人教版数学九年级上册第二十三章《旋转》复习参考教案
- 格式:doc
- 大小:251.50 KB
- 文档页数:6
九年级数学第二十三章旋转全章教案单元要点分析教学内容1.主要内容:图形的旋转及其有关概念:包括旋转、旋转中心、旋转角.图形旋转的有关性质:对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前、后的图形全等.通过不同形式的旋转,设计图案.中心对称及其有关概念:中心对称、对称中心、关于中心的对称点;关于中心对称的两个图形.中心对称的性质:对称点所连线段都经过对称中心,而且被对称中心所平分;关于中心对称的两个图形是全等图形.中心对称图形:概念及性质:包括中心对称图形、对称中心.关于原点对称的点的坐标:两个点关于原点对称时,它们的坐标符号都相反,即点P(x,y)关于原点的对称点为P′(-x,-y).课题学习.图案设计.2.本单元在教材中的地位与作用:学生通过平移、平面直角坐标系,轴对称、反比例函数、四边形等知识的学习,初步积累了一定的图形变换数学活动经验.本章在此基础上,让学生进行观察、分析、画图、简单图案的欣赏与设计等操作性活动形成图形旋转概念.它又对今后继续学习数学,尤其是几何,包括圆等内容的学习起着桥梁铺垫之作用.教学目标1.知识与技能了解图形的旋转的有关概念并理解它的基本性质.了解中心对称的概念并理解它的基本性质.了解中心对称图形的概念;掌握关于原点对称的两点的关系并应用;再通过几何操作题的练习,掌握课题学习中图案设计的方法.2.过程与方法(1)让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.(2)•通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.(3)经历复习图形的旋转的有关概念和性质,分析不同的旋转中心,•不同的旋转角,出现不同的效果并对各种情况进行分类.(4)复习对称轴和轴对称图形的有关概念,•通过知识迁移讲授中心对称图形和对称中心的有关内容,并附加练习巩固这个内容.(5)通过几何操作题,探究猜测发现规律,并给予证明,附加例题进一步巩固.(6)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(7)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(8)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学习热情.教学重点1.图形旋转的基本性质.2.中心对称的基本性质.3.两个点关于原点对称时,它们坐标间的关系.教学难点1.图形旋转的基本性质的归纳与运用.2.中心对称的基本性质的归纳与运用.教学关键1.利用几何直观,经历观察,产生概念;2.利用几何操作,通过观察、探究,•用不完全归纳法归纳出图形的旋转和中心对称的基本性质.单元课时划分本单元教学时间约需10课时,具体分配如下:23.1 图形的旋转 3课时23.2 中心对称 4课时23.3 课题学习;图案设计 1课时教学活动、习题课、小结 2课时23.1 图形的旋转(1)第一课时教学内容1.什么叫旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教学目标了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.通过复习平移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.重难点、关键1.重点:旋转及对应点的有关概念及其应用.2.难点与关键:从活生生的数学中抽出概念.教具、学具准备三角尺教学过程一、复习引入(学生活动)请同学们完成下面各题.1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.2.如图,已知△ABC和直线L,请你画出△ABC关于L的对称图形△A′B′C′.3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?(口述)老师点评并总结:(1)平移的有关概念及性质.(2)如何画一个图形关于一条直线(对称轴)•的对称图形并口述它既有的一些性质.(3)什么叫轴对称图形?二、探索新知我们前面已经复习平移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.1.请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度. 2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)3.第1、2两题有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.下面我们来运用这些概念来解决一些问题.例1.如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、B分别移动到什么位置?解:(1)旋转中心是O,∠AOE、∠BOF等都是旋转角.(2)经过旋转,点A和点B分别移动到点E和点F的位置.最后强调,这个旋转中心是固定的,即正方形对角线的交点,•但旋转角和对应点都是不唯一的.三、巩固练习教材P56 练习1、2、3.