臭氧催化氧化计算模板
- 格式:doc
- 大小:32.51 KB
- 文档页数:6
-、进水条件令狐采学当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1 pH催化剂适宜的酸碱运行条件为pH=3〜12,最佳的酸碱运行条件为P H=6-9, pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为1()-3()°C,最佳运行温度为25°C o1.3氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在50()()mg/L以下,氯化物最佳浓度为5()()mg/L以下。
14臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1)选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2)在活性炭载体表面选择性的负载Fu、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成轻基自由基并降解有机物;⑶ 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:1.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。
含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下, 激发产生轻基自由基,轻基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至C()2和H2()。
北京臭氧催化氧化1. 引言臭氧(O3)是一种强氧化剂,具有强烈的刺激性气味和高度活性。
它在大气中的浓度增加可能对人类健康和环境造成危害。
为了解决这个问题,北京市采取了一系列措施,其中之一就是利用臭氧催化氧化技术来减少大气中的臭氧浓度。
本文将介绍北京市臭氧催化氧化技术的原理、应用和效果,并探讨其在改善空气质量和保护环境方面的作用。
2. 原理臭氧催化氧化是一种利用催化剂促进臭氧分解的技术。
催化剂能够降低臭氧分解的能量阈值,使其在较低温度下发生分解反应。
一般采用金属氧化物作为催化剂,如二氧化锰(MnO2)。
臭氧催化氧化反应的化学方程式如下:2 O3 → 3 O2催化剂不参与反应,只起到促进反应的作用。
它能够提供活性位点,吸附臭氧分子,并降低分子间的键能,从而使臭氧分子更容易发生分解反应。
3. 应用北京市在大气污染治理中广泛应用臭氧催化氧化技术。
主要应用于以下领域:3.1. 工业废气处理工业废气中常含有大量的有机物和臭氧,对环境造成严重污染。
通过臭氧催化氧化技术,可以将有机物和臭氧分解为无害的物质,从而减少对环境的影响。
催化氧化反应可以在较低温度下进行,节约能源。
同时,催化剂具有较高的稳定性和催化活性,能够长期使用而不需要频繁更换。
3.2. 汽车尾气治理汽车尾气中的氮氧化物(NOx)和挥发性有机物(VOCs)是大气中臭氧的主要前体物质。
臭氧催化氧化技术可以将这些前体物质分解为无害的物质,减少臭氧的生成。
北京市已经在汽车尾气治理中广泛应用臭氧催化氧化技术。
通过在汽车尾气排放口设置催化剂,可以将尾气中的有害物质降解为无害物质,减少对环境的影响。
3.3. 室内空气净化臭氧催化氧化技术在室内空气净化中也有广泛应用。
它可以去除室内空气中的有害气体和异味,提高室内空气质量。
北京市的一些公共场所和住宅小区已经安装了臭氧催化氧化设备,通过循环净化室内空气,降低有害气体的浓度,改善人们的生活环境。
4. 效果北京市采用臭氧催化氧化技术取得了显著的效果。
光催化臭氧氧化法(臭氧紫外线法)此法是在投加臭氧的同时辅以紫外光照射,其效率大大高于单一紫外法和单一臭氧法。
这一方法不是利用臭氧直接与有机物反应,而是利用臭氧在紫外线的照射下分解的活泼的次生氧化剂来氧化有机物。
03/UV工艺机理的解释有目前有两种:Okabe认为,当03被紫外光照射时,首先产生游离氧自由基((O),然后,.O 与水反应产生.-OH.03一=hv(310nm)一,O。
十OZO,+H2口-> 20H,而Glaze 等人则认为,031UV过程首先产生H202,然后H202在紫外光的照射下分解生成·OH.1目前这一工艺真实可靠的机理还有待进一步深入研究。
