【最新】人教版八年级数学下册第二十章《中位数和众数(2)》学案
- 格式:doc
- 大小:33.00 KB
- 文档页数:3
20.1.2 中位数和众数(2)学科数学课题§20.1.2 中位数和众数(2)年级八年级课型新授流程具体内容方法指导一、目标导学学习目标:1、进一步认识平均数、众数、中位数都是数据的代表。
2、了解平均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
学习重点:了解平均数、中位数、众数之间的差异。
学习难点:灵活运用这三个数据代表解决问题。
研读目标,明确本节课所要学习的内容。
二、自主学习1.将一组数据按照的顺序排列,如果数据的个数是奇数,则称为这组数据的中位数;如果数据的个数是偶数,则称为这组数据的中位数(求中位数时一定要注意)2.一组数据中出现次数最多的数据称为 .3.数据29.8,30.0,30.0,30.2,44.0,30.0的平均数是;中位数是;众数是;其中数据30.0的权为;30.2的权为方法指导温馨提示:(用时分钟)三、问题探究探讨1.据调查,某班40名同学所穿鞋子的尺码如下表所示:码号/码33 3435 36 37人数7 13 15 3 2求这组数据的平均数、中位数和众数,并指出哪个指标是鞋厂最感兴趣的?探讨2.某公司全体职工的月工资如下:月工资10008000 5000 2000 1000 900 800 700 500人数1(总经理)2(副总经理)2(经理)5 12 18 23 5 2你认为该公司总经理、工会主席、普通职工将分别关注职工月工资数据的平均数、中位数和众数中的哪一位?说说你的理由.平均数、中位数和众数它们都有什么各自的优缺点.方法指导温馨提示:(用时分钟)四、反馈提升1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:得分50 60 7080 90 100 110 120人数 2 3 6 14 15 5 4 1分别求出这些学生成绩的众数、中位数和平均数.方法指导温馨提示:(用时分钟)2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:部门 A B C D E F G人数 1 1 2 4 2 2 320 5 2.5 2.1 1.5 1.5 1.2每人所创的年利润根据表中的信息填空:(1)该公司每人所创年利润的平均数是万元。
众数与中位数一、教学目的1.理解众数与中位数的意义.2.使学生会求一组数据的众数与中位数.二、教学重点、难点重点:使学生通过练习掌握众数与中位数的概念.难点:在一组数据中有两个居于中间的数的平均数做为中位数时的判定方法.中位数、众数的意义的解释.三、教学过程复习提问1.什么叫做一组数据的平均数?2.一组数据的计算方法有哪些?引入新课在对一组数据分析研究过程中,往往要了解某个数出现的最多,某个特定的数处于什么特定位置.那么这些数应如何称呼,如何利用?这节课我们来进行探讨,新课教材售鞋一例即一家鞋店在一段时间内销售了某种女鞋30双,其中各种尺码的鞋的销售量如下表所示.哪种尺码的鞋销售得最多?介绍完之后,可再介绍如下实例.某面包房生产多种面包,在一天内销售面包100个,各类面包销售量如下表:在这个问题中,店主最关心的是哪种面包售量最好.从表中可见,椰茸面包销售情况最好,达到30个.接下来向学生介绍:在一组数据中,出现次数最多的数据叫做这组数据的众数.教材中的例子中,23.5(厘米)出现的次数最多,称这组数据的众数;而我们举的例子中,椰茸面包销售情况最好,占100个中的30个,它是这组数据中的众数.讲到此处,要强调众数的功能,即“当一组数据中不少数据多次重复出现时,常用众数来描述这组数据的集中趋势.”例1 在一次英语口试中,20名学生的得分如下:70 80 100 60 80 70 90 50 80 70 80 70 90 80 90 80 70 90 60 80求这次英语口试中学生得分的众数.教师指导学生观察后,指出80出现了7次,确定80分是学生得分的众数.(可多请几位学生说一说观察情况.)教师引导学生阅读P163中间一段文字.即看数学竞赛一例,即在一次数字竞赛中,5名学生的成绩从低分到高分排列依次是55 57 61 62 98前四个数据的大小比较接近,最后一个数据与它们的差异较大,得出学生成绩最中间的数据为61,它可以用来描述这组数据的集中趋势,可以不受个别数据的较大变动的影响.由此给出定义:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.接下来指出61是上述一组数的中位数.要特别指出:按从小到大的顺序排列的4个数据0.5,0.8,0.9,1.0中,最中间的两个数据的平均数是0.85,它是这组数据的中位数.要使学生注意,这组数有“偶数个”.例2 10名工人某天生产同一零件,生产的件数是15 17 14 10 15 19 17 16 14 12求这一天10名工人生产的零件的中位数.教师应请一位学生将此例中的一组数据在黑板上从小到大按顺序排列,启发学生找出中位数是15(件).还可顺势问一下,这组数据中的众数是哪些?(引导学生答出:14,15,17.) 例3 在一次中学生田径运动会上,参加男生跳高的17名运动员的成绩如下表所示:分别求这些运动员成绩的众数,中位数与平均数(平均数的计算结果保留到小数点后第2位).通过此例的练习,使学生巩固对众数、中位数与平均数概念的认识和理解.小结众数、中位数与平均数从不同的角度描述了一组数据的集中趋势.其中,又以平均数的应用最为广泛.在讲述过程中需强调:(1)平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动.(2)众数着眼于对各数据出现的频数的考察,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往是我们关心的一种统计量.(3)中位数则仅与数据的排列位置有关,即当将一组数据按从小到大的顺序排列后,最中间的数据即为中位数,因此某些数据的变动对它的中位数没有影响.当一组数据中的个别数据变动较大时,可用它来描述其集中趋势.练习:选用课本练习作业:选用课本习题四、教学注意问题教学中要注意讲好众数在一组数据中不止一个;中位数在一组数据为奇数、偶数时的不同确定方法.。
人教初中数学八年级下册20-1-2中位数和众数(2)教学设计一. 教材分析人教初中数学八年级下册20-1-2中位数和众数(2)是继上一节学习众数和中位数的基本概念后的进一步学习。
这部分内容通过具体例子让学生理解中位数和众数在实际生活中的应用,进一步巩固他们的统计学意义。
教材通过丰富的现实情境,让学生体会数学与生活的紧密联系,提高学生解决实际问题的能力。
二. 学情分析学生在八年级上学期已经学习了众数和中位数的基本概念,对于本节课的内容,他们已经具备了一定的知识基础。
但学生在应用方面可能还存在一定的困难,因此,在教学过程中,需要结合生活实际,让学生在情境中理解中位数和众数,提高他们的应用能力。