四、归纳小结(学生总结,老师点评)本节课应掌握:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.五、教学反思补充练习一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有().A.6个 B.7个 C.8个 D.9个2.从5点15分到5点20分,分针旋转的度数为().A.20° B.26° C.30° D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,•将△ABC旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于().A.70° B.80° C.60° D.50°(1) (2) (3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,•点E•在AB上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是_____.3.如图3,△ABC为等边三角形,D为△ABC•内一点,•△ABD•经过旋转后到达△ACP 的位置,则,(1)旋转中心是____;(2)•旋转角度是____;(•3)•△ADP•是______三角形.23.1 图形的旋转(2)第二课时教学内容1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前后的图形全等及其它们的运用.教学目标理解对应点到旋转中心的距离相等;理解对应点与旋转中心所连线段的夹角等于旋转角;理解旋转前、后的图形全等.掌握以上三个图形的旋转的基本性质的运用.先复习旋转及其旋转中心、旋转角和旋转的对应点概念,接着用操作几何、实验探究图形的旋转的基本性质.重难点、关键1.重点:图形的旋转的基本性质及其应用.2.难点与关键:运用操作实验几何得出图形的旋转的三条基本性质.教学过程一、复习引入(学生活动)老师口问,学生口答.1.什么叫旋转?什么叫旋转中心?什么叫旋转角?2.什么叫旋转的对应点?3.请独立完成下面的题目.如图,O是六个正三角形的公共顶点,正六边形ABCDEF能否看做是某条线段绕O点旋转若干次所形成的图形?(老师点评)分析:能.看做是一条边(如线段AB)绕O点,按照同一方法连续旋转60°、120°、180°、240°、300°形成的.二、探索新知上面的解题过程中,能否得出什么结论,请回答下面的问题:1.A、B、C、D、E、F到O点的距离是否相等?2.对应点与旋转中心所连线段的夹角∠BOC、∠COD、∠DOE、∠EOF、∠FOA是否相等?3.旋转前、后的图形这里指三角形△OAB、△OBC、△OCD、△ODE、△OEF、△OFA 全等吗?老师点评:(1)距离相等,(2)夹角相等,(3)前后图形全等,那么这个是否有一般性?下面请看这个实验.请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,•再挖一个点O 作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,•在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.(分组讨论)根据图回答下面问题(一组推荐一人上台说明)1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?2.∠AOA′,∠BOB′,∠COC′有什么关系?3.△ABC与△A′B′C′形状和大小有什么关系?老师点评:1.OA=OA ′,OB=OB ′,OC=OC ′,也就是对应点到旋转中心相等.2.∠AOA ′=∠BOB ′=∠COC ′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.3.△ABC 和△A ′B ′C ′形状相同和大小相等,即全等.综合以上的实验操作和刚才作的(3),得出(1)对应点到旋转中心的距离相等;(2)对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前、后的图形全等.例1.如图23.1-4,E 是正方形ABCD 中CD 边上任意一点,以点A 为中心,把ADE 顺时针旋转90,画出旋转后的图形,并作答下面的问题。
第二十三章《旋转》复习教案一.概念:1.旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.例:(1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A 、B 、C 分别移动到什么位置?图1图22 .中心对称图形:图形绕着中心旋转180°后与自身重合称中心对称图形(如:平行四边形、圆等)。
有 )○1旋转不改变图形的形状和大小(即旋转前后的两个图形全等). ○2任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角). ○3经过旋转,对应点到旋转中心的距离相等 2.旋转三要点:旋转①中心,②方向,③角度.例:1.若两个图形关于某一点成中心对称,那么下列说法:○1对称点的连线必过对称中心; ○2这两个图形一定全等; ○3对应线段一定平行且相等; ○4将一个图形绕对称中心旋转180°必定与另一个图形重合。
其中正确的是( )。
