(3)数学建模的一般步骤
- 格式:doc
- 大小:23.50 KB
- 文档页数:1
数学建模试卷及参考答案一.概念题(共3小题,每小题5分,本大题共15分)1、一般情况下,建立数学模型要经过哪些步骤?(5分)答:数学建模的一般步骤包括:模型准备、模型假设、模型构成、模型求解、模型分析、模型检验、模型应用。
2、学习数学建模应注意培养哪几个能力?(5分)答:观察力、联想力、洞察力、计算机应用能力。
3、人工神经网络方法有什么特点?(5分)答:(1)可处理非线性;(2)并行结构.;(3)具有学习和记忆能力;(4)对数据的可容性大;(5)神经网络可以用大规模集成电路来实现。
二、模型求证题(共2小题,每小题10分,本大题共20分)1、某人早8:00从山下旅店出发,沿一条路径上山,下午5:00到达山顶并留宿.次日早8:00沿同一路径下山,下午5:00回到旅店.证明:这人必在2天中同一时刻经过路途中某一地点(15分) 证明:记出发时刻为,到达目的时刻为,从旅店到山顶的路程为s.设某人上山路径的运动方程为f(t), 下山运动方程为g(t)是一天内时刻变量,则f(t)(t)在[]是连续函数。
作辅助函数F(t)(t)(t),它也是连续的,则由f(a)=0(b)>0和g(a)>0(b)=0,可知F (a )<0, F(b)>0, 由介值定理知存在t0属于()使F(t0)=0, 即f(t0)(t0) 。
2、三名商人各带一个随从乘船过河,一只小船只能容纳二人,由他们自己划行,随从们秘约,在河的任一岸,一旦随从的人数比商人多,就杀人越货,但是如何乘船渡河的大权掌握在商人们手中,商人们怎样才能安全渡河呢?(15分) 解:模型构成记第k 次渡河前此岸的商人数为k x ,随从数为k y ,1,2,........,k x ,k y =0,1,2,3。
将二维向量k s =(k x ,k y )定义为状态。
安全渡河条件下的状态集合称为允许状态集合,记做S 。
()}{2,1;3,2,1,0,3;3,2,1,0,0|,======y x y x y x y x (3分)记第k 次渡船上的商人数为k u 随从数为k v 将二维向量k d =(k u ,k v )定义为决策。
简述数学建模的一般步骤数学建模是将现实世界的问题表述为数学模型的过程。
通过数学建模,我们可以对问题进行分析和解决。
数学建模的一般步骤包括:1. 问题的描述:在建模之前,需要将问题清楚地表述出来,包括问题的背景、目标、约束条件等。
2. 确定模型的类型:数学建模涉及到许多不同的模型类型,如线性规划、非线性规划、动态规划等。
在确定模型类型之前,需要考虑问题的性质,包括是否存在约束条件、是否有限制条件、是否有时间因素等。
3. 建立数学模型:在确定了模型类型之后,就可以开始建立数学模型了。
这一步包括确定模型的变量、目标函数、约束条件等。
4. 求解模型:在建立完数学模型之后,就可以开始求解模型了。
这一步包括使用数学方法或计算机软件求解模型。
5. 结果的分析与验证:在求解出模型的最优解之后,还需要对结果进行分析,包括对结果的可解释性和可靠性进行评估。
这一步包括对结果的敏感性分析,以及对模型的假设进行验证。
6. 应用结果:最后,在确保结果可靠后,就可以将结果应用到实际问题中。
这一步可能包括根据结果制定决策、规划资源分配等。
数学建模是一个系统的过程,需要综合运用数学、统计、计算机科学等多种方面的知识。
它的目的在于通过数学模型的分析和求解,为解决实际问题提供有效的决策依据。
在进行数学建模时,需要注意的是,模型只是对现实世界的简化和抽象,并不能完全反映现实情况。
因此,在建模过程中,需要谨慎选择模型的假设条件,并对模型的结果进行适当的验证和分析。
总的来说,数学建模是一种有效的工具,能够帮助我们对现实世界的问题进行系统的分析和解决。
它的应用遍及各个领域,包括经济学、工程学、管理学等,为解决复杂问题提供了强有力的理论支持。
在实际进行数学建模时,还可以使用许多工具和方法,以提高建模的效率和准确性。
这些工具和方法包括:* 数学软件:通过使用数学软件,可以快速求解复杂的数学模型,并可视化结果。
常用的数学软件包括MATLAB、Maple、Mathematica等。
1.问题识别和定义建立数学模型的第一步是明确识别和定义需要解决的实际问题。
这个阶段包括:a) 确定研究对象: 明确我们要研究的系统、现象或过程是什么。
b) 明确目标: 确定我们希望通过模型解决什么问题,或得到什么样的结果。
c) 界定范围: 确定模型的适用范围和限制条件。