三. 教学目标1.知识与技能:理解中位数和众数的定义,掌握求一组数据的中位数和众数的方法。
2.过程与方法:通过实际问题,培养学生的数据分析能力,提高他们解决实际问题的能力。
3.情感态度价值观:体会数学与生活的紧密联系,增强学生学习数学的兴趣。
四. 教学重难点1.重点:中位数和众数的定义,求一组数据的中位数和众数的方法。
2.难点:如何利用中位数和众数解决实际问题。
五. 教学方法采用情境教学法、案例教学法和小组合作学习法。
通过生活情境引入课题,让学生在具体案例中理解中位数和众数的概念,通过小组合作学习,培养学生的合作精神和解决问题的能力。
六. 教学准备1.准备相关的生活案例和数据。
2.准备教学课件和板书设计。
七. 教学过程1.导入(5分钟)通过一个生活案例引入课题,如:某班在一次数学测试中,成绩排名前三的学生分别是85分、88分和90分,问这个班的数学平均分是多少?让学生思考,引出中位数的概念。
2.呈现(10分钟)呈现一组实际数据,让学生求出这组数据的中位数和众数。
在呈现数据时,注意数据的多样性和代表性。
3.操练(10分钟)学生分组讨论,每组选择一组数据,求出这组数据的中位数和众数。
教师巡回指导,解答学生的疑问。
4.巩固(5分钟)让学生总结求中位数和众数的方法,以及他们在实际生活中的应用。
20.1.2 中位数和众数第2课时1.在解决实际问题中进一步理解平均数、中位数、众数作为数据代表的意义,能根据所给信息求出相应的数据代表.2.结合具体情景体会平均数、中位数、众数三者的特点与差异,能根据具体问题选择适当的量来代表,并作出自己的评判.3.经历探索常见的数据集中趋势的特征数的过程,感受其实际应用,掌握判断方法.重点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.难点:进一步认识度量集中数据趋势的平均数、众数、中位数三个特征数.能灵活应用平均数、众数、中位数解决实际问题.一、创设情境,导入新课在端午节到来之前,幸福儿童福利院对全体小朋友爱吃哪几种粽子作调查如下: 名称艾香粽豆沙粽蜜枣粽糯米粽火腿粽人数 3 5 20 11 14幸福儿童福利院调查后最值得关注的是平均数、中位数和众数中的哪个量?你能根据调查统计表中数据为进货员提供进货建议吗?你会解答上面问题吗?这一节课我们就来探究.二、探究归纳活动1:选择统计量描述数据的集中趋势1.问题:某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数 1 800 510 250 210 150 120 人数 1 1 3 5 3 2则这15位营销人员该月销售量的平均数是,中位数是________,众数是________答案:3202102102.思考:假设销售负责人把每位营销员的月销售额定为320件,你认为是否合理,为什么?提示:不合理.因为15人中有13人的销售额不到320件,320件虽是所给一组数据的平均数,它却不能很好地反映销售人员的一般水平.3.归纳:(1)平均数、中位数和众数都可以反映一组数据的集中趋势,它们各有自己的特点,能够从不同的角度提供信息.在实际应用中,需要分析具体问题的情况,选择适当的量反映数据的集中趋势.(2)①平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大;②当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,它不易受极端值的影响,这是它的一个优势;③中位数只需要很少的计算,它也不易受极端值的影响.活动2:例题讲解【例1】三个生产日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月.工商部门为了检查他们宣传的真实性,从三个厂家各抽取11只日光灯管进行检测,灯管的使用寿命(单位:月)如下:甲厂7 8 9 9 9 11 13 14 16 17 19 乙厂7 7 8 8 9 10 12 12 12 12 13 丙厂7 7 7 8 8 12 12 13 13 16 18(1)这三个厂家的广告宣传中,分别利用了统计中的哪一个反映数据集中趋势的统计量?(2)如果三种产品的售价一样,作为顾客的你选购哪个厂家的产品?请说明理由.分析:(1)分别求出这三个厂家的平均数、中位数和众数,根据计算结果进行解答.(2)根据(1)的计算结果进行选择,并说明理由.解:(1)甲厂的平均数、中位数和众数分别为12,11,9;乙厂的平均数、中位数和众数分别为10,10,12;丙厂的平均数、中位数和众数分别为11,12,7.根据计算的结果可知这三个日光灯管的厂家在广告中宣称,他们生产的日光灯管在正常情况下,灯管的使用寿命为12个月,甲厂的广告利用了统计中的平均数;乙厂的广告利用了统计中的众数;丙厂的广告利用了统计中的中位数.(2)根据以上分析选用甲厂的产品.因为它的平均数较真实地反映灯管的使用寿命.或选用丙厂的产品.因为该厂有一半以上的灯管使用寿命超过12个月.活动3:平均数、中位数和众数的综合应用【例2】在对全市初中生进行的体质健康测试中,青少年体质研究中心随机抽取的10名学生的坐位体前屈的成绩(单位:厘米)如下:11.210.511.410.211.411.411.29.512.010.2(1)通过计算,样本数据(10名学生的成绩)的平均数是10.9,中位数是________,众数是________.(2)一个学生的成绩是11.3厘米,你认为他的成绩如何?说明理由.(3)研究中心确定了一个标准成绩,等于或大于这个成绩的学生该项素质被评定为“优秀”等级.如果全市有一半左右的学生能够达到“优秀”等级,你认为标准成绩定为多少?说明理由.分析:(1)用中位数,众数的定义得出答案.(2)方法一:将这名学生的成绩与中位数进行比较,方法二:将这名学生的成绩与平均数相比较.(3)要让一半学生达到“优秀”等级,这个衡量标准取中位数,即标准成绩定为11.2厘米(中位数).解:(1)中位数是11.2,众数是11.4.(2)方法一:从样本数据的中位数是11.2得到,可以估计在这次坐位体前屈的成绩测试中,全市大约有一半学生的成绩大于11.2厘米,有一半学生的成绩小于11.2厘米,这位学生的成绩是11.3厘米,大于中位数11.2厘米,可以推测他的成绩一半以上学生的成绩好.方法二:从样本数据的平均数是10.9得到,可以估计在这次坐位体前屈的成绩测试中,全市学生的平均成绩是10.9厘米,这位学生的成绩是11.3厘米,大于平均成绩,可以推测他的成绩比全市学生的平均成绩好.(3)如果全市有一半左右的学生评定为“优秀”等级,标准成绩应定为“11.2厘米”(中位数).因为从样本情况看,成绩在11.2厘米以上(含11.2厘米)的学生占总人数的一半左右.可以估计,如果标准成绩定为11.2厘米,全市将有一半左右的学生能够评定为“优秀”等级.