(A) ①② (B) ①③(C) ①②③ (D) ①②③④2.如图,四边形ABCD 是边长为1的正方形,且DE=14,△ABF 是△ADE 的旋转图形.(1)旋转中心是哪一点?(2)旋转了多少度?(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样的三角形?三.基本练习1.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()2.下面图形中既是轴对称图形又是中心对称图形的是()A.直角 B.等边三角形 C.直角梯形 D.两条相交直线3.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等4.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60° B.50° C.75° D.55°5.如图,△ABC是等边三角形。
【数学·九年级·上册】第二十三章小结与复习【教学目标】1.总结和复习图形旋转、中心对称的基本性质的应用及两个点关于原点对称时坐标之间的关系;2.注意复习平移、轴对称、旋转的联系和区别,旋转和中心对称的联系和区别,运用图形旋转、中心对称的基本性质解一些简单问题.【学情简析】本章先学习了旋转的有关知识,要求能够从旋转的角度观察图形,进而认识特殊的旋转——中心对称,最后运用轴对称、平移、旋转的组合进行图案设计.【教学重点】复习图形旋转的基本性质和中心对称的基本性质及两个点关于原点对称时,它们坐标之间的关系.【教学难点】运用旋转的性质解决问题.【课时安排】3课时【教学过程】环节教学内容教师的行为学生的活动唤起希望差异指导引发碰撞再激希望一、复习展示问题1平移、轴对称、旋转的区别与联系个人二次备课二、典型例题例 1 (1)如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转中心是______,旋转角等于_____度,△ADP是______三角形.(2)如图,正方形ABCD 中,E 是AD上一点,将△CDE 逆时针旋转后得到△CBM.则旋转中心是______,△CDE 旋转了___度,△CEM 是_____三角形.例2(1)画出点P 绕点O 顺时针旋PPT给出图片及问题个人二次备课板书课题巡视,指导,检查学生独立思考个人二次备课整理笔记小组合作探究ABDPCDAEBCM转 30°后的对应点.(2)画出线段AB 绕点A(或点M )逆时针旋转45°后的图形.(3)画出△DEC 绕点C 逆时针旋转 90°后的图形.个人二次备课三、复习展示问题2旋转和中心对称的区别与联系.四、典型例题例3下列图形中,既是轴对称图形,又是中心对称图形的是().例4已知:△ABC 中,A(-2,3),B(-3,1), C(-1,2).请画出△ABC关于原点O 对称的△A1B1C1.五、小结1.平移、轴对称和旋转有什么区别与联系?2.旋转和中心对称有什么区别与联系?3.怎样利用旋转的定义和性质作图?个人二次备课个人二次备课巡视指导巡视,检查对各组完成的情况进行点评归纳本节课所学布置作业教科书复习题23第 1,4,5 题.个人二次备课小组合作探究整理笔记个人二次备课个人二次备课教学反思。
第二十三章旋转23.1图形的旋转(共 3 课时,第 1 课时)教课内容:1.什么叫做旋转?旋转中心?旋转角?2.什么叫旋转的对应点?教课目的:1.认识旋转及其旋转中心和旋转角的观点;2.认识旋转的对应点的观点及其应用它们解决一些实质问题。
教课要点:旋转及对应点的相关观点及其应用。
教课难点与要点:从活生生的数学中抽出观点。
教具、学具准备:小黑板、三角尺。
教课过程:一、回首知识(复习引入,学生活动):请同学们达成下边各题:1.将图一的四边形 ABCD 平移,使点 B 的对应点为点 D,作出平移后的图形。
2.图二已知△ ABC 和直线 m,请你画出△ ABC 对于 m 的对称图形△ A1 B1C1。
3.圆是轴对称图形吗?等腰三角形呢?你还可以指出其余吗?4.教师评论并总结:(1)平移的相关观点及性质?(2)如何画一个图形对于一条直线(对称轴)的对称图形并口述它既有的一些性质?(3)什么叫轴对称图形?二、新课(研究新知):1.从回首知识中题目导出今节学习的内容《图形的旋转》我们先分组议论以下问题各小组找出合理的结论:(1)请大家看教室的大时钟,有什么在不断地转动?旋绕什么点呢?从此刻到下课时针转了多少度?分针转了多少度?秒针转了多少度?(学生思虑回答后由教师评论:时针、分针、秒针在不断在转动。
从此刻到下课时钟时针转了度,分针转了度,秒针转了度。
)(2)再看我制的仿佛风车轮的玩具,它能够不断地转动。
如何转到新的地点?(此小题教师可不评论)(3)上两小题有什么共同特色呢?(教师评论:把时针、风车风轮当作一个图形,这些图形都能够绕着某一固定点转动必定的角度。
导出以下观点)2.什么叫旋转?旋转中心?旋转角?(学生回答教师格板书:把一个图形绕着某一点O 转动一个角度的图形变换叫旋转,点O 叫做旋转中心,转动的角叫做旋转角。
)3.什么叫做这个旋转的对应点?(图形上的点P经过旋转变成点P1,这两个点叫做这个旋转的对应点。
人教版九年级上册第二十三章旋转全章复习教学设计人教版九年级上册第二十三章《旋转》这一章节主要介绍了图形的旋转概念、性质以及应用。
设计一个有效的复习课,可以帮助学生更好地理解和掌握本章内容。