d) 收集背景信息: 了解问题的背景,包括已有的相关研究和理论。
e) 提出假设: 根据对问题的初步理解,提出一些合理的假设。
这个阶段的关键是要尽可能清晰、准确地描述问题,为后续的模型构建奠定基础。
2.变量选择和定义在明确问题后,下一步是确定模型中的关键变量:a) 识别相关变量: 列出所有可能影响问题的变量。
b) 分类变量: 将变量分为自变量、因变量、参数等。
c) 定义变量: 明确每个变量的含义、单位和取值范围。
d) 简化变量: 去除次要变量,保留最关键的变量以简化模型。
e) 考虑变量间关系: 初步分析变量之间可能存在的关系。
变量的选择直接影响模型的复杂度和准确性,需要在简化和精确之间找到平衡。
3.数据收集和分析为了构建和验证模型,我们需要收集相关数据:a) 确定数据需求: 根据选定的变量,明确需要收集哪些数据。
b) 选择数据来源: 可以是实验、观察、文献资料或已有数据库。
c) 设计数据收集方案: 包括采样方法、实验设计等。
d) 数据预处理: 对原始数据进行清洗、标准化等处理。
e) 探索性数据分析: 使用统计方法和可视化技术初步分析数据特征和规律。
f) 识别异常值和缺失值: 处理数据中的异常情况。
高质量的数据对于构建准确的模型至关重要。
4.模型结构选择基于问题定义、变量选择和数据分析,我们可以开始选择适当的模型结构:a) 考虑问题类型: 如静态或动态、确定性或随机性、线性或非线性等。
b) 研究已有模型: 调研该领域是否已有成熟的模型可以借鉴。
c) 选择数学工具: 如微分方程、概率论、优化理论等。
d) 确定模型类型: 如回归模型、微分方程模型、状态空间模型等。
数学建模的主要步骤:第一、模型准备首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征. 第二、模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化.第三、模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值.第四、模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重.第五、模型分析对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析.数学建模采用的主要方法有:(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型.1、比例分析法:建立变量之间函数关系的最基本最常用的方法.2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法.3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5、偏微分方程:解决因变量与两个以上自变量之间的变化规律.(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2、时序分析法:处理的是动态的相关数据,又称为过程统计方法.3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.4、时序分析法:处理的是动态的相关数据,又称为过程统计方法.(三)、仿真和其他方法1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验.①离散系统仿真,有一组状态变量.②连续系统仿真,有解析表达式或系统结构图.2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.。
高中数学建模试题及答案一、单项选择题(每题3分,共30分)1. 数学建模的一般步骤不包括以下哪一项?A. 问题提出B. 模型假设C. 模型求解D. 数据收集答案:D2. 在数学建模中,模型的验证通常不包括以下哪一项?A. 模型的逻辑性检验B. 模型的适用性检验C. 模型的稳定性检验D. 模型的美观性检验答案:D3. 以下哪一项不是数学建模中常用的方法?A. 微分方程B. 线性规划C. 概率论D. 文学创作答案:D4. 在数学建模中,以下哪一项不是模型的要素?A. 模型的假设B. 模型的变量C. 模型的参数D. 模型的结论答案:D5. 数学建模中,以下哪一项不是模型的分类?A. 确定性模型B. 随机性模型C. 静态模型D. 动态模型答案:C6. 在数学建模中,以下哪一项不是模型的构建过程?A. 