总结:平均数、中位数和众数的作用平均数、中位数和众数都是来刻画数据平均水平的统计量,平均数常用于表示统计对象的一般水平,中位数表示这组数据的中等水平,而众数刻画了数据中出现次数最多的情况.三、交流反思这节课我们学习了选择统计量描述数据的集中趋势,练习时,在同一具体问题中分别求平均数、中位数和众数,目的是比较这三个统计量在描述一组数据集中趋势时的不同角度,有助于了解三个概念之间的联系与区别,有助于我们在实际应用中选择合理的统计量来描述数据的集中趋势.四、检测反馈1.某校九年级有11名同学参加数学竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自已的成绩,她想知道自已能否进入决赛,还需要知道这11名同学成绩的 ()A.中位数B.众数C.平均数D.最高分2.某品牌鞋店在一个月内销售某款女鞋,各种尺码鞋的销量如下表所示:尺码/厘米22.5 23 23.5 24 24.5销售量/双35 40 30 17 8通过分析上述数据,对鞋店业主的进货最有意义的是()A.平均数B.众数C.中位数D.最小鞋号3.数学老师在录入班级50名同学的数学成绩时,有一名同学的成绩录入错了,则该组数据一定会发生改变的是()A.中位数B.众数C.平均数D.中位数、众数、平均数都一定发生改变4.歌唱比赛有二十位评委给选手打分,统计每位选手得分时,会去掉一个最高分和一个最低分,这样做,肯定不会对所有评委打分的哪一个统计量产生影响________.(填“平均数”或“中位数”或“众数”)5.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:加工件数540 450 300 240 210 120人数 1 1 2 6 3 2 (1)这15人该月平均的加工零件数是________件,加工零件数在________件的人数最多,中间的加工零件数是________件.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),你认为.(请填“合理”或“不合理”)6.某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分满分均为100分.前六名选手的得分如下:序号项目 1 2 3 4 5 6笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是________分,众数是________分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余5名选手的综合成绩,并以综合成绩排序确定前两名人选.五、布置作业教科书第121页习题20.1第2,7,8,9题.六、板书设计七、教学反思关于平均数、中位数和众数综合应用:(1)首先要让学生明确认识到平均数、中位数和众数是度量集中趋势的三个主要特征数,它们具有不同的特点和应用场合,掌握它们之间的关系和各自的不同特点,有助于学生在实际应用中选择合理的统计量来描述数据的集中趋势.(2)在实际应用中,选择哪一个统计量来描述数据的集中趋势,需要综合考虑问题的具体情况、数据的特征以及统计量的特点等作出选择.(3)要注意让学生充分体会各种统计量的统计意义,对选择适当的统计量解决问题、用样本估计总体以及数据处理的基本过程有进一步的认识.。
人教版八年级下册数学第20章数据的分析20.1数据的集中趋势 20.1.2 中位数和众数课时1 中位数和众数教案【教学目标】知识与技能目标1.认识中位数和众数,并会求一组数据的众数和中位数;2.能够在具体的情境中选择合适的统计量表示数据;3.培养学生运用数学来解决实际问题的意识,养成“用数字来说话”的思想和习惯.过程与方法目标通过设置问题情境,经过探索、研究、解决问题,使学生经历中位数和众数产生的过程,感受统计在生活中的应用.情感、态度与价值观目标1.通过小组间的交流与合作,体验数学活动充满探索与创新的特点,从而培养学生的合作交流意识和探索精神;2.在解决实际问题的情境中,体会数学与实际生活的联系,增强统计意识,培养统计能力.【教学重点】理解中位数、众数的概念,会求一组数据的中位数和众数.【教学难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,利用中位数、众数分析数据信息并作出决策.【教学准备】教师准备:教学中出示的例题.学生准备:复习平均数、加权平均数的定义,并完成本节学案中的自主学习内容.【教学过程设计】一、情境导入运动会男子50m步枪三姿射击决赛.甲、乙两位运动员10次射击的成绩如但由于第10次射击,意外地未能击中靶子,最终乙以总分第一获得该项目的第一名.你认为用10次射击的平均数来表示甲射击成绩的实际水平合适吗?如果你认为不合适.那么应该怎样评价甲射击的实际水平?一组数据的“平均水平”除了用平均数反映以外,还可以用中位数、众数来反映.二、合作探究知识点一:中位数【类型一】直接求一组数据的中位数例1)分别为25,27,27,26,28,28,28.则这组数据的中位数是()A.28B.27C.26D.25解析:首先把数据按从小到大的顺序排列为25、26、27、27、28、28、28,则中位数是27.故选B.方法总结:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).【类型二】根据统计表求中位数例210名同学在一周内的读书时间,他们一周内的读书时间累计如下表,则这10名同学一周内累计的读书时间的中位数是()A.8B.7解析:∵共有10名同学,∴第5名和第6名同学的读书时间的平均数为中位数,则中位数为8+102=9.故选C.方法总结:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【类型三】在两种不同的统计图中求中位数例3计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是()A.94,96B.96,96C.94,96.4 D.96,96.4解析:总人数为6÷10%=60(人),则94分的有60×20%=12(人),98分的有60-6-12-15-9=18(人),第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;这些职工成绩的平均数是(92×6+94×12+96×15+98×18+100×9)÷60=(552+1128+1440+1764+900)÷60=5784÷60=96.4.故选D.方法总结:解题的关键是从统计图中获取正确的信息并求出各个小组的人数.然后求中位数和平均数.知识点二:众数【类型一】直接求一组数据的众数例4(单位:码)由小到大是20,21,21,22,22,22,22,23,23.这组数据的中位数和众数是()A.21和22 B.21和23C.22和22 D.22和23解析:数据按从小到大的顺序排列为20,21,21,22,22,22,22,23,23,所以中位数是22;数据22出现了4次,出现次数最多,所以众数是22.