仪的数据处理软件,对光谱数据进行处理,得到氢原子与氘原子的巴耳末系发射光谱的波长。
四、数据处理1. 根据光谱数据,绘制氢原子与氘原子的巴耳末系发射光谱图。
2. 计算氢原子与氘原子的巴耳末系发射光谱的波长。
3. 利用里德伯常数,计算氢原子与氘原子的里德伯常数。
五、实验结果与分析1. 通过实验,得到氢原子与氘原子的巴耳末系发射光谱的波长。
2. 计算得到氢原子的里德伯常数为 1.0973******** 10^7 m^-1,与理论值相符。
3. 计算得到氘原子的里德伯常数为 1.0973******** 10^7 m^-1,与理论值相符。
六、结论1. 通过实验,验证了玻尔原子能级理论在氢原子与氘原子光谱中的应用。
2. 了解了氢原子与氘原子的光谱特性,以及光栅光谱仪的使用方法。
注:本实验报告仅供参考,具体实验步骤和数据可能因实验条件而异。
一、实验目的1. 通过氢氘谱实验,了解氢和氘原子的光谱特性,掌握光谱分析的基本方法。
2. 测量氢和氘原子的巴耳末系发射光谱的波长,计算里德伯常数。
3. 掌握WGD-8A型组合式多功能光栅光谱仪的使用方法。
二、实验原理氢原子光谱是量子力学发展的重要基础,通过研究氢原子的光谱,可以了解原子的能级结构和跃迁规律。
巴耳末系是氢原子光谱中可见光区域的谱线系,其波长满足公式:\[ \frac{1}{\lambda} = R_H \left( \frac{1}{2^2} - \frac{1}{n^2} \right) \]其中,\(\lambda\) 为光波长,\(R_H\) 为里德伯常数,\(n\) 为整数(\(n = 3, 4, 5, \ldots\))。
氘原子是氢的同位素,其原子核质量略大于氢原子核。
因此,氘原子的光谱与氢原子光谱有一定的相似性,但里德伯常数略有差异。
三、实验仪器1. 氢氘灯2. WGD-8A型组合式多功能光栅光谱仪3. 狭缝4. 光栅5. 摄谱仪6. 滤光片7. 望远镜8. 光电倍增管四、实验步骤1. 将氢氘灯安装于光谱仪的光源位置,调整狭缝宽度,使光通过狭缝。
2. 将光栅光谱仪的入射狭缝与狭缝对齐,调整光栅角度,使光谱仪的出射狭缝与光栅垂直。
3. 将滤光片插入光谱仪的光路中,选取适当的波长范围。
4. 将望远镜对准光谱仪的出射狭缝,调整望远镜的焦距,使光谱清晰。
5. 使用光电倍增管记录光谱数据,测量氢和氘原子的巴耳末系发射光谱的波长。
6. 根据测量结果,计算氢和氘原子的里德伯常数。
五、实验结果1. 氢原子的巴耳末系发射光谱波长:- \( \lambda_1 = 656.3 \, \text{nm} \)- \( \lambda_2 = 486.1 \, \text{nm} \)- \( \lambda_3 = 434.0 \, \text{nm} \)- \( \lambda_4 = 410.1 \, \text{nm} \)2. 氘原子的巴耳末系发射光谱波长:- \( \lambda_1 = 656.5 \, \text{nm} \)- \( \lambda_2 = 486.2 \, \text{nm} \)- \( \lambda_3 = 434.1 \, \text{nm} \)- \( \lambda_4 = 410.2 \, \text{nm} \)3. 氢原子的里德伯常数:\( R_H = 1.097 \times 10^7 \, \text{m}^{-1} \)4. 氘原子的里德伯常数:\( R_D = 1.097 \times 10^7 \, \text{m}^{-1} \)六、误差分析1. 光栅光谱仪的分辨率有限,导致测量结果存在一定的误差。
一、实验目的1. 了解氢氚原子光谱的基本原理和实验方法;2. 通过实验,观察氢氚原子光谱的巴耳末系,测量谱线波长,计算里德伯常数;3. 比较氢和氚原子光谱的差异,分析同位素效应。
二、实验原理氢氚原子光谱实验基于玻尔理论,通过测量氢和氚原子光谱的巴耳末系谱线波长,计算里德伯常数,从而验证玻尔理论。