模型的假设B. 模型的建立C. 模型的求解D. 模型的发表答案:D7. 数学建模中,以下哪一项不是模型的分析方法?A. 数值分析B. 符号计算C. 图形分析D. 文字描述答案:D8. 在数学建模中,以下哪一项不是模型的优化方法?A. 线性规划B. 非线性规划C. 动态规划D. 统计分析答案:D9. 数学建模中,以下哪一项不是模型的应用领域?A. 工程技术B. 经济管理C. 生物医学D. 音乐艺术答案:D10. 在数学建模中,以下哪一项不是模型的评估标准?A. 模型的准确性B. 模型的简洁性C. 模型的可解释性D. 模型的复杂性答案:D二、填空题(每题4分,共20分)1. 数学建模的一般步骤包括:问题提出、模型假设、模型建立、模型求解、模型分析、模型验证和______。
答案:模型报告2. 在数学建模中,模型的假设应该满足______、______和______。
答案:科学性、合理性、可行性3. 数学建模中,模型的求解方法包括解析方法和______。
答案:数值方法4. 数学建模中,模型的分析方法包括______、______和______。
数学建模的主要步骤:第一、模型准备首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征.第二、模型假设根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步.如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化.第三、模型构成根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构.这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天.不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值.第四、模型求解可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术.一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重.第五、模型分析对模型解答进行数学上的分析."横看成岭侧成峰,远近高低各不?quot;,能否对模型结果作出细致精当的分析,决定了你的模型能否达到更高的档次.还要记住,不论那种情况都需进行误差分析,数据稳定性分析.数学建模采用的主要方法有:(一)、机理分析法:根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型.1、比例分析法:建立变量之间函数关系的最基本最常用的方法.2、代数方法:求解离散问题(离散的数据、符号、图形)的主要方法.3、逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题,在决策,对策等学科中得到广泛应用.4、常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式.5、偏微分方程:解决因变量与两个以上自变量之间的变化规律.(二)、数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型1、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.2、时序分析法:处理的是动态的相关数据,又称为过程统计方法.3、回归分析法:用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式,由于处理的是静态的独立数据,故称为数理统计方法.4、时序分析法:处理的是动态的相关数据,又称为过程统计方法.(三)、仿真和其他方法1、计算机仿真(模拟):实质上是统计估计方法,等效于抽样试验.①离散系统仿真,有一组状态变量.②连续系统仿真,有解析表达式或系统结构图.2、因子试验法:在系统上作局部试验,再根据试验结果进行不断分析修改,求得所需的模型结构.3、人工现实法:基于对系统过去行为的了解和对未来希望达到的目标,并考虑到系统有关因素的可能变化,人为地组成一个系统.。
简述数学建模的主要过程
数学建模是指运用数学方法和工具来解决实际问题的过程。
它主要包括以下步骤:
1. 了解问题:首先需要了解实际问题的背景和目的,明确问题的关键信息、限制条件、需求和可行性等方面的内容。