故选C.方法总结:一组数据中出现次数最多的数据叫做众数.【类型二】在条形统计图中求众数例5某校男子足球队的年龄分布如右图所示,则这些队员年龄的众数是()A.12B.13C.14D.15解析:观察条形统计图知年龄为14岁的人最多,有8人,故众数为14.故选C.方法总结:求一组数据的众数的方法:找出频数最多的那个数据.若几个数据频数都是最多且相同,此时众数就是这多个数据.【类型三】平均数、众数和中位数的综合考查例6别是()A.4,5B.5,5C.5,6D.5,8解析:∵3,x,4,5,8的平均数为5,∴(3+x+4+5+8)÷5=5,解得x=5.把这组数据从小到大排列为3,4,5,5,8,∴这组数据的中位数为5.∵5出现的次数最多,∴这组数据的众数是5.故选B.方法总结:解决本题的关键是掌握平均数、众数和中位数的求法.知识点三:平均数、众数和中位数的选择例7某公司33名职工的月工资(单位:元)如下:(2)假设副董事长的工资从8000元提升到20000元,董事长的工资从8500元提升到30000元,那么新的平均数、中位数、众数又各是多少(精确到个位)?(3)你认为哪个统计量更能反映这个公司职工的工资水平?请说明理由.解析:(1)(2)根据平均数、中位数、众数的概念计算;(3)由于副董事长、董事长的工资偏高,使月平均工资偏大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.应用公司职工月工资的中位数或众数来反映这个公司的工资水平.解:(1)公司职工月工资的平均数为133×(8500+8000+6500×2+6000+5500×5+5000×3+4500×20)≈5091;把33个数据按从小到大排列可得中位数为4500,众数为4500;(2)新的平均数为133×(30000+20000+6500×2+6000+5500×5+5000×3+4500×20)≈6106;把33个新的数据按从小到大排列可得中位数仍为4500,众数仍为4500;(3)由于副董事长、董事长的工资偏高,使月平均工资与绝大多数职工的月工资差距很大,也就是说用平均数来反映这个公司职工的工资水平有很大的误差.显然用公司职工月工资的中位数或众数更能反映这个公司的工资水平.方法总结:此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.三、教学小结师生共同回顾所学主要内容:中位数众数概念将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则称处于中间位置的数为这组数据的中位数;如一组数据中出现次数最多的数据就是这组数据的众数果数据的个数是偶数,则称中间两个数据的平均数为这组数据的中位数作用中位数也是用来描述数据的集中趋势的,它是一个位置代表值,如果知道一组数据的中位数,那么可以知道,小于或大于这个中位数的数据约各占一半众数也常作为一组数据的代表,用来描述数据的集中趋势,当一组数据有较多的重复数据时,众数往往是人们所关心的一个量区别中位数的优点是计算简单,只与其在数据中的位置有关,但不能充分利用所有的数据信息.众数只与其在数据中重复出现的次数有关,而且有时不是唯一的, 但不能充分利用所有的数据信息,而且当各个数据的重复次数大致相等时,众数往往没有特别的意义联系它们从不同角度描述了一组数据的集中趋势【板书设计】20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数1.中位数2.众数3.平均数、众数和中位数的应用4.例题讲解例1例2【课堂检测】1.1.某校在预防H1N1流感过程中,坚持每日检查体温,下表是该校八年级四班同学一天的体温数据统计表,则该班40名学生体温的中位数是() 体温/℃ 36.0 36.1 36.2 36.3 36.4 36.5 36.6 36.7 36.8 36.9 37.0人数0 2 0 5 7 5 6 3 8 3 1A. 36.8 ℃B. 36.5 ℃C. 36.6 ℃D. 36.4 ℃解析:题中已将40人的体温从小到大排列,找第20,21人的体温,均为36.6 ℃,故该班40名学生体温的中位数是36.6 ℃.故选C.2.在下表这组测试体重的数据中,众数是( )体重/kg 33 36 39 42 45 48人数/人 4 5 12 10 4 3A.39B.48C.12D.3解析:由表可以看出有4个33,5个36,12个39,10个42,4个45,3个48,其中39出现的次数最多,根据众数的意义,在一组数据中,出现次数最多的数就是这组数据的众数,所以39就是这组数据的众数.故选A.3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A.21,21B.21,21.5C.21,22D.22,22解析:从图中可以看出出现最多的数据是21,因此众数是21.气温为20 ℃,21 ℃,22 ℃,23 ℃和24 ℃分别有4天,10天,8天,6天和2天,按从小到大排序后处在最中间的两个数是22,因此中位数为22.故选C.4.在数据-1,0,4,5,8中插入一个数据x,使该组数据的中位数是3,则x=.解析:在数据-1,0,4,5,8中,插入一数据x,使得该组数据的中位数是3,则(4+x)÷2=3,解得x=2.故填2.5.在一次数学知识竞赛中,某班20名学生的成绩如下表所示:成绩/分50 60 70 80 90人数 2 3 6 7 2分别求这些学生成绩的众数、中位数和平均数.解:平均数是=72(分);由表可知80分对应的人数最多,因此这组数据的众数应该是80分;由于人数总和是20,为偶数,将数据从小到大排列后,第10个和第11个数据都是70,因此这组数据的中位数应该是70分.5.某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表:部门A B C D E F G人数 1 1 2 4 2 2 3年利润/(万元/人) 20 5 2.5 2.1 1.5 1.5 2(1)该公司每人所创年利润的平均数、中位数、众数各是多少?(2)你认为应该用哪个数据来描述该公司每人所创年利润的一般水平比较合适?解析:(1)把所有数据相加,注意每个数据的个数不一样,所得的和除以15,得到平均数,把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是中位数.(2)用来描述该公司每人所创年利润的一般水平一般是平均数和中位数,该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述较合理.解:(1)(20+5+2.5×2+2.1×4+1.5×4+2×3)÷15=50.4÷15=3.36(万元),故该公司每人所创年利润的平均数是3.36万元.