拉电流、灌电流、扇入、扇出、准双向、双向定义
- 格式:doc
- 大小:55.50 KB
- 文档页数:12
单片机-驱动能力(拉电流,灌电流) 上拉电阻的利弊分类:单片机硬件2011-02-13 02:14 540人阅读评论(0) 收藏举报看来很多网友都搞不清灌电流和拉电流的概念,下面就此解释一下,希望看过本文后不再就此困扰。
一个重要的前提:灌电流和拉电流是针对端口而言的。
名词解释——灌:注入、填充,由外向内、由虚而实。
渴了,来一大杯鲜榨橙汁,一饮而尽,饱了,这叫“灌”。
灌电流(sink current),对一个端口而言,如果电流方向是向其内部流动的则是“灌电流”,比如一个IO通过一个电阻和一个LED连接至VCC,当该IO输出为逻辑0时能不能点亮LED,去查该器件手册中sink current参数。
名词解释——拉:流出、排空,由内向外,由实而虚。
一大杯鲜橙汁喝了,过会儿,憋的慌,赶紧找卫生间,一阵“大雨”,舒坦了,这叫“拉”。
拉电流(sourcing current),对一个端口而言,如果电流方向是向其外部流动的则是“拉电流”,比如一个IO通过一个电阻和一个LED连至GND,当该IO输出为逻辑1时能不能点亮LED,去查该器件手册中sourcing current参数。
单片机的引脚,可以用程序来控制,输出高、低电平,这些可算是单片机的输出电压。
但是,程序控制不了单片机的输出电流。
单片机的输出电流,很大程度上是取决于引脚上的外接器件。
单片机输出低电平时,将允许外部器件,向单片机引脚内灌入电流,这个电流,称为“灌电流”,外部电路称为“灌电流负载”(sink current)单片机输出高电平时,则允许外部器件,从单片机的引脚,拉出电流,这个电流,称为“拉电流”,外部电路称为“拉电流负载“(source current)这些电流一般是多少?最大限度是多少?这就是常见的单片机输出驱动能力的问题。
早期的51 系列单片机的带负载能力,是很小的,仅仅用“能带动多少个TTL 输入端”来说明的。
P1、P2 和P3口,每个引脚可以都带动3 个TTL 输入端,只有P0 口的能力强,它可以带动8 个!分析一下TTL 的输入特性,就可以发现,51 单片机基本上就没有什么驱动能力。
TTL与非门电路基本TTL反相器不难改变成为多输入端的与非门。
它的主要特点是在电路的输入端采用了多发射极的BJT ,如下图所示。
器件中的每一个发射极能各自独立地形成正向偏置的发射结,并可促使BJT进人放大或饱和区。
两个或多个发射极可以并联地构成一大面积的组合发射极。
下图是采用多发射极BJT用作3输入端TTL与非门的输入器件的一个实例。
当任一输入端为低电平时,T1的发射结将正向偏置而导通,T2将截止。
结果将导致输出为高电平。
只有当全部输入端为高电平时,T1将转入倒置放大状态,T2和T3均饱和,输出为低电平。
TTL与非门的技术参数1.传输特性各种类型的TTL门电路,其传输特性大同小异,正如前面已经讨论过的,这里不再讨论。
2.输入和输出的高、低电压3.噪声容限噪声容限表示门电路的抗干扰能力。
二值数字逻辑电路的优点在于它的输入信号允许一定的容差。
高电平噪声容限:V NH=V OH-V IH=2.4V-2V=0.4V低电平噪声容限:V NL=V IL-V OL=0.8V-0.4V=0.4V4.扇入与扇出数扇出数--门电路所能带负载个数,与非门输出端最多能接几个同类的与非门。
扇出数No取决于负载类型灌电流负载:负载电流从外电路流入与非门拉电流负载:负载电流从与非门流向外电路①灌电流工作情况下图表示TTL与非门的灌电流负载的情况。
图中左边为驱动门,右边为负载门,当驱动门的输出端为逻辑0(低电压V OL)时,负载门由电源V CC通过R b1、T1的发射结和输入端有电流I IL灌人驱动门T3的集电极,这就是灌电流负载的由来。
不难理解,当负载门的个数增加时,总的灌电流I IL将增加,同时也将引起输出低电压V OL的升高。
前已述及TTL门电路的标准输出低电压V OL=0.4V,这就限制了负载门的个数。
在输出为低电平的情况下,所能驱动的同类门的个数由下式决定:②拉电流工作情况当驱动门的输出为高电平时,将有电流I IH。
逻辑门电路1.1 晶体管的开关特性及应用在数字电路中,晶体管大多工作在开关状态,所以是一种无触点的电子开关。
通常的电子开关按其用途,可分为模拟开关和数字开关(又称逻辑开关)两大类。
