总线设计(CAN)
- 格式:doc
- 大小:108.00 KB
- 文档页数:3
基于STM32的CAN总线通信设计近年来,CAN(Controller Area Network)总线通信在汽车电子控制系统和工业领域得到了广泛应用。
作为一种高可靠性、高实时性的通信协议,CAN总线能够实现多节点之间的高效数据传输。
STM32系列微控制器作为嵌入式系统设计领域的重要成员,具备强大的处理能力和丰富的外设资源,被广泛用于CAN总线通信的设计和应用。
本文将介绍,包括硬件设计和软件编程两个方面。
首先,我们将讨论如何选择合适的STM32微控制器和CAN收发器。
其次,我们将详细描述硬件连接和接口电路设计。
最后,我们将介绍CAN总线通信软件的编程方法和实现。
在硬件设计方面,选择合适的STM32微控制器和CAN收发器是至关重要的。
STM32系列微控制器具备不同的处理能力和资源配置,应根据具体应用需求来选择。
CAN收发器是将STM32与CAN总线连接的重要部件,需要根据通信速率和总线特性选择合适的收发器。
在硬件连接和接口电路设计方面,需要参考STM32的引脚分配和电气特性,正确连接CAN收发器和其他外设。
同时,还需要考虑如何提供稳定的电源和适当的信号滤波电路,以保证CAN总线通信的可靠性和稳定性。
在软件编程方面,首先,需要在STM32的开发环境中配置CAN总线通信所需的外设和时钟。
然后,根据具体需求设置CAN总线的通信速率、帧格式和过滤器等参数。
接下来,编写CAN总线发送和接收数据的代码。
在发送数据时,需要将数据打包成CAN帧的格式,并将其发送到CAN总线;在接收数据时,需要监听CAN总线上的数据帧,并将接收到的数据解码处理。
此外,为了提高CAN总线通信的可靠性,还可以加入错误检测和纠错代码。
在实际应用中,广泛应用于汽车电子控制系统和工业自动化领域。
在汽车电子控制系统中,CAN总线通信可以实现各个控制单元之间的数据交换和协调工作,提高整车系统的性能和安全性。
例如,发动机控制单元、制动系统控制单元和防抱死系统控制单元可以通过CAN总线通信实现数据的快速传输和实时响应。
1 引言can(controller area network)即控制器局域网络,最初是由德国bosch公司为解决汽车监控系统中的自动化系统集成而设计的数字信号通信协议,属于总线式串行通信网络。
由于can总线自身的特点,其应用领域由汽车行业扩展到过程控制、机械制造、机器人和楼宇自动化等领域,被公认为最有发展前景的现场总线之一。
can总线系统网络拓扑结构采用总线式结构,其结构简单、成本低,并且采用无源抽头连接,系统可靠性高。
本设计在保证系统可靠工作和降低成本的条件下,具有通用性、实时性和可扩展性等持点。
2 系统总体方案设计整个can网络由上位机(上位机也是网络节点)和各网络节点组成(见图1)。
上位机采用工控机或通用计算机,它不仅可以使用普通pc机的丰富软件,而且采用了许多保护措施,保证了安全可靠的运行,工控机特别适合于工业控制环境恶劣条件下的使用。
上位机通过can总线适配卡与各网络节点进行信息交换,负责对整个系统进行监控和给下位机发送各种操作控制命令和设定参数。
网络节点由传感器接口、下位机、can控制器和can收发器组成,通过can收发器与总线相连,接收上位机的设置和命令。
传感器接口把采集到的现场信号经过网络节点处理后,由can收发器经由can总线与上位机进行数据交换,上位机对传感器检测到的现场信号做进一步分析、处理或存储,完成系统的在线检测,计算机分析与控制。
本设计can总线传输介质采用双绞线。
图 1 can总线网络系统结构3 can总线智能网络节点硬件设计本文给出以arm7tdmi内核philips公司的lpc2119芯片作为核心构成的智能节点电路设计。
该智能节点的电路原理图如图2所示。