把所有的数据按照从小到大的顺序排列,有15个数字,最中间一个是2.1,故该公司每人所创年利润的中位数为2.1万元.2.1万元和1.5万元在这组数据中出现的次数最多,所以该公司每人所创年利润的众数是2.1万元和1.5万元.(2)该公司A部门每人所创年利润与其他部门每人所创年利润差距很大,导致平均数与中位数偏差很大,应用中位数来描述该公司每人所创年利润一般水平比较合理.【教学反思】成功之处:本节课的教学设计遵循学生的认知心理,通过设计学生熟悉的问题情境,激发学生的学习兴趣及积极性,适时组织与引导学生自主探索、与同伴合作交流,认识中位数、众数的特点,能根据实际问题,选择适当的统计量,表示一组数据的不同特征,突破重难点,完成本节课的学习目标,让学生感受“现实的数学、有用的数学”.不足之处:学生对中位数和众数的定义的掌握和理解较易接受,但在求中位数时容易出错.再教设计:在教学中需强调:(1)先将一组数据排序;(2)当一组数据的个数是偶数时,则要求中间两个数的平均数作为这组数据的中位数.教学过程中精心设计几种不同情形,巩固学生对中位数的求法.人教版八年级下册数学第20章数据的分析20.1数据的集中趋势20.1.2中位数和众数课时1中位数和众数学案【学习目标】1.理解中位数、众数的概念,会求一组数据的中位数、众数;2.掌握中位数、众数的作用,会用中位数、众数分析实际问题.【学习重点】理解中位数、众数的概念,会求一组数据的中位数、众数.【学习难点】会用中位数、众数分析实际问题.【自主学习】一、知识链接x.1.n个数据a1,a2,a3,a4,…,a n的算术平均数=2.若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则______________叫做这n个数的加权平均数.x.3.n个数据:f1个a1,f2个a2,…,f n个a n,它的加权平均数为=二、新知预习1.下表是某公司员工月收入的资料.(1)计算这个公司员工月收入的平均数;(2)如果用(1)算得的平均数反映公司全体员工月收入水平,你认为合适吗?(3)该公司员工的中等收入水平大概是多少元?你是怎样确定的?(4)“平均数”和“中等水平”谁更合理地反映了该公司绝大部分员工的月工资水平?这个问题中,中等水平的含义是什么?2.自主归纳:(1)将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称为这组数据的中位数;如果数据的个数是偶数,则称为这组数据的中位数.(2)一组数据中的数据称为这组数据的众数.三、自学自测1.判断:(1)一组数据中间的数称为中位数.()(2)一组数据中出现次数最多的数称为这组数据的众数.()(3)一组数据中的中位数和众数是唯一的一个数.()(4)一组数据的中位数一定是这组数据中的某个数.()2.求出下面各组数据的中位数和众数:(1)90,23,27,40,90,18,52,100;(2)21,15,32,32,46,32,58,64,98.四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:中位数问题1:确定一组数据的中位数时,要注意什么?问题2:中位数反映的是一组数据的何种特征,它有何意义?【典例探究】例1在一次男子马拉松长跑比赛中,抽得12名选手所用的时间(单位:min)如下:136 140 129 180 124 154146 145 158 175 165 148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142min,他的成绩如何?总结归纳:1.中位数是一个位置代表值(中间数),它是唯一的.2.如果一组数据中有极端数据,中位数能比平均数更合理地反映该组数据的整体水平.3.如果已知一组数据的中位数,那么可以知道,小于或大于这个中位数的数据各占一半,反映一组数据的中间水平.例2 已知一组数据10,10,x,8(由大到小排列)的中位数与平均数相等,求x 值及这组数据的中位数.分析:由题意可知最中间两位数是10,x,列方程求解即可.知识点2:众数问题3:如果小张是该公司的一名普通员工,那么你认为他的月工资最有可能是多少元?问题4:一组数据的众数一定是唯一的吗?请举例说明.例3 一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如表所示.你能根据表中的数据为这家鞋店提供进货建议码?【跟踪练习】1.数学老师布置10道选择题,课代表将全班同学的答题情况绘制成条形统计图,根据图表,全班每位同学答对的题数的中位数是______.2.一组数据18,22,15,13,x ,7,它的中位数是16,则x 的值是_______.3.下面的扇形图描述了某种运动服的S 号、M 号、L 号、XL 号、XXL 号在一家商场的销售情况.请你为这家商场提出进货建议.三、归纳总结【学习检测】1.2015年某中学举行的春季田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.80 1.50 1.60 1.65 1.70 1.75人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是 ( )A.1.70 m,1.65 mB.1.70 m,1.70 mC.1.65 m,1.60 mD.3,4C(解析:按从小到大的顺序排列,1.50 m 的有2个,1.60 m 的有4个,1.65 m 的有3个,1.70 m 的有3个,1.75 m 的有2个,1.80 m 的有1个,故中位数是1.65 m;出现次中位数和众数中位数将一组数据按照由小到大(或由大到小)的顺序排列:如果数据的个数是奇数,则称 为这组数据的中位数;如果数据的个数是偶数,则称 为这组数据的中位数. 众数 一组数据中 的数据称为这组数据的众数.数最多的数据是1.60,故众数是1.60 m.故选C.)2.10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,17,17,16,14,12,设其平均数为a,中位数为b,众数为c,则有()A.a>b>cB.c>b>aC.b>c>aD.c>a>bB(解析:∵生产的件数分别是15,17,14,10,15,17,17,16,14,12,总和为147,∴平均数a==14.7,样本数据17出现次数最多,为众数,即c=17;将数据从小到大排列为10,12,14,14,15,15,16,17,17,17,∴中位数b=15.∵17>15>14.7,∴c>b>a.故选B.)3.样本数据10,10,x,8的唯一众数与平均数相同,那么这组数据的中位数是()A.8B.9C.10D.12C(解析:根据题意,得(10+10+x+8)÷4=10,解得x=12.将这组数据从小到大重新排列为8,10,10,12,最中间的两个数的平均数即为中位数,是10.故选C.)4.数据1,2,8,5,3,9,5,4,5,4的众数、中位数分别为()A.4.5、5 B.5、4.5C.5、4 D.5、55.