Prengle等人在实验中首先发现了03/UV系统可显著地加快有机物的降解速率。
之后Glaze等人提出了03与UV之间的协同作用机理。
臭氧在紫外光辐射下会分解产生活泼的轻基自由基,再由轻基自由基氧化有机物。
因而它能氧化臭氧难以降解的有机物,如乙醛酸、丙二酸、乙酸等。
其中紫外线起着促进污染物的分解,加快臭氧氧化的速度,缩短反应的时间的作用。
此外,紫外线的辐射还能使有机物的键发生断裂而直接分解。
研究证明03/UV比单独臭氧处理更有效,只有在酸性时,臭氧才是主要的氧化剂,中性及碱性时氧化是按自由基反应模式进行的,在03/UV , 03情形下,酚及TOC的去除率随pH值升高而升高,在一定的pH时,三种方法的处理效果为q/UV>03>UV o施银桃等以300 W高压汞灯为光源,研究了紫外光联合臭氧化、单纯臭氧氧化及单纯紫外光照处理400 mg/L的活性艳红K-2BP废水的可行性。
结果表明:光催化臭氧化可加速有机物的矿化。
在同样时间条件下,三者氧化能力由大至小为:UV/O3>单独O3>单独UV。
光催化臭氧化染料过程中,TOC随反应时间的增大而逐渐减小,表明反应过程中有部分有机物逐渐矿化为无机物。
TOC虽降低了,但最终TOC去除率仍大大低于脱色率,它表明反应只是把染料氧化为小分子有机物,并未完全矿化为CO2和水。
作者:非成败作品编号:92032155GZ5702241547853215475102时间:2020.12.13一、进水条件当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。
1.3氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:项目指标单位规格外观指标吸水率% 45% -55% 粒径mm 条形3-6 堆积密度t/m30.45 -0.62 耐磨强度% ≥92%压碎强度N/cm ≧110 碘值mg/g ≧550 活性金属含量% 3% -4%性能指COD去除率% 40%-75%标Rt(水力停留时间)min 30-60寿命年3~51.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
一、进水条件欧阳歌谷(2021.02.01)当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。
1.3氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2)在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:1.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。
含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。
一、进水条件当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意就是否含有对催化剂产生危害得物质。
以下为部分重要得原水进水条件。
1.1pH催化剂适宜得酸碱运行条件为pH=3~12,最佳得酸碱运行条件为pH=6—9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化得使用效果.1.2温度进水温度过高或者过低会影响臭氧得使用效果,也会对催化剂得催化效果产生影响,建议温度范围为10—30℃,最佳运行温度为25℃.1.3氯化物氯化物过高会对催化剂得使用效果产生影响,建议氯化物得浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式臭氧分子在水中得扩散速度与污染物得反应速度就是影响去除效果得主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1)选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠得优质活性炭为载体,制备得催化剂具有很大得比表面积与合适得孔结构;(2)在活性炭载体表面选择性得负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂得制备采用机械混合、成型、炭化与活化得生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:项目指标单位规格外观指标吸水率% 45%-55%粒径mm 条形3—6堆积密度t/m30、45 —0、62耐磨强度% ≥92%压碎强度N/cm ≧110碘值mg/g ≧550活性金属含量%3%-4% 性能指标COD去除率% 40%—75%Rt(水力停留时间) min 30—60寿命年3~51.