该智能节点的设计在保证系统可靠工作和降低成本的条件下,具有通用性、实时性和可扩展性等特点,下面分别对电路的各部分做进一步的说明。
图2 can总线智能网络点3.1 lpc2119处理器特点lpc2119是philips公司推出的一款高性价比很处理器。
CAN总线介绍CAN总线,即控制器区域网络(Controller Area Network),是一种国际标准的串行通信协议,用于在汽车和工业领域中进行高速数据传输。
CAN总线的设计目标是提供一个可靠、高效、实时的通信方式,以满足复杂系统的需求。
下面将详细介绍CAN总线的特点、结构、工作原理以及应用领域。
一、CAN总线的特点:1.高可靠性:CAN总线采用差分信号传输,具有较强的抗干扰能力,能够在恶劣的工作环境下保持稳定的通信质量。
2.高效性:CAN总线采用了固定格式的数据帧和强大的错误检测与修复机制,使得数据传输更加高效可靠。
3.实时性:CAN总线支持实时性要求较高的应用,可以实现微秒级的数据传输延迟。
4.灵活性:CAN总线可以连接多个节点,节点之间可以通过CAN总线进行双向通信,同时支持错误检测与错误恢复。
5.易于应用:CAN总线采用了开放式的标准协议,有着广泛的支持和应用经验,易于集成和开发。
二、CAN总线的结构:1. 主控器(Master):负责总线管理,包括数据的发送和接收、帧结构的解析、错误处理等。
2. 从控器(Slave):负责接收主控器发送的数据帧,并根据需要进行相应的处理和响应。
3.总线线缆:用于在各个节点之间传输数据和控制信息的物理介质。
4. 高速传输率:CAN总线通常有两种速率可选,分别是高速CAN(1Mbps)和低速CAN(125kbps)。
三、CAN总线的工作原理:1.数据帧格式:CAN总线的数据帧包括了4个主要部分:起始符、控制字段、数据字段和结束符。
其中,控制字段包括了帧类型、帧长度、帧优先级、帧标识符等信息。
2.帧结构与地址:CAN总线通过帧标识符来区分不同的数据帧,并根据优先级进行数据传输,同时可以通过标识符来实现多个不同类型的数据帧。
3.错误检测与修复:CAN总线采用循环冗余校验(CRC)方法进行错误检测和修复,可以检测到传输过程中的位错误、帧错误等,并进行相应的错误恢复措施。
CAN总线的介绍CAN总线是指控制器局域网络(Controller Area Network)的缩写,是一种被广泛应用于汽车电子系统的通信总线。
它最初由德国汽车制造商BOSCH于1983年开发,用于解决传统有线电缆在多个控制单元之间进行数据传输过程中所遇到的问题。
CAN总线的设计目标是提供高可靠性的实时通信,优化汽车电子系统的性能,并节省系统成本。
CAN总线的特点之一是在一个相对短的物理线路上能实现高速数据传输。
它的传输速率通常为1 Mbps,且可在特殊情况下扩展至10 Mbps。
CAN总线可以支持多达110个节点连接在同一总线上,并且在同一车辆或系统内部的多个子网之间提供通信。
CAN总线使用了一种全双工的通信方式,即任何节点都可以同时发送和接收数据。
这也意味着不同的节点可以通过总线实时地进行数据沟通。
此外,CAN总线还具备高度容错性和冗余性,即使在总线上存在故障或节点故障的情况下,仍能保持通信稳定和可靠。
CAN总线的传输机制采用了一种基于优先级的非中断方式。
当一个节点想要发送数据时,它会使用一个帧来尝试传输。
如果总线上没有其他节点正在发送数据,则该帧可以立即传输。
如果有多个节点同时发送数据,CAN总线会根据每个节点的优先级来确定哪个节点能够成功发送,从而实现数据的有序传输。
CAN总线还支持多种类型的帧结构,包括数据帧、远程帧和错误帧。
其中,数据帧用于发送实际数据,远程帧用于请求其他节点发送数据,而错误帧则用于报告数据传输过程中的错误情况。
这些帧结构使得CAN总线能够满足不同类型的通信需求。
在汽车电子系统中,CAN总线被广泛应用于各种控制单元之间的通信,例如引擎控制单元、变速器控制单元、车身电子控制单元等。