对它们的要求也有所不同:模拟开关应具备断开和接通时,流过的电流或两端的电压为零,两种状态转换的时间为零;而对数字开关则要求器件有两种可以区分的工作状态,同时输出能明确地用逻辑0或1来表示。
1.1.1 晶体二极管的开关特性及应用1. 晶体二极管的开关特性图1-1是硅二极管的符号和伏安特性曲线。
由伏安特性可知:(1) 二极管端电压小于0.5V作为二极管的截止条件。
一旦截止,即可近似认为电流等于0,相当于开关断开,这就是二极管截止时的特点。
(2)二极管正向电压大于0.5V作为二极管的导通条件。
一旦导通,即可将二极管认为是具有0.7V压降的闭合开关,这就是二极管导通时的特点。
2. 二极管开关特性的应用利用二极管开关特性可以构成限幅器和钳位器。
(1) 二极管限幅器。
限幅器是一种波形变换或整形电路。
当输入信号在一定范围内变化时,输出电压跟随输入电压相应变化,完成信号的传输;而当输入电压超过这一范围时,其超过的部分被削去,输出电压保持不变,实现限幅作用,由于限幅器能将一定范围以外的输入波形削去,所以限幅器又称削波器。
(2) 二极管钳位器。
二极管钳位器是利用二极管的开关特性,将输入波形的顶部或底部钳定在某一选定的电平上的电路。
这种错位作用又称为波形钳位,在脉冲技术中经常用到。
1.1.2 晶体三级管的开关特性及应用 1. 晶体三极管的开关特性如图1-6所示为NPN 型三极管的电路和特性曲线。
图中直流负载线和三极管输出特性曲线的交点称为静态工作点,用Q 表示。
工作点的位置由基极电流iB 决定。
由于工作点的位置不同,三极管有3种不同的工作状态,或称为3个工作区域。
(1)0,0≈≈i i C B 的区域称为截止区,如图中的Q1点。
在截止区,三极管的集电极C 和发射极e 之间近似为开路,相当于开关断开一样,故有u u CCCE≈。
对于51单片机P1口驱动能力的理解在51单片机系列中,现在生产厂家很多,兼容型号也很多。
不同厂家生产的单片机P1口的驱动能力是不同的。
下面仅举最常用的3种单片机为例,谈谈驱动能力。
先说说LS型TTL负载。
LS型TTL负载是指单片机端口所接负载是74LS系列的数字芯片。
以TI公司的74LS00芯片为例,其输入端接高电平时,输入电流为20μA,输入端接低电平时,输入电流是-0.4mA。
因此,单片机端口输出高电平时,每个LS型的输入端将是20μA的拉电流型负载;输出低电平时,将是0.4mA的灌电流负载。
1. 标准的Intel8051单片机:其P0口是一个漏极开路的准双向口,驱动能力是8个LS型TTL负载。
楼上3楼说“51单片机P1口只是准双向口,内部没有上拉的。
(上拉的概念只是对于I/O的输入来说,对于输出来说,无所谓上拉,下拉的)。
”,其实并不对。
不对之处有两点:①没有上拉的是P0口,而不是P1口。
P1口是有上拉的。
②没有上拉(即漏极开路)其实只对输出有影响,以致只能输出低电平,不能输出高电平,而不妨碍高低电平的输入。
因此对P0口来说,输出为高电平时,其输出电流为0,必须外接上拉电阻才能输出高电平;输出低电平时,允许灌入电流为0.4mA×8=3.2mA。
而P1、P2、P3口都是有上拉的准双向口,带负载能力为4个LS型TTL门,因此,高电平输出电流为20μA×4=80μA,低电平允许灌入电流为0.4mA×4=1.6mA。
输出高低电平的带负载能力都很差,因此应该接入4.7k~10k左右的上拉电阻。
2. AT89系列单片机:因为输出电流会影响输出电压,所以参数表中是结合输出电压来提供输出电流能力的。
AT89C51和AT89S51允许的高电平输出电流为:输出电压为3.7V时,电流为25μA;允许的低电平输出电流(实际为灌入电流)为:输出电压为0.45V 时,电流为-1.6mA。
第三节基本逻辑门电路基本逻辑运算有与、或、非运算,对应的基本逻辑门有与、或、非门。
本节介绍简单的二极管门电路和BJT反相器(非门),作为逻辑门电路的基础。
用电子电路来实现逻辑运算时,它的输入、输出量均为电压(以V为单位)或电平(用1或0表示)。
通常将门电路的输入量作为条件,输出量作为结果。
一、二极管与门及或门电路1.与门电路当门电路的输入与输出量之间能满足与逻辑关系时,则称这样的门电路为与门电路。
下图表示由半导体二极管组成的与门电路,右边为它的代表符号。
图中A、B、C为输入端,L为输出端。
输入信号为+5V或0V。