以下是一个基于此目标的教学设计方案:一、教学目标1.知识与技能:能够准确理解旋转的概念;掌握旋转中心、旋转角度等基本要素;能利用旋转解决简单的几何问题。
2.过程与方法:通过观察、操作等活动体验旋转的过程,发展学生的空间想象能力和逻辑思维能力。
3.情感态度价值观:培养学生对数学的兴趣,感受数学之美。
二、重点难点●重点:旋转的基本性质及其应用。
●难点:如何灵活运用旋转解决问题。
三、教学过程(一) 导入新课●通过展示生活中常见的旋转现象(如风扇叶片转动),引导学生思考“什么是旋转?”激发学习兴趣。
(二) 知识回顾1.定义讲解:明确旋转的定义,包括旋转中心、旋转方向和旋转角等关键术语。
2.性质归纳:●旋转前后对应点到旋转中心的距离相等。
●任意两点连线段经过旋转后其长度不变。
●旋转角相同。
3.例题分析:选取教材中典型题目进行详细解析,强调解题思路与步骤。
(三) 实践探索●分组活动:让学生分组完成一些关于旋转的操作实验(比如使用纸片制作模型并演示旋转过程),促进理论知识向实践技能转化。
●互动讨论:鼓励学生分享自己的发现,并就遇到的问题展开交流探讨。
(四) 巩固练习●提供不同难度层次的习题供学生选择性完成,旨在巩固所学知识的同时满足不同程度学生的需求。
●对于较难题目可设置小组合作解答环节,增强团队协作精神。
(五) 课堂小结●回顾本节课主要内容,强调旋转在实际生活中的广泛应用。
●鼓励学生反思自己在学习过程中存在的困惑或不足之处,并提出改进措施。
四、作业布置●完成课本相关练习题。
●观察身边是否存在其他可以体现旋转原理的现象,并尝试用所学知识解释。
通过这样一套完整的复习流程,不仅能让学生系统地梳理了旋转的相关知识点,还增强了他们解决问题的能力,达到了预期的教学效果。
人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案一. 教材分析人教版九年级数学上册第二十三章旋转《23.1图形的旋转》第3课时教案,主要讲述了图形的旋转性质及其在实际问题中的应用。
本节课内容是学生在学习了图形的平移、翻转的基础上,进一步探究图形的旋转特点,培养学生的空间想象能力和动手操作能力。
二. 学情分析九年级的学生已具备一定的图形变换基础,对于图形的平移、翻转有一定的了解。
但学生在理解和应用图形旋转方面可能存在一定的困难,因此,在教学过程中,教师需要注重引导学生通过实际操作来掌握图形旋转的性质,提高学生的空间想象能力。
三. 教学目标1.理解图形旋转的性质,掌握图形旋转的基本方法。
2.能够运用图形旋转解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力和动手操作能力。
四. 教学重难点1.图形旋转的性质及其在实际问题中的应用。
2.学生空间想象能力的培养。
五. 教学方法采用“问题驱动”的教学方法,引导学生通过自主探究、合作交流的方式,掌握图形旋转的性质。
同时,运用多媒体技术辅助教学,提高学生的空间想象能力。
六. 教学准备1.多媒体课件。
2.图形旋转的实际问题案例。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的旋转现象,如旋转门、风车等,引导学生关注图形旋转现象,激发学生的学习兴趣。
同时,提问:“你们认为图形旋转有哪些性质呢?”2.呈现(10分钟)教师通过多媒体课件,展示图形旋转的性质,如旋转变换不改变图形的形状和大小,对应点、对应线段、对应角相等等。
同时,引导学生观察图形旋转前后的变化,总结旋转的规律。
3.操练(10分钟)教师提出一些实际问题,让学生运用图形旋转的性质进行解决。
如:“一个正方形绕着其一个顶点旋转90度后,求得旋转后的正方形面积。
”学生在教师的指导下,进行动手操作,巩固图形旋转的应用。
4.巩固(10分钟)教师给出一些关于图形旋转的练习题,让学生独立完成。
本章我们学习了一种新的图形变换——旋转,下面我们来对这一章节进行简要的梳理.首先我们遵循几何变换的一般研究思路,从定义、性质、应用几个方面对旋转进行了细致、深入的学习.然后我们又对其中一种特殊的旋转——中心对称进行了研究.最后结合之前学过的图形变换平移和轴对称,利用这三种图形之间的变化关系,以及它们变化前后只改变图形的位置,不改变图形的形状和大小的共性,进行了图案设计.下面我们通过具体问题,来对本章一些具体的知识和方法进行复习和回顾.复习回顾:图形的旋转例如图所示,把一个直角三角尺ACB顺时针旋转到△EDB的位置,使得点A落在CB的延长线上的点E处,则旋转中心是___,旋转角等于___度,∠BDC的度数为___度.设计意图:通过本题复习旋转的定义及性质.图形:定义:把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做旋转. 三要素:旋转中心、旋转方向、旋转角度.性质:1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前、后的图形全等.例:已知:点A与点B.AB情况1:点A与点D对应,点B与点C对应.做线段AD与BC的垂直平分线,交于点E1,则点E1即为所求.进而∠A E1D、∠BE1C为旋转角.根据网格,可计算得出△AED的三边符合勾股定理逆定理,因此∠AE1D=90°,同理也可计算出∠BE1C=90°.因此线段DC可以看成是线段AB绕点E逆时针旋转90°得到的.情况2:点A与点C对应,点B与D对应.