2. 制定模型:根据问题的特点和要求,制定数学模型,包括确定问题的变量、建立数学关系式和方程式等。
3. 进行分析:对建立的数学模型进行分析,包括确定模型的特点、解析性质和数值性质等,从中提取出对解决问题有帮助的信息。
4. 求解模型:根据所得到的数学模型和分析结果,采用合适的数学方法和工具求解模型,得到问题的解答。
5. 验证结果:对求解结果进行验证,包括检验结果是否合理、是否满足问题的限制条件等,以确保结果可信。
6. 提出建议:根据求解结果,提出对实际问题的建议和改进方案,以实现最优解。
在数学建模的过程中,需要充分了解问题的背景和目的,进行深入思考和分析,结合数学知识和工具来解决问题。
此外,数学建模还需要注意模型的简化和实用性,以及结果的可靠性和可行性。
数学建模教程数学建模是一种将数学方法和技巧应用于现实问题求解的方法。
它可以帮助我们理解和解决各种实际问题,包括科学、工程、经济、社会等方面。
下面将介绍数学建模的基本步骤和常用方法。
1. 模型建立数学建模的第一步是建立数学模型。
模型是对实际问题的抽象和简化,以数学符号和方程来描述和表示。
在建立模型时,需要确定问题的目标和约束条件,选择适当的数学工具和方法。
2. 数据收集与处理为了建立模型,需要收集和整理实际问题中的相关数据。
数据可以来源于实验观测、统计调查、文献研究等。
在收集到数据后,需要进行数据的预处理和分析,包括数据清洗、统计描述、数据转换等。
3. 假设与推理在建立模型时,常常需要进行一些假设和推理。
假设是对问题和系统的简化和限制,它能够帮助我们建立更简洁和可行的数学模型。
推理是通过逻辑和数学推理来分析和推导模型中的结论和解。
4. 模型求解与分析建立好模型后,需要进行模型的求解和分析。
求解是利用数学方法和计算工具来求得模型的解。
常用的求解方法包括数值方法、优化方法、统计方法等。
分析是对模型解进行验证和评价,检验模型的合理性和可靠性。
5. 结果展示与应用最后,需要将模型的结果进行展示和应用。
可以通过图表、报告、演示等形式来展示模型的结果和分析。
同时,还可以将模型应用于实际问题中,为决策和规划提供科学依据和支持。
总之,数学建模是一个系统而复杂的过程,需要综合运用数学、统计、计算机等多学科知识和技能。
通过合理和有效地建立数学模型,可以帮助我们深入理解和解决实际问题,推动科学研究和社会发展。
数学建模通俗来讲就是利用数学方法针对具体问题建立数学模型的过程,我将通过以下两点为大家介绍:一、数学建模的步骤:1、模型准备:明确赛题的类别2、模型假设:在特定场景下利用合理的假设进行简化和规范,进而达到某种目的3、模型建立:利用算法对特定问题建立数学模型4、模型求解:重视求解的中间过程,要放数据,最好对数据进行预处理,要对模型的关键参数进行求解,列结果5、模型分析:也叫结果分析,一是浅层分析看结果说话,把结果直接说出来,另一种需要深层分析,把得出的结果解释到实际的生活当中6、模型检验:可行性,正确性,误差,精度等7、模型应用:有没有可推广性(可有可无)二、数学建模解决的问题类型1、数据处理:A:插值拟合:对数据进行补全和基本趋势的分析B:小波分析、聚类分析(高斯混合聚类、K-均值聚类):主要是用于诊断数据异常值的剔除C:主成分分析、线性判别分析、局部保留投影等:主要用于多维数据的降维处理,减少数据冗余D:均值、方差分析、协方差分析等统计方法:主要用于对数据的截取或者特征选择2、关联与分析:A:灰色关联分析(用于样本点数据较少)B:典型相关分析:那些因变量之间联系比较紧密3、分类与判别:A:距离聚类:常用于坐标点的分类B:关联性聚类C: 层次、密度等聚类D:贝叶斯判别:统计判别方法E:费舍尔判别:训练的样本较少F:模糊识别:分类的数据点比较少4、评价与决策:A:模糊综合评价:评价优、良、中、差,不能排序B:主成分分析法:评价多个对象的水平并排序,指标间关联性很强C:层次分析法:做决策,通过指标,综合考虑做决定D:数据包络分析法:优化问题,对各省发展状况进行评判、E:秩和比综合评价法:评价各个对象并排序,指标间关联性不强F:神经网络评价:适用于多指标非线性关系明确的评价G:优劣解距离法(TOPSIS法)H:投影寻踪综合评价法:揉合多种算法,比如遗传算法、最优化理论I:方差分析、协方差分析等·方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;(1992年作物生长的施肥问题)J:协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲以及初始情况。