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例得水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体得溶解效率,并有效减少臭氧投加量。
臭氧杀菌计算原理及公式根据卫生部的臭氧发生原理公式得出以下计算公式:W=CV(1-S)计算结果如下:W:需要选择机器的臭氧发生量g/h。
C:臭氧浓度10PPm,在工作状态下折算为19.63mg/m3。
V:灭菌空间总体积。
S:臭氧传递工作一个小时后臭氧自然衰退率为61%。
V=V1+V2+V3V1:洁净空间体积。
V2HV AC:系统空间体积,通常为V1*20%.V3:保持洁净区域正压补充的新风对臭氧造成的损失=HV AC系统循环总量*1-2%。
万级局部百级取2%,10万级取1.5%,30万级取1%。
注:根据以上计算公式:每克臭氧约可灭菌空间为20M3左右。
常用臭氧数据1.臭氧发生器的规格是按照臭氧产生的重量单位划分的。
臭氧产量的单位是mg/h或g/h(毫克/小时、克/小时),即臭氧发生器工作1小时能够产生多少重量单位的臭氧。
2.臭氧在空气中的浓度单位是ppm或mg/m?;臭氧在水中的浓度单位是ppm或mg/L。
换算方法:在空气中时1ppm=2 .144mg/m?;在水中时,1ppm=1mg/L3.臭氧在大气中达到一定的浓度时就会造成环境污染。
我国规定在居住环境,臭氧浓度超过0.16mg/m3时就构成空气污染;在作业场所,臭氧浓度超过0.2mg/m3时就构成污染。
4.空气中的臭氧浓度达到0.02ppm时,嗅觉灵敏的人便可察觉,称之为感觉临界值,浓度在0.15ppm时为嗅觉临界值,一般人即可嗅出,这也是卫生标准点。
研究表明,空气中臭氧浓度引起人员一定反应的浓度为0.5-1ppm,时间长了会感到口干等不适,浓度在1-4ppm会引起人员咳嗽。
原因就在于,作为强氧化剂,臭氧几乎能与任何生物组织反应。
5.在对食品厂、药厂、化妆品厂的生产车间消毒时,在车间洁净度不超过30万级时,空气中的臭氧浓度达到10-20mg/m?即可,并且要密闭作用30分钟的时间;如果同时需要对车间内已有的设备和物品消毒,臭氧浓度需要达到20-30mg/m?;如果是对10万级、万级、局部百级洁净度的车间消毒时,臭氧浓度须达到30-100mg/m3。
臭氧氧化光催化芬顿氧化反应下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!环境治理中的先进技术:臭氧氧化、光催化和芬顿氧化反应引言在当今社会,环境污染已经成为人类面临的重大挑战之一。
化学与环境工程学院水处理高级氧化处理学号:122209201133专业:环境工程姓名:任课老师:2015年6月臭氧催化氧化技术摘要:近几年臭氧高级氧化技术已在我国各个行业污水处理方面迅速发展,自从“两会”结束以后,我国更注重环境友好型社会建设,臭氧氧化技术在印染废水、煤化工废水、反渗透浓缩垃圾渗滤液、废乳化液等方面有了深一步进展,取得了很大的进步。
关键词:臭氧氧化技术、工业废水、臭氧利用率1。
臭氧氧化机理1.1 臭氧性质臭氧是一种氧化性极强的不稳定气体,须现场制备使用.臭氧是氧气的同素异形体,含有 3 个氧原子,呈 sp2 杂化轨道,成离域π键,形状为 V 形,极性分子。
臭氧在常温常压下为淡蓝色气体,水中的溶解度为 9.2mlO3/L,高于氧气(42.87mg/L),水中溶解浓度高于 20mg/L 时呈紫蓝色.臭氧有很强的氧化性,氧化还原电位为 2。
07V,单质中仅低于 F2(3。
06V).1.2 臭氧的氧化机理臭氧能够氧化大多数有机物,特别是氧化难以降解的物质,效果良好。
臭氧在与水中有机物发生反应过程中,通常伴随着直接反应和间接反应两种途径,不同反应途径的氧化产物不同,且受控的反应动力学类型也不同。
(1)直接氧化反应臭氧直接反应是对有机物的直接氧化,反应速率较慢,反应具有选择性,反应速率常数在 1。