下面分析当电路的输入信号不同时的情况:(1)若输入端中有任意一个为0时,例如V A=0V,而V A=V B=+5V时,D1导通,从而导致L点的电压V L被钳制在0V。
此时不管D2、D3的状态如何都会有V L≈0V (事实上D2、D3受反向电压作用而截止)。
由此可见,与门几个输入端中,只有加低电压输入的二极管才导通,并把L钳制在低电压(接近0V),而加高电压输入的二极管都截止。
(2)输入端A、B、C都处于高电压+5V ,这时,D1、D2、D3都截止,所以输出端L点电压V L=+V CC,即V L=+5V。
如果考虑输入端的各种取值情况,可以得到下表输入(V)输出(V)V A V B V C V L0 0 +5 +5 +5 +5+5+5+5+5+5+5+5+5+5将表中的+5V用1代替,则可得到真值表:A B C L0 0 1 1 1 10111111111由表中可见该门电路满足与逻辑关系,所以这是一种与门。
输入变量A、B、C与输出变量L只间的关系满足逻辑表达式。
2.或门电路对上图所示电路可做如下分析:(1)输入端A、B、C都为0V时,D1、D2、D3两端的电压值均为0V,因此都处于截止状态,从而V L=0V;(2)若A、B、C中有任意一个为+5V,则D1、D2、D3中有一个必定导通。
我们注意到电路中L点与接地点之间有一个电阻,正是该电阻的分压作用,使得V L处于接近+5V的高电压(扣除掉二极管的导通电压),D2、D3受反向电压作用而截止,这时 V L≈+5V。
当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数NO是描述集成电路带负载能力的参数,它的定义式如下:NO= IOLMAX / IILMAX其中IOLMAX为最大允许灌电流,IILMAX是一个负载门灌入本级的电流。
No越大,说明门的负载能力越强。
一般产品规定要求No≥8。
对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL门,NO≥20扇入、扇出系数:扇入系数--门电路允许的输入端数目。
一般门电路的扇入系数Nr为1—5,最多不超过8。
若芯片输入端数多于实际要求的数目,可将芯片多余输入端接高电平(+5V)或接低电平(GND)。
扇出系数--一个门的输出端所驱动同类型门的个数,或称负载能力。
一般门电路的扇出系数Nc为8,驱动器的扇出系数Nc可达25。
Nc体现了门电路的负载能力。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流;反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流。
吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流5、接电阻就是为了防止输入端悬空6、减弱外部电流对芯片产生的干扰7、保护cmos内的保护二极管,一般电流不大于10mA8、通过上拉或下拉来增加或减小驱动电流9、改变电平的电位,常用在TTL-CMOS匹配10、在引脚悬空时有确定的状态11、增加高电平输出时的驱动能力。
12、为OC门提供电流三、上拉电阻应用原则1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3~5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路“必须加上拉电阻,才能使用”。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
8、在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
四、上拉电阻阻值选择原则1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
对上拉电阻和下拉电阻的选择应“结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素”:1。
驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2。
下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3。
高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4。