与情况1完全同理,可以确定此时点E2的位置如图所示,根据网格,可根据勾股定理逆定理得到旋转角∠AE2D=∠BE2D=90°.所以线段CD可以看成线段AB绕点E顺时针旋转90°得到的.复习回顾:中心对称例:如图,△ABC与△A′B′C′关于点O成中心对称,下列结论中不一定成立的是( ).(A)OC=OC′(B)OA=OA′(C)BC=B′C′(D)∠ABC=∠A′C′B′设计意图:复习中心对称的定义及性质.图形:定义:把一个图形绕着某一点旋转180゜,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.性质:(1)对称点所连线段都经过对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等图形.例:如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是( ).(A) (-y,-x) (B)( x,-y)(C) (-x,y) (D)(-x,-y)设计意图:中心对称、关于原点对称的点的坐标.例:下列图案中,既是轴对称图形也是中心对称图形的是()。
旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m= -1 ,n= -5 .④如图,在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A、点B关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴、y轴的负半轴上,且OA=2,OB=1,将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的图形沿x轴正方向平移1个单位得到△CDO,写出A、C两点的坐标并求出点A和点C之间的距离.A(-2,0),C(1,2),点A和点C之间的距离AC===.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:①明了学情:特别关注学生是否对以往学过的旧知识不熟悉.②差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。
旋转
教师活动
(一)图形的旋转
1.旋转的定义:
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角
注意:
在旋转过程中保持不动的点是旋转中心.
2.旋转的三个要素:
旋转中心、旋转的角度和方向.
3.旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
.中心对称
边形、圆是中心对称图形.
.下列图形中,中心对称图形是
( )
把一个图形绕着某一点旋转180°后,如果它能和另一个图形完全重合,么称这两个图形成中心对称,
对称中心平分;反之,如果两个图形的对应点连成的线段都经过某一点,将其中的两个关键点和它们的对称点的连线作出来,两条连线的交点就是)确定关键点;
,四边形ABC=
____________.。
第二十三章《旋转》复习教案
一.概念:
1.旋转:如果一个图形绕某一个定点沿某一个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角度称为旋转角.
例:(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A 、B 、C 分别移动到什么位置?
图1
图 2
2 .中心对称图形:图形绕着中心旋转180°后与自身重合称中心对称图形(如:平行四边形、圆等)。
例: ①在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有__________ ②在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )
二.性质
1.旋转的性质:
○1旋转不改变图形的形状和大小(即旋转前后的两个图形全等).
○2任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角).
○3经过旋转,对应点到旋转中心的距离相等
2.旋转三要点:旋转①中心,②方向,③角度.
例:1.若两个图形关于某一点成中心对称,那么下列说法:
○1对称点的连线必过对称中心;
○2这两个图形一定全等;
○3对应线段一定平行且相等;
○4将一个图形绕对称中心旋转180°必定与另一个图形重合。
其中正确的是()。
(A) ①②(B) ①③(C) ①②③(D) ①②③④
2.如图,四边形ABCD是边长为1的正方形,且DE=1
4
,△ABF是△ADE的旋转
图形.(1)旋转中心是哪一点?(2)旋转了多少度?
(3)AF的长度是多少?(4)如果连结EF,那么△AEF是怎样
的三角形?
三.基本练习
1.将三角形绕直线L旋转一周,可以得到如图所示的立体图形的是()
2.下面图形中既是轴对称图形又是中心对称图形的是()
A.直角 B.等边三角形 C.直角梯形 D.两条相交直线3.下列命题中真命题是()
A.两个等腰三角形一定全等
B.正多边形的每一个内角的度数随边数增多而减少
C.菱形既是中心对称图形,又是轴对称图形
D.两直线平行,同旁内角相等
4.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,
则∠AED的大小是()。