0~103M—1S —1范围内.由于臭氧分子的偶极性、亲电、亲核性,臭氧直接氧化机理包括 Criegree 机理、亲电反应、亲核反应三种。
(2)间接氧化反应臭氧间接反应是有自由基参与的氧化反应,过程中产生了•OH,氧化还原电位高达 2。
80V,自由基作为二次氧化剂使得有机物迅速氧化,属于非选择性瞬时反应,反应速率常数为 108~1010M-1S-1,氧化效率大大高于直接反应.此外•OH 与有机物发生的反应主要有三种:脱氢反应(Hydrogen abstraction),亲电加成( Electrophilic addition),转移电子(Electron transfer reaction)。
臭氧催化氧化塔设计计算臭氧催化氧化塔是一种用于处理废气中有机污染物的设备。
它通过利用臭氧的高氧化能力,将废气中的有机污染物转化为无害的二氧化碳和水。
催化氧化塔的设计计算涉及到多个关键参数,包括进气流量、臭氧浓度、催化剂种类和催化剂用量等。
需要确定进气流量。
进气流量是指废气进入催化氧化塔的速率,通常以立方米/小时为单位。
可以通过测量废气排放口的流速来获得进气流量。
进气流量的大小会直接影响催化氧化塔的尺寸和处理能力。
需要确定臭氧浓度。
臭氧浓度是指催化氧化塔中臭氧的含量,通常以毫克/立方米为单位。
臭氧的浓度越高,氧化反应的速率也就越快,但高浓度的臭氧也可能对环境和人体健康造成危害。
因此,在设计计算中需要根据实际情况确定臭氧浓度的合理范围。
选择合适的催化剂种类和用量也是设计计算的重要部分。
不同的有机污染物对催化剂的选择有一定的要求,需要考虑催化剂的活性和稳定性。
同时,催化剂的用量也需要根据进气流量和臭氧浓度来确定,用量过大可能造成资源浪费,用量过小则会影响氧化反应的效果。
在进行设计计算时,还需要考虑催化氧化塔的反应器尺寸和操作条件。
反应器尺寸的确定需要考虑进气流量、催化剂用量和反应器的气液分布情况等因素。
操作条件包括反应温度和压力,需要根据催化剂的工作温度范围和废气的特性来确定。
设计计算完成后,还需要进行实际运行效果的验证和调整。
可以通过监测出口废气中有机污染物的浓度来评估催化氧化塔的处理效果。
如果出口废气中有机污染物的浓度达到了排放标准,则说明催化氧化塔的设计计算是合理有效的。
臭氧催化氧化塔设计计算是一个复杂而重要的过程,需要综合考虑多个参数和因素。
只有在合理确定进气流量、臭氧浓度、催化剂种类和用量等关键参数的基础上,才能设计出满足废气处理要求的催化氧化塔。
通过实际运行效果的验证和调整,可以进一步优化催化氧化塔的设计。
臭氧催化氧化塔在废气处理中具有广泛的应用前景,为改善环境质量和保护人体健康发挥着重要作用。
一、进水条件当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH催化剂适宜的酸碱运行条件为pH=3〜12,最佳的酸碱运行条件为pH=6-9, pH 过低会影响催化剂寿命,并导致出水质量下降,pH 过高会影响臭氧催化氧化的使用效果。
1.2 温度进水温度过高或者过低会影响臭氧的使用效果, 也会对催化剂的催化效果产生影响,建议温度范围为10-30 C,最佳运行温度为25 C。
1.3 氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L 以下,氯化物最佳浓度为500mg/L 以下。
1.4 臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1 催化氧化填料催化剂主要特点如下:(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2) 在活性炭载体表面选择性的负载Fe、Mn 等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:规格参数如下:1.2进水方式1硼臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。
含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。
一、进水条件当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。
1.3氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:1.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。