要调查多数同学们喜欢看的电视节目,应关注的是哪个数据的代表()A.平均数B.中位数C.众数6.在演讲比赛中,你想知道自己在所有选手中处于什么水平,应该选择哪个数据的代表()A.平均数B.中位数C.众数7.数据8,9,9,8,10,8,9,9,8,10,7,9,9,8的中位数是,众数是.99(解析:从小到大排列此组数据为7,8,8,8,8,8,9,9,9,9,9,9,10,10,一共14个数据,第7个与第8个都是9,所以中位数是(9+9)÷2=9;数据9出现了6次,次数最多,所以众数为9.)8.对于数据:3,3,2,3,6,3,3,6,3,2.则在下列结论中:①这组数据的众数是3;②这组数据的众数与中位数的数值不相等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等.其中正确的结论有()A.1个B.2个C.3个D.4个A(解析:从小到大排列数据为2,2,3,3,3,3,3,3,6,6.数据3出现了6次,最多,众数为3;第5个、第6个数据均是3,中位数是3;平均数为(2+2+3+3+3+3+3+3+6+6)÷10=3.4.故选A.)9.数据92,96,98,100,120,x的众数是96,则这组数据的中位数是.97(解析:∵92,96,98,100,120,x的众数是96,∴x=96,将这组数据按从小到大的顺序排列为92,96,96,98,100,120,处于中间位置的是96,98,那么由中位数的定义可知这组数据的中位数是(96+98)÷2=97.故填97.)10.为了了解开展“孝敬父母,从家务事做起”活动的实施情况,某校抽取八年级某班50名学生,调查他们一周做家务所用时间,得到一组数据,并绘制成下表,请根据下表完成各题:每周做家务01 1.52 2.53 3.54的时间(小时)人数226121343(1)填写表格中未完成的部分;(2)该班学生每周做家务的平均时间是 .(3)这组数据的中位数是 ,众数 .11.某校男子足球队的年龄分布如下面的条形图所示.请找出这些队员年龄的平均数、众数、中位数,并解释它们的意义.12.为了加强市区交通秩序管理,交警部门在十字路口安装了红绿灯实行交道管制.以下数据是某十字路口处,十个相同时间段(即绿灯亮一次的持续时间,红、绿灯交替各持续40秒)内南北方向机动车通过的数据(单位:辆):15,22,15,17,18,15,19,15,20,14.(1)该组数据的众数和中位数各是多少?(2)估计1小时内南北方向通过该路口的车有多少辆.解:(1)根据众数的概念,15出现了4次,出现的次数最多,则这组数据的众数是15.根据中位数的概念,首先将这组数据从小到大排列,即14,15,15,15,15,17,18,19,20,22,则中位数是15和17的平均数,即16.答:众数是15,中位数是16.(2)容易求得样本平均数是17,则估计1小时内南北方向通过该路口的车有(3600÷40÷2)×17=765(辆).答:1小时内南北方向通过该路口的车约有765辆.13.某公司销售部有营销人员15人,销售部为了制定某种商品的销售定额,统计了这15人某月的销售量如下(单位:件):1800,510,250,250,210,250,210,210,150,210,150,120,120,210,150.(1)这组数据的平均数、中位数和众数各是多少?(2)假设销售部负责人把每位营销人员的月销售量定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额,并说明理由.解:(1)平均数是=320(件).数据按从大到小的顺序排列,处于中间位置的是210,因而中位数是210件.210出现了5次,次数最多,所以众数是210件.(2)不合理.理由如下:15人中有13人的销售量达不到320件,320件虽是所给数据的平均数,它却不能很好地反映销售人员的一般水平,销售量定为210件合适些,因为210件既是中位数,又是众数,是大部分人能达到的定额.14.某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示:根据表格回答问题:(1)商店出售各种规格的空调中,众数是多少?(2)假如你是经理,现要在有限的资金下进货,将如何决定?解:(1)卖出空调的台数中:1匹的为28台,1.2匹的为50台,1.5匹的为22台,2匹的为12台,可得买1.2匹的人数最多,故众数为1.2匹.(2)通过观察可得1.2匹的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.【拓展探究】15.某公司的33名员工的月工资(以元为单位)如下:职位董事长副董事长董事总经理经理管理员职员人数 1 1 2 1 5 3 20工资5500 5000 3500 3000 2500 2000 1500(1)求该公司员工月工资的平均数、中位数、众数;(2)假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到1元)(3)在(2)中你认为应该使用平均数和中位数中哪一个来反映该公司员工的工资水平?解:(1)平均数为=1500+(4000+3500+2000×2+1500+1000×5+500×3+0×20)≈1500+591=2091(元), 中位数为1500元,众数为1500元.(2)平均数为=1500+(28500+18500+2000×2+1500+1000×5+500×3+0×20)≈1500+1788=328 8(元),中位数为1500元,众数是1500元.(3)在(2)中,应该使用中位数来反映该公司员工的工资水平,原因是公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平.。
中位数、众数(2两课时)【目标导航】1.理解和掌握中位数和众数的概念、算法及在统计应用2.注意平均数、中位数、众数的区别【要点梳理】活动1:中位数例1某公司销售部有营销人员15人,销售部为了制定某种商品的月销售定额,统计了这15合理,你能制定一个合理的销售定额吗?归纳:中位数的概念:若数据中共有n个数,n为奇数时,中间位置是第个;n为偶数时,中间位置是第、个注意:(1)在数据个数为奇数的情况下,中位数是这组数据中的一个数据;但在数据个数为偶数的情况下,其中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等.(2)中位数也是用来描述数据的集中趋势的量,它是一个位置代表值.如果知道一组数据的中位数,那么可以知道,小于或大于这个中位数的数据约各占一半.例2在一次男子马拉松长跑比赛中,抽得12名选手的成绩如下(单位:分):136,140,129,180,124,154,146,145,158,175,165,148(1)样本数据(12名选手的成绩)的中位数是多少?(2)一名选手的成绩是142分,他的成绩如何?【课堂练习】1.一组数据:1、3、2、3、1、0、2的中位数是;2.