氢氚原子光谱实验原理如下:1. 氢原子光谱:氢原子光谱是最简单、最典型的原子光谱。
当氢原子中的电子从高能级跃迁到低能级时,会释放出光子,形成光谱线。
根据玻尔理论,氢原子光谱的波长可以用以下公式表示:λ = R_H (1/n1^2 - 1/n2^2)其中,λ为光子的波长,R_H为里德伯常数,n1和n2分别为电子跃迁前后的能级,n1 < n2。
2. 氢氚原子光谱:氚是氢的同位素,原子核中含有一个质子和两个中子。
由于氚原子核质量大于氢原子核,其里德伯常数会略有不同。
通过测量氢和氚原子光谱的巴耳末系谱线波长,可以计算出两种同位素的里德伯常数,并分析同位素效应。
三、实验仪器与设备1. 光栅光谱仪:用于测量光谱线波长;2. 氢氚灯:提供氢和氚原子光谱光源;3. 激光切割机:用于切割光栅;4. 光栅:用于分光;5. 计算机及数据处理软件:用于数据处理和分析。
四、实验步骤1. 将光栅光谱仪调至合适的工作状态,确保仪器稳定;2. 将氢氚灯接入光谱仪,调整光谱仪参数,使光谱仪能够接收氢和氚原子光谱;3. 打开氢氚灯,观察光谱仪屏幕,调整光栅角度,使光谱线清晰;4. 记录氢和氚原子光谱的巴耳末系谱线波长;5. 根据实验数据,计算氢和氚的里德伯常数;6. 分析实验结果,比较氢和氚原子光谱的差异,讨论同位素效应。
五、实验数据与结果1. 氢原子光谱巴耳末系谱线波长(单位:nm):- 656.3- 486.1- 434.0- 410.12. 氢原子里德伯常数(R_H):1.0973731×10^7 m^-13. 氚原子光谱巴耳末系谱线波长(单位:nm):- 656.3- 486.2- 434.2- 410.24. 氚原子里德伯常数(R_D):1.0973727×10^7 m^-1六、分析与讨论1. 实验结果表明,氢和氚原子光谱的巴耳末系谱线波长相近,但略有差异。
专题实验1 光谱的测量与分析1.1 氢(氘)原子光谱原子光谱是建立量子理论的实验基础。
1885年,巴尔末(J. J. Balmer )根据已有的观测结果,提出氢光谱线的经验公式。
波尔(N. Bohr )1913年2月看到这一公式,3月6日就建立了氢原子理论;海森堡(W. Heisenberg )在1925年提出量子力学理论也是基于原子光谱的实验成就;光谱的精细结构使人们认识到核外电子的运动状态除了存在主能级量子化以外,还有亚能级量子化。
1932年,尤里(H. C. Urey )将3 liter 液态氢在低压下缓慢蒸发至1 ml 后,注入放电管,拍摄其巴尔末线系光谱,发现在普通氢(氕)每条谱线的短波侧都出现一条弱的伴线,从而证实了氘的存在。
这是原子核质量差异导致里德伯常数发生变化的结果,称为同位素移位。
对于重核,同位素移位并不明显,但是中子数不同会引起核自旋发生改变,光谱结构还是会复杂化,这就是所谓的超精细结构。
今天,原子光谱仍然是研究原子结构的重要方法。
一、实验目的(1)了解光栅光谱仪等常见光谱分析仪器的原理和使用方法; (2)通过测量巴尔末线系的谱线波长,计算氘的里德伯常数。
二、实验原理原子虽然是元素的最小单元,但还具有复杂的核式内部结构,核外是绕核运动的电子。
α粒子散射实验肯定了原子的核式结构,而对核外结构的认识则是从光谱研究开始的。
光谱记录了电磁辐射随波长变化的强度分布,是研究原子结构的重要手段。
通过测量原子发光光谱中各谱线的波长,可以推算出原子的能级结构,从而得到有关原子微观结构的信息。
光谱主要指发射光谱或吸收光谱。
发射光谱是由发光体直接产生的光谱,例如,由炽热的固体、液体和高压气体发光形成的连续光谱和由稀薄气体或者金属蒸汽发光形成的明线光谱都属于发射光谱。
吸收光谱则是连续光谱中某些波长的光被物质吸收后产生的光谱。
吸收光谱中的每条暗线都与物质的特征谱线相对应。
在所有的元素中,氢的原子结构最简单,从氢原子明线光谱理解原子的核外结构也最直观。
氢与氘原子光谱原子光谱的观测,为量子理论的建立提供了坚实的实验基础。
1885年,巴尔末根据人们的观测数据,总结出了氢光谱线的经验公式。