它能够实现这些控制单元之间的实时数据交换,提高整车系统的性能和安全性。
此外,CAN总线还可以支持诊断和配置功能,让技术人员能够对车辆的电子系统进行故障排查和参数调整。
总之,CAN总线是一种可靠、高效的通信总线,被广泛应用于汽车电子系统。
CAN总线接口电路设计注意事项CAN(Controller Area Network)总线是一种广泛应用于汽车电子、工业自动化等领域的串行通信协议。
CAN总线接口电路设计的关键因素包括信号线路、电源与地线路、保护电路等部分。
以下是设计CAN总线接口电路时需注意的几个方面:1.信号线路设计信号线路的设计应考虑信号的稳定性、抗干扰能力和传输速率。
首先,应尽量降低信号线的长度以减小信号传输的延迟。
同时,为保证信号的稳定性和抗干扰能力,应使用屏蔽线缆,并正确接地以防止地回流问题。
另外,为提高传输速率,可采用信号差分传输方式,即CAN-H和CAN-L两个线进行差分传输。
2.电源与地线路设计电源与地线路的设计应考虑到CAN总线工作的稳定性和可靠性。
首先,电源线路应提供稳定的电压,以满足CAN总线的要求。
此外,地线路应设计合理,确保地的连续性和低阻抗。
同时,为降低地回流对信号传输的干扰,应采用低阻抗地连接方式,即在CAN控制器和每个节点上都连接一段短接电阻。
此外,为提高抗干扰能力,还可使用电源和地线的滤波电路。
3.保护电路设计保护电路是为了保护CAN控制器和节点不受外部干扰和短路等异常情况的影响。
首先,需要设置电压保护电路,以防止过压和过载等情况对硬件造成损坏。
同时,还应考虑到静电放电和电磁干扰等问题,采用保护电阻、TVS二极管等元件进行保护。
另外,还应设计电流限制电路,以防止短路时过大的电流对硬件造成烧毁。
4.稳压和滤波电路设计稳压和滤波电路的设计是为了提供干净的电源和地线,保证CAN总线的正常工作。
稳压电路可采用稳压芯片或稳压二极管等元件来实现,以保持电源的稳定性。
滤波电路可采用电感、电容等元件,滤除电源和地线上的高频噪声干扰,提高CAN总线的抗干扰能力。
5.PCB布局和阻抗匹配在PCB设计中,应合理布局CAN总线接口电路的各个元件和信号线路,以降低互相干扰的可能性。
可以根据信号的传输速率和长度选择合适的线路宽度,确保信号的传输速率和阻抗匹配。
CAN总线拓扑结构方案简介CAN(Controller Area Network)总线是一种常用于现代汽车、工业控制和其它应用的串行通信协议。
它的主要特点是高可靠性、实时性和高带宽,被广泛应用于车载电子系统和工业领域。
在CAN总线系统中,拓扑结构方案的设计起着至关重要的作用。
本文将介绍几种常见的CAN总线拓扑结构方案,并对各种方案的特点、优缺点进行比较和分析。
单总线拓扑结构单总线拓扑结构是最简单的拓扑结构方案,也是最常用的方案之一。
在单总线拓扑结构中,所有节点都直接连接到同一根总线上。
节点之间通过总线共享数据和通信。
特点•简单、容易实现和维护。
•总线长度可以较长,适合中大型系统的应用。
•总线上只有一个主节点,其他节点均为从节点。
优点•简化硬件设计,减少成本。
•节省总线线缆和器件的使用。
缺点•对于大型系统,总线长度过长会导致信号衰减和反射现象。
•节点数过多时,总线的负载会过重,影响总线性能。
星型拓扑结构星型拓扑结构是另一种常见的拓扑结构方案。
在星型拓扑结构中,所有节点都通过独立的连线连接到主节点(集线器或交换机)。
特点•易于添加或移除节点,不影响其他节点的通信。
•可以通过改变主节点的位置来改变系统的结构。
优点•总线长度可以更长,较少信号衰减和反射问题。
•每个节点之间的通信不会影响其他节点的通信。
缺点•需要更多的线缆。
•需要额外的集线器或交换机等设备。
环型拓扑结构环型拓扑结构是一种将所有节点构成环形的拓扑结构方案。