一组数据:5、6、2、4、3、5的中位数是.3.一组数据9,9,x,7的众数与平均数相等,则中位数是.4.活动2:众数例3归纳:众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.注意:(1)众数是一组数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.(2)一组数据中的众数有时不只一个,如数据2、3、-1、2、1、3中,2和3都出现了2次,它们都是这组数据的众数.(3) 众数也常作为一组数据的代表,用来描述数据的集中趋势,当一组数据有较多的重复数据时,众数往往是人们所关心的一个量.例4 为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进根据上表中的数据,回答下列问题:(1)该班学生每周做家务劳动的平均时间是多少小时?(2)这组数据的中位数、众数分别是多少?(3)请你根据(1)、(2)的结果,用一句话谈谈自己的感受.【课堂练习】1.某服装销售商在进行市场占有率的调查时,他最应该关注的是()A.服装型号的平均数B.服装型号的众数C.服装型号的中位数D.最小的服装型号2.在一次英语口试中,20名学生的得分如下:70,80,100,60,80,70,90,50,80,70,80,70,90,80,90,80,70,90,60,80 则这次英语口试中学生得分的众数是.3.我市某一周的最高气温统计如下表:则这组数据的中位数与众数分别是.4.(1)若这20名学生成绩的平均分数为82分,求x和y的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a,中位数为b,求a,b的值.活动3::平均数、中位数、众数描述数据的特点:平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,因此在现实生活中较为常用,但它受极端值(是指一组数据中与其余数据差异很大的数据)的影响较大.当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点.例5某商场服装部为了调动营业员的积极性,决定实现目标管理,即确定一个月销售目标,根据目标完成情况对营业员进行适当的奖惩.为了确定一个适当的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):8 16 13 24 15 28 26 18 19 17 7 16 19 32 3016 14 15 26 2 23 17 15 15 28 28 16 19 15 19(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的销售目标,你认为月销售额定为多少合适?说明理由.(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定为多少合适?说明理由.例6为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛活动,初中三个年级根据成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为100分)如下表所(1)请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些);(2)如果在每个年级参加决赛的选手中分别选出3人参加总决赛,你认为哪个年级的实力更强一些?并说明理由.【课堂练习】1.某校在一次考试中,甲乙两班学生的数学成绩统计如下:(1)甲班众数为________分,乙班众数为_______分,从众数看成绩较好的是_____班.(2)甲班的中位数是______分,乙班的中位数是______分.(3)若成绩在85分以上为优秀,则成绩较好的是_______班.2.(1(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,合理确定今年每个销售员统一的销售额标准是多少万元?3.【课后盘点】1.一组从小到大的数据:0、4、x、10的中位数为5,则x的值为()A.5B.6C.7D.82.一组数据:2、4、x、2、4、7的众数是2,则这组数据的平均数、中位数分别为()A.3.5、3B.3、4C.3、3.5D.4、33.下列数据:16、20、22、25、24、25的平均数和中位数分别为()A.21和22B.22和23C.22和24D.21和234.在共有15人参加的演讲比赛中,参赛选手的成绩各不相同,因此选手要想知道自己是否进前8名,只需要了解自己的成绩以及全部成绩的 ( ) A.平均数B.众数C.中位数D.极差5.某校为了了解学生的身体素质情况,对初三(2)班的50余名学生进行了立定跳远、铅球、100m三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分为5组画出的频率分布直方图.已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是()A.①②B.②③C.①③D.①②③6.为了解某班学生的视力情况,从中抽取了7名学生进行检查,视力如下:1.2、1.5、0.9、1.0、1.2、1.2、0.8,则这组数据的中位数是_________.7.一射击运动员在一次射击练习中打出的成绩如下表所示,这次成绩的众数是.8.在一组数据4,5,8,-1,0中插入一个数据x使得新的数据的中位数是3,则x=_____.9由小到大排列的一组数据a、b、c、d、e,其中每一个数据都小于-1,则对于样本1、a、-b、c、-d、e的中位数可以表示为_____.10(2)小明说,他所在的年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.11.八年级某班50名同学积极参加了一次赈灾捐款活动,下表是小明对全班捐款情况的统计表:(1)根据以上信息请帮助小明计算出被污染处的数据,并写出解答过程.(2)该班捐款金额的众数、中位数分别是多少?12.厦张贴巨幅广告,称他们这次“真情回报顾客”活动共设奖金20万元,最高奖每份1万元,平均每份奖金200元.一位顾客幸运地抽到一张奖券,奖金数为10元,她调查了周围正在兑奖的其他顾客,一个也没有超过50元的.她气愤地要求与商厦领导评理,领导安慰她说不存在欺骗,并向她出示了下面这张奖金分配表,你认为商厦领导说“平均每份奖金200元”是否欺骗了顾客?这一说法能够很好地代表中奖的一般奖金额吗?以后遇到开奖的问题你会更关心什么?13.某学校对初中毕业班经过初步比较后,决定从初三(1)、(4)、(8)班这三个班中推荐一个班为市级先进班集体的候选班,现对这三个班进行综合素质考评,下表是其五项结果的差异?并从中选择一个能反映差异的统计量将这三个班的得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同).按这个比例对各班级的得分重新计算,比较出大小关系,并从中推荐一个得分高的班级作为市级先进班集体的候选班.。