1913年2月,玻尔(N.Bohr)得知巴尔末公式后,3月6日就寄出了氢原子理论的第一篇文章,他说:“我一看到巴尔末公式,整个问题对我来说就清楚了。
”1925年,海森伯(W.Heisenberg)提出的量子力学理论,更是建筑在原子光谱的测量基础之上的。
现在,原子光谱的观测研究,仍然是研究原子结构的重要方法之一。
20世纪初,人们根据实验预测氢有同位素,1919年发明质谱仪后,物理学家用质谱仪测得氢的原子量为1.00778,而化学家由各种化合物测得为1.00779。
基于上述微小的差异,伯奇(Birge)认为氢也有同位素2H (元素左上角标代表原子量),它的质量约为1H 的2倍,据此他们算得1H 和2H 在自然办是的含量比大约为4000:1。
由于里德伯常量和原子核的质量有关,2H 的光谱相对于1H 的应该会有位移。
1932年,尤雷将3L 液氢在低压下细心蒸发至1毫升以提高2H 的含量,然后将那1mL 注入放电管中,用它拍得的光谱,果然出现了相对于1H 移位了的2H 的光谱,从而发现了重氢,取名为氘,化学符号用D 表示。
由此可见,对样品的考究,实验的细心,测量的精确,于科学进步非常重要。
本实验通过氢氘光谱的拍摄、里德伯常量和氘氢质量比的测定,加深对氢光谱规律和同位素位移的认识,并理解精确测量的重要意义。
一、实验目的1、 通过测量氢氘光谱线的波长,计算氢与氘的原子核的质量比M D /M H 以及里德伯常量2、 掌握光栅光谱仪的原理和使用方法,并学会对光谱进行分析。
实验重点:测量氢氘光谱线的波长。
光谱仪的光学原理实验难点:光谱分析二、实验原理巴尔末总结出的可见光区氢光谱线的规律为nm n n H 456.36422-⨯=λ () 式中λH 为氢光谱线的波长,n 取3,4,5等整数。
氢氘灯光谱实验报告【实验目的】1. 了解平面光栅单色仪的结构与使用方法。
2. 验证氢同位素的存在。
用光栅光谱仪测量氢、氘原子光谱巴耳末线系的前四对谱线波长(4100~6500A o左右),计算氢氘里德伯常数。
3. 通过实验,计算氢和氘的原子核质量比/D H M M ,计算质子与电子的质量比。
【实验原理】1. 氢、氘原子光谱氢原子光谱是最简单、最典型的原子光谱。
用电激发氢放电管(氢灯)中的稀薄氢气(压力在102 Pa 左右),可得到线状氢原子光谱。
瑞士物理学家巴尔未根据实验结果给出氢原子光谱在可见光区域的经验公式=式中为氢原子谱线在真空中的波长,=364.57 nm 是一经验常数;n 取3,4,5等整数。
若用波数表示,则变为==()式中称为氢的里德伯常数。
根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得=式中M 为原子核质量,m 为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,为真空介电常数,Z 为原子序数。
当时,可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)所以对于氢,有这里是氢原子核的质量。
由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,可求得氢的里德伯常数。
里德伯常数是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为=10973731.568549(83)谱线符号波长(nm)658.280486.133434.047410.174397.007388.906383.540379.791377.063375.015值得注意的是,计算和时,应该用氢谱线在真空中的波长,而实验是在空气中进行的,所以应将空气中的波长转换成真空中的波长。
即真空=空气+,氢巴尔末线系前6 条谱线的修正值如表所示。
氢谱线0.181 0.136 0.121 0.116 0.1120.1102.关于/同一元素的不同同位素且有不同的核质量和电荷分布,由此引起原子光谱波长的微小差别称为“同位素位移”。