在环型拓扑结构中,每个节点都与相邻的节点连接,形成一个闭环。
特点•每个节点之间可以直接通信,无需通过中间节点。
•所有节点都能接收到通过总线传输的数据。
优点•可以实现较高的传输速率。
•可以实现实时性较高的通信。
缺点•每个节点都需要两个接口,增加成本。
•添加或移除节点需要重新布线。
混合拓扑结构混合拓扑结构是将多种拓扑结构方案结合在一起的方案。
在混合拓扑结构中,可以同时使用单总线、星型、环型等多种拓扑结构。
can总线接口电路设计Can总线是一种用于车辆电子系统中的通信接口,它在汽车电子技术中起着至关重要的作用。
本文将围绕Can总线接口电路的设计展开讨论。
Can总线是Controller Area Network的缩写,它是一种串行通信协议,旨在提供高可靠性、实时性和高带宽的数据通信。
Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。
我们需要考虑Can总线的物理层接口电路。
Can总线使用差分信号传输,因此需要设计差分发送器和差分接收器。
差分发送器将逻辑高和逻辑低分别转换为正向和负向的差分信号,而差分接收器则将差分信号还原为逻辑高和逻辑低。
这样的设计可以提高信号的抗干扰能力,保证数据的可靠传输。
我们需要考虑Can总线的协议层接口电路。
Can总线采用帧格式进行数据传输,因此需要设计帧格式解析器和帧格式生成器。
帧格式解析器用于解析接收到的帧数据,提取出其中的控制信息和数据信息。
而帧格式生成器则用于生成符合Can总线协议的帧数据,并将其发送出去。
这样的设计可以保证数据的正确解析和生成,实现与其他设备的有效通信。
除了物理层和协议层接口电路,Can总线接口电路还需要考虑其他功能模块。
例如,需要设计时钟模块来提供时钟信号,以保证数据传输的同步性。
同时,还需要设计中断模块来处理Can总线接收到的中断信号,及时响应和处理来自其他设备的请求。
在Can总线接口电路的设计中,还需要考虑电路的功耗和成本。
可以采用低功耗的设计方案,选择低功耗的器件和电源管理电路,以降低整个系统的功耗。
同时,还需要根据实际的应用需求选择适当的元器件和电路结构,以降低系统成本。
Can总线接口电路的设计是为了实现Can总线与其他电子设备的连接和数据传输。
它涉及到物理层接口电路、协议层接口电路以及其他功能模块的设计。
在设计过程中,需要考虑信号的抗干扰能力、数据的可靠传输、接口的兼容性、功耗的控制以及成本的降低等因素。
通过合理的设计和选型,可以实现高可靠性、实时性和高带宽的数据通信,进而提升车辆电子系统的性能和功能。
CAN总线接口电路的硬件设计首先,CAN总线接口电路的设计需要考虑以下几个方面:电气特性、线路传输、保护电路以及电源设计。
1. 电气特性设计:CAN总线通信的电气特性主要包括传输速率、传输距离和传输噪声等。
根据CAN总线的规范,通信速率可分为几个常用的速率,如1Mbps、500Kbps、250Kbps等。
在设计CAN总线接口电路时,需要选择与所应用的CAN总线通信速率相匹配的晶振,并根据晶振选择合适的分频比。
此外,CAN总线的传输距离较短,一般在40米以内,因此需要考虑信号的传输衰减和时序的稳定性。
传输噪声是CAN总线设计中的一个重要问题,为了减少噪声的干扰,可以采取屏蔽线路、独立地线、滤波电路等措施。
2.线路传输设计:CAN总线的传输线路一般是双绞线,这种线路能够减少电磁干扰,提高传输质量。
在设计CAN总线接口电路时,需要合理布局CAN总线线路,确保信号的稳定传输。
在布线过程中,需要避免与其他高干扰信号线路的交叉和并行,以减少电磁干扰的可能性。
对于长距离传输的CAN总线,还需要考虑电缆的衰减和传输质量,可以通过使用中继器来增强信号。
3.保护电路设计:CAN总线接口电路需要设计合适的保护电路,以防止过压、过流、过热等故障对电路和设备的损坏。