频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成“RC延迟”,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
示例:OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA,200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K可用。
【最大压降/最大电流、最小压降/最小电流】COMS门的可参考74HC系列设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:“输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了”(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)此外,还应注意以下几点:A、要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
B、如果有上拉电阻那它的端口在默认值为高电平,你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
C、尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态。
防止直通!驱动尽量用灌电流。
----------------------------------------在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1。
电阻作用:l 接电阻就是为了防止输入端悬空l 减弱外部电流对芯片产生的干扰l 保护cmos内的保护二极管,一般电流不大于10mAl 上拉和下拉、限流1。
改变电平的电位,常用在TTL-CMOS匹配2。
在引脚悬空时有确定的状态3。
增加高电平输出时的驱动能力。
4。
为OC门提供电流那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
如果有上拉电阻那它的端口在默认值为高电平,你要控制它必须用低电平才能控制,如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外。
比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态。
防止直通!电阻在选用时,选用经过计算后与标准值最相近的一个!P0为什么要上拉电阻原因有:1。
P0口片内无上拉电阻2。
P0为I/O口工作状态时,上方FET被关断,从而输出脚浮空,因此P0用于输出线时为开漏输出。
3。
由于片内无上拉电阻,上方FET又被关断,P0输出1时无法拉升端口电平。
P0是双向口,其它P1,P2,P3是准双向口。
准双向口是因为在读外部数据时要先“准备”一下,为什么要准备一下呢?单片机在读准双向口的端口时,先应给端口锁存器赋1,目的是使FET关断,不至于因片内FET导通使端口钳制在低电平。
上下拉一般选10k!芯片的上拉/下拉电阻的作用最常见的用途是,假如有一个三态的门带下一级门。
如果直接把三态的输出接在下一级的输入上,当三态的门为高阻态时,下一级的输入就如同漂空一样。
可能引起逻辑的错误,对MOS电路也许是有破坏性的。
所以用电阻将下一级的输入拉高或拉低,既不影响逻辑又保正输入不会漂空。
改变电平的电位,常用在TTL-CMOS匹配;在引脚悬空时有确定的状态;为OC门的输出提供电流;作为端接电阻;在试验板上等于多了一个测试点,特别对板上表贴芯片多的更好,免得割线;嵌位;上、下拉电阻的作用很多,比如抬高信号峰峰值,增强信号传输能力,防止信号远距离传输时的线上反射,调节信号电平级别等等!当然还有其他的作用了具体的应用方法要看在什么场合,什么目的,至于参数更不能一概而定,要看电路其他参数而定,比如通常用在输入脚上的上拉电阻如果是为了抬高峰峰值,就要参考该引脚的内阻来定电阻值的!另外,没有说输入加下拉,输出加上拉的,有时候没了某个目的也可能同时既有上拉又有下拉电阻的!加接地电阻--下拉加接电源电阻--上拉对于漏极开路或者集电极开路输出的器件需要加上拉电阻才可能工作。