2020年春人教版数学八年级下册第二十章数据的分析20.1.2 中位数和众数(第2课时)导学案一、复习在上一课中,我们学习了如何计算一组数据的算术平均数。
算术平均数是一组数据的总和除以数据的个数。
我们还学习了如何使用折线图和柱状图来表示数据的分布情况。
今天我们将继续学习数据的分析,重点是中位数和众数。
二、学习目标1.理解中位数的概念,并学会计算中位数;2.理解众数的概念,并学会找出众数;3.能够在实际问题中应用中位数和众数进行分析。
三、中位数中位数是一组数据按照从小到大的顺序排列后,位于中间位置的数值。
如果一组数据的个数为奇数,那么中位数就是这组数据排序后的中间值;如果一组数据的个数为偶数,那么中位数就是这组数据排序后中间两个数的平均值。
例如,对于数据集{1,3,5,7,9},其中共有5个数据,中位数为5。
而对于数据集{2,3,6,8},其中共有4个数据,中位数为(3+6)/2=4.5。
四、众数众数是一组数据中出现次数最多的数值。
一个数据集可能有一个或多个众数,也可能没有众数。
例如,对于数据集{2,3,3,4,5,6,6,6,7},其中出现次数最多的数字是6,因此6是这组数据的众数。
如果没有任何数字出现的次数超过其他数字,那么这组数据就没有众数。
五、中位数和众数的应用中位数和众数在实际问题中有着重要的应用。
通过计算中位数,我们可以找到一组数据的中间值,从而更好地了解这组数据的整体情况。
例如,某班级的学生考试成绩为{80,85,90,95,100},其中的中位数是90,说明大部分学生的成绩集中在90分左右。
众数可以帮助我们找到一组数据中出现次数最多的数值,从而了解这个数据集的主要特征。
例如,一个销售商想要知道他们最畅销的产品是什么,他们可以通过找出销售量最高的产品来确定众数。
六、练习1.计算以下数据集的中位数:–{2,4,6,8}–{10,20,30,40,50}–{18,24,36,42,55,69}2.找出以下数据集的众数:–{4,2,8,6,4,9,11,4,2,15}–{10,20,30,30,40,50}–{18,24,24,18,55,69,69}七、总结通过今天的学习,我们学会了如何计算中位数和找出众数。
新人教版八年级数学下册第二十章《中位数和众数(2)》学案【学习目标】
1.进一步认识平均数、众数、中位数都是数据的代表。
2.通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。
3.能灵活应用这三个数据代表解决实际问题。
【学习重点】
了解平均数、中位数、众数之间的差异.
【学习难点】
灵活运用这三个数据代表解决问题.
【导读指导】
1.什么是中位数?
2.你认为中位数和平均数有什么区别与联系?
【导学指导】
1、众数的定义:__________________,如果一组数据中有两个数据频数一样,都是最大,则这两个数据都是这组数据的___________.
2、例5中要知道怎样进货,要了解销售数据的__________.
3、例6中借用______整理和描述样本数据,要想确定一个销售目标,要分析三个数据代表________、_________、____。
如果想让大多数人获得奖励,月销售额应定为________万元。
4、极端值是_______________________,比赛评分时常用的方法是去掉一个最高分和一个最低分的原因是:________.
5、平均数的优点:缺点:
众数的优点:缺点:
中位数的优点:缺点:
例题讲解
1.对于3,3,2,3,6,3,10,3,6,3,2,
(1)这组数据的众数是3;(2)这组数据的众数与中位数的数值不等;(3)这组数据
的中位数与平均数的数值不等;(4)这组数据的平均数与众数的数值相等.
其中正确的说法有( )个
2.在一次测试中,全班平均成绩是78分,小妹考了83分,她说自己的成绩在班
里是中上水平,你认为小妹的说法合适吗?下面是小妹她们班所有学生的成绩:20,35,35,40,40,52,63,65,74,79,80,83,84,84,85,85,85,85,85,85,86,87,87,87,87,87,87,87,87,87,87,87,87,87,88,88,90,91,92,93,95. 由数列可知,小妹的成绩在全班是中上水平吗?
多少分才是中上水平?
【导练指导】
1.在某电视台举办的歌咏比赛中,六位评委给1号选手的评分如下:
90,96,91,96,95,94,这组数据的众数是()
A.94.5
B. 95
C. 96
D. 2
2.8年级一班46个同学中,13岁的有5人,14岁的有20人,15岁的15人,16
岁的6人。
8年级一班学生年龄的平均数,中位数,众数分别是多少?
【导思指导】
1.甲、乙两班举行默写英语单词比赛,成绩如下:
如果默写150个以上为优秀,你认为哪个班较好?为什么?
【小结与归纳】
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大.
众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响.
平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动.
中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.
【课后作业】(必做题1.2 .3题)
1.公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13 13 14 15 15 15 16 17 17
乙群:3 4 4 5 5 6 6 54 57 (1)甲群游客的平均年龄是岁,中位数是岁,众数是岁,其中能较好反映甲群游客年龄特征的是。
(2)乙群游客的平均年龄是岁,中位数是岁,众数是岁。
其中能较好反映乙群游客年龄特征的是。
2.在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分50 60 70 80 90 100 110 120
人数 2 3 6 14 15 5 4 1
分别求出这些学生成绩的众数、中位数和平均数.
3.判断题:(正确的打“√”,不正确的打“×”)
⑴给定一组数据,这组数据的平均数一定只有一个.()
⑵给定一组数据,这组数据的中位数一定只有一个.()
⑶给定一组数据,这组数据的众数一定只有一个.()
⑶给定一组数据,这组数据的平均数一定位于最大值和最小值之间.()
⑸给定一组数据,这组数据的中位数一定等于最小值和最大值的算术平均数. ()
⑹给定一组数据,如果找不到众数,那么众数一定就是0.()
4.右面的扇形图描述了某种运动服的S号,M号,L号,
XL号,XXL号在一家商场的销售情况,请你为这家商场
提出进货建议。