常见的保护电路有瞬态电压抑制器(TVS)、过流保护电路和热敏电阻等。
瞬态电压抑制器可以抑制大功率瞬态电流,保护电路免受过压的影响;过流保护电路可监测和控制电流变化,确保电路不会因过大的电流而损坏;热敏电阻可用于监测电路的温度,并在温度超过预设值时触发保护机制。
4.电源设计:CAN总线接口电路的电源设计需要考虑电源稳定性和滤波。
稳定的电源可以提供稳定的工作环境,减少因电源波动而产生的故障。
滤波电路可以滤除电源中的噪声,提高电源的质量。
通常情况下,CAN总线接口电路需要提供3.3V或5V的电源供电,可以使用稳压器或开关电源等方式得到所需的电源电压。
总之,CAN总线接口电路的硬件设计需要考虑电气特性、线路传输、保护电路以及电源设计等方面的问题。
我一直不喜欢那些盲目崇拜老外的人,但有时还不得不对行业内的老外,佩服得五体投地。
他们也会出错,写出一些乱七八糟的文章害人,但是确实有好多设计,实在精妙,让人拍案叫绝。
前些日子看CAN总线,那么多设备挂接在单信息总线上,都想说话,还没有领导,那不成一锅粥了吗?看懂就发现,原来它们给每个接入设备分配了ID号——有大小区分的身份证,靠二进制的01级别展开无限制的竞争,一下就实现了多个设备无领导情况下的单总线竞争占用。
看完后,我的感觉是美妙。
这些洋鬼子,看来是聪明的,至少不比我笨。
再看放大器。
要检测一个负载的用电电流,有一种方法是在回路中串联一个检测电阻,只要获得电阻两端的压差,就可以计算出流过的电流,这谁都清楚。
但是串联电阻串在哪里?是高侧,就是负载的头顶,还是低侧,就是负载的脚底下?于是,我知道原来有两种检测方法,分别是High side,Low side。
两种方法各有优缺点:低侧检测的最大好处是串联电阻两端几乎没有共模电压,比如一端是0V,另一端是0.1V,压差是0.1V,这可以直接使用仪表放大器检出,方便得很。
但是它也有缺点,就是负载的脚底不再是0V,而是0.1V了,如果电流在波动,这个0.1也就不稳,就像站在一楼,但地板晃荡一般,结果是负载很不舒服。
你是个检测仪表,要检测负载中的电流,但搞得负载很不舒服,就像医生搞得病人很不舒服一般,这有点不妙。
于是大量的设计,都采用高侧检测。
但高侧检测也有麻烦,比如负载工作电压为100V,正常工作时,负载的脚底是0V,头顶是100V,现在你串联了一个小电阻在负载头顶,上面有0.1V的压差,这就使得电阻高端是100V,电阻下端是99.9V(也就是负载的头顶电位)。
从效果看,负载其实是很舒服的,它脚底下很稳,0V,没错,它头顶有点飘,差不多在99.9V 附近,我们知道一般的负载对头顶的电压波动不太敏感,因此它很舒服。
但负载舒服了,测量仪表就不舒服了。
测量放大电路必须把两根线上的压差检测出来,它们分别是100V和99.9V,共模就有99.95V,这么大的共模电压,加载到任何一个仪表放大器上,都会立即烧毁放大器。
怎么办呢?
老外就设计了一款差动放大器,比如ADI的AD628,电路如下图。
它用两套分压电阻,将100V分压到10V以内,实际加载到内部运放管脚的电压只有10V左右了,安全了,但是我们发现,要检测的差压0.1V也被衰减了10倍,变为0.01V了,于是他们又在这个减法
器的输出端,增加了一级10倍放大,即保护了内部的运放不被烧毁,又保证压差0.1V没有被衰减,且输出就是我们需要检测的0.1V。
妙吧。
其实一点儿都不妙,妙的在后面。
我们都知道先把一个东西缩小,然后再放大,总是让人心里不踏实,有没有一个电路能够实现:第一,抵抗高的共模输入,第二,对差模量不衰减。
这时候我开始佩服老外了,他们设计了一款AD629,就是AD628它弟弟,就满足了这个要求,电路结构如图。
号称能够抵抗高达270V左右的共模电压,且实现了一比一的差压检出。
他们怎么想出来的?看来他们的牛肉是没有白吃的。
德州仪器的INA117与AD629结构一致,里面的电阻也差不多。