含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。
一、进水条件当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。
1.3氯化物氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图1.1催化氧化填料催化剂主要特点如下:(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;(2) 在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na 等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:臭氧催化氧化填料规格参数如下:项目指标单位规格外观指标吸水率%45% -55%粒径mm条形3-6堆积密度t/m30.45 -0.62耐磨强度%≥92%压碎强度N/cm≧110碘值mg/g≧550活性金属含量%3% -4%性能指标COD去除率%40%-75% Rt(水力停留时间)min30-60寿命年3~51.2进水方式臭氧催化高级氧化进水工艺流程上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
内蒙古易高煤化科技有限公司膜系统浓水处理项目技术方案一非均相臭氧催化氧化技术山西晶凯科技有限责任公司2015年9月目录一、技术方案部分1. 项目概况 (3)2. 工艺简介 (3)二、投资及运行成本部分1. 运行成本 (12)2. 投资估算 (12)一、技术方案部分1.项目概况内蒙古易高煤化科技有限公司煤制甲醇生化废水反渗透浓水回用的同时,产生了一部分纳滤及反渗透浓水,这部分浓排水具有有机物含量高,含盐量高的特点,若要外排,其中CODcr、氨氮等主要指标要达到排放标准。
2.工艺简介2.1.处理水量膜浓缩水处理系统总体设计处理规模Q=40m3/h。
2.2.进水水质本系统进水为污水三膜法回用的浓排水,水质具体指标见下表:2.3. 产水要求产水CODcr ≤100mg/L ,氨氮≤15mg/L ,其它指标暂不做要求。
2.4. 工艺流程2.4.1 工艺的选择与评价图2-1 膜系统浓水处理工艺流程图2.4.2 工艺流程说明40m 3/h 纳滤、反渗透膜系统浓水分别进入混凝沉淀池,混凝沉淀池为新建处理设施,在混凝处理单元中采用中国科学院过程工程研究所研发的混凝专用药剂(KL-107),该药剂为高分子物质,通过网捕卷扫、架桥吸附、络合沉降等作用,脱除废水中相当一部分长链、环状极性有机物(主要为苯系衍生物等),进而确保经混凝处理后,废水中的相当一部分CODcr 、色度、悬浮物等得到去除。
废水经40m 3/h 清水池过泵提升进入多介质过滤器,悬浮物进一步降低,同时对后续催化氧化系统进行保护。
然后进入催化反应器中,在两级催化剂作用下,废水中无法生物降解的有机物被臭氧产生的羟基自由基氧化成容易生物降解的小分子有机物或部分矿化,处理出水进入后续氨氮脱除处理。
经过处理的废水进入加药单元,通过动态定量投加氯化镁和磷酸氢二钠,去除水中的氨氮。
出水CODcr、氨氮等达标后,进入清水池,定期外排。
2.4.3工艺特点1)混凝沉淀池来水进入混凝处理系统,混凝处理系统为新建处理设施,在混凝处理单元中投加转为煤化工废水而研发的特殊混凝药剂,有效去除水中的由极性物质提供的CODcr、色度等物质。
一、进水条件
令狐采学
当用于处理废水时,除要求布水布气均匀外,还要注意调查分析进水来源状况,特别注意是否含有对催化剂产生危害的物质。
以下为部分重要的原水进水条件。
1.1pH
催化剂适宜的酸碱运行条件为pH=3~12,最佳的酸碱运行条件为pH=6-9,pH过低会影响催化剂寿命,并导致出水质量下降,pH过高会影响臭氧催化氧化的使用效果。
1.2温度
进水温度过高或者过低会影响臭氧的使用效果,也会对催化剂的催化效果产生影响,建议温度范围为10-30℃,最佳运行温度为25℃。
1.3氯化物
氯化物过高会对催化剂的使用效果产生影响,建议氯化物的浓度在5000mg/L以下,氯化物最佳浓度为500mg/L以下。
1.4臭氧投加方式
臭氧分子在水中的扩散速度与污染物的反应速度是影响去除效果的主要因素。
二、相关简图
1.1催化氧化填料
催化剂主要特点如下:
(1) 选用碘值高、吸附能力强、耐磨强度好、质量稳定可靠的优质活性炭为载体,制备的催化剂具有很大的比表面积和合适的孔结构;
(2)在活性炭载体表面选择性的负载Fe、Mn等过渡金属活性组分及K、Na等碱金属催化助剂,原位促进臭氧分解成羟基自由基并降解有机物;
(3) 催化剂的制备采用机械混合、成型、炭化和活化的生产工艺,活性组分在载体表面分散性良好。
催化剂填料图片如下:
臭氧催化氧化填料
规格参数如下:
1.2进水方式
臭氧催化高级氧化进水工艺流程
上游出水进入臭氧催化高级氧化池,首先进入臭氧催化高级氧化池第一段,从原水取一定比例的水进行循环,在离心泵管道上设置射流溶气装置,通过溶气装置投加臭氧,达到提高臭氧气体的溶解效率,并有效减少臭氧投加量。
溶解臭氧的污水,通过池底设置的二次混合设备,将含臭氧污水与原污水充分混合。
含臭氧的污水,混合后的污水流经固定填充的固相催化剂表面,催化剂表面具有不平衡电位差,在催化剂的作用下,激发产生羟基自由基,羟基自有基的氧化还原电位为E0=2.8ev,在如此高的氧化电位的作用下大部分难降解的有机物发生断链反应形成短链的有机物或直接被氧化至CO2和H2O。
第二段、第三段取水位置分别是第一段出水和第二段出水,同样采用高效臭氧溶气装置投加臭氧,原理与第一段相同。
通过三段投加,污水中难降解有机物被充分降解,使污水达到设计标准。
接触池内未溶解的臭氧需重新还原变为氧气,避免对大气环境造成污染。
在臭氧接触池池顶上设置有臭氧尾气分解处理设施,设计采用热触媒式臭氧尾气处理装置进行处理,将空气中残留臭氧还原为氧气,使尾气处理装置出口处臭氧浓度低于0.1ppm。
相关工程案例平面简图如下:
内部构造简图如下:
三、主要构筑物计算
1)设计总水量Q设计=KZ*Q实际
KZ为变化系数,通常取1.3;Q设计单位为m3/h。
2)总有效池容V有效=HRT*Q设计
HRT市政水取值1h,工业污水根据水质增加停留时
间。
3)单座设计流量Q1=Q设计/n1
n1为座数,根据现场占地面积确定。
4)单座臭氧催化氧化反应池格数n2
反应池格数n2根据进水浓度、去除效果等因素确定,
考虑是否需要多格数串联,若多格串联,每格体积不
变则臭氧投加量逐步降低。
5)单格有效池容V单格=V有效/(n1*n2)
6)单位小时内COD消减量∆mCOD=(C进水-C出水)
*Q设计*1h
C进水为进水COD浓度;C出水为出水COD浓度,
设计去除率为30-75%。
7)单位小时内臭氧投加量m臭氧=k1*∆mCOD
k1为臭氧用量与COD消减量质量比例关系,取值范
围为1:1-2:1,设计取值参考市政污水1.2:1-1.5:1、工业
污水1.5:1-2:1。
8)臭氧发生器输出流量Q臭氧=m臭氧*k2/1h
1为单位时间,1h;k2为变化系数,通常取1.2。
9)单位时间臭氧气量Q气量=m臭氧/(1h*C臭氧浓度)
臭氧浓度根据设备效率确定;Q气量单位为m3/h。
10)臭氧催化氧化缓冲配水区高度h1=1.35-1.5m
11)总停留时间T=1h
有效池容V数值与单位小时设计进水量相同。
12)进水区高度h2=1.2-1.5m
13)滤板厚度h滤板=0.16m
工程案例套用0.16m钢筋混凝土。
14)鹅卵石厚度h鹅卵石
=A1+A2+A3=0.15+0.15+0.15=0.45m
A1表示粒径200mm左右鹅卵石;A2表示粒径150mm 左右鹅卵石;A3表示粒径100mm左右鹅卵石。
15)滤层停留时间t滤层=0.15-0.5h
16)滤层池容V滤层=V催化剂=Q进水*t滤层
V催化剂指改性活性炭催化剂添加量,单位m3。
17)滤料装填高度h3=V滤层/S或根据中试确定填料高度
h3,则S =V滤层/h3
S表示构筑物底面积;h3高度要求市政水不低于1m,工业污水不低于2m。
18)滤料接触时间t接触时间=h3/v滤速
v滤速取值范围为4-6m/h。
19)清水区高度h4
20)总有效水深H有效=V单格/S=h2+h滤板+h鹅卵石
+h3+h4
h4高度根据此数值调整,多数取值2.5-3.5m,不固定。
21)总水深H=H有效+H超高
22)反洗风机强度Q反洗风机=S*k3
S,单位为m2,指构筑物底面积;k3指反洗强度,取值15L/(m2.s)。
23)反洗水强度Q反洗流量=S*k4
S,单位为m2,指构筑物底面积;k4指反洗强度,取值12L/(m2.s)。
24)催化剂费用15000元/m3。