第11章 因子分析
- 格式:ppt
- 大小:238.50 KB
- 文档页数:36
第十一章因子分析地理模型因子分析因子分析的主要应用1、寻求基本结构、简化观测系统给定一组变量或观测数据,我们要问,变量的维数是否一定需要这么多,是否存在一个子集,特别是一个加权子集,来解释整个问题。
通常采用因子分析法将为数不多的变量减少为几个新因子,以再现它们之间的内在联系。
2、用于分类,将变量或样本进行分类,根据因子得分值,在因子轴所构成的空间中进行分类处理。
因子分析与主成分分析的区别第一节因子分析法的数学模型因子分析的结果完全的因子解因子分析的基本问题是用变量之间的相关系数来决定因子载荷。
因子模型的求解过程如下:设原始数据矩阵为:X =p表示变量数,n表示样本数。
将原始数据进行标准化变换:x ij-x ix ij’=(I=1,2,…p;j=1,2,…n)经标准化变换后的数据,其均值为0,方差为1,这样相关矩阵R 和协方差矩阵S完全一样,这里相关矩阵:R=X*X’(为方便计,假定标准化处理后的矩阵仍记为X)。
求解R矩阵的特征方程|R=λI|=0,记特征值为λ1>λ2…>λp>=0,特征向量矩阵为U,这样有关系:R=U U’U为正交矩阵,并且满足U’U=UU’=I令F=U’X,则得FF’=F为主因子阵,并且Fα=U’Xα(α=1,2…n),即每一个Fα为第α个样品主因子观测值。
在因子分析中,通常只选m(m<p)其中主因子。
根据变量的相关选出第一主因子F1,使其在各变量的公共因子方差中所占的方差贡献最大。
R型的因子模型为X1=α11F1+α12F2+…+α1m F m +α1ε 1 X2=α21F1+α22F2+…+α2m F m +α2ε 2… …X P=αP1F1+αP2F2+…+αPm F m +αmεm在因子模型中2、αij叫因子载荷,它是第I个变量在第j个主因子上的负荷,或者叫第I个变量在第j个主因子上的权,它反映了第I个变量在第j个主因子上的相对重要性。
如果把x i看成m维因子空间上的一个向量,则αij表示x i在坐标轴F j上的投影。
《统计分析与SPSS的应用(第五版)》(薛薇)课后练习答案第11章SPSS的因子分析1、简述因子分析的主要步骤是什么因子分析的主要步骤:一、前提条件:要求原有变量之间存在较强的相关关系。
二、因子提取。
三、使因子具有命名解释性:使提取出的因子实际含义清晰。
四、计算样本的因子得分。
2、对“基本建设投资分析.sav ”数据进行因子分析。
要求:1)利用主成分方法,以特征根大于1为原则提取因子变量,并从变量共同度角度评价因子分析的效果。
如果因子分析效果不理想,再重新指定因子个数并进行分析,对两次分析结果进行对比。
2)对比未旋转的因子载荷矩阵和利用方差极大法进行旋转的因子载荷矩阵,直观理解因子旋转对因子命名可解释性的作用。
“基本建设投资分析”因子分析步骤:分析降维因子分析导入全部变量到变量框中详细设置描述、抽取的设置如下: -相黄性舸阵[3□逆模型迥)显1F 性水平逞)□再生迟) □柠別式也)上厦映象追)V 邕M 。
和Bartiettm 形度橙验旋转、得分、选项的设置如下:./丘示圜子卷敘粗胖I 』[ai~J匚淙存n 欝童海© BarJet瞅■!圖丽药亟T 矗匸Q 脚dii*A3R 迟》0晰平即口甘描因亶除■£洞&式E 卜曲/ 牺削'■:诩|型J®J(3S1T ;■■ ■昌同子分疔信辻统计Statistics(1)表一是原有变量的相关系数矩阵。
由表可知,一些变量的相关系数都较高,呈较强的线由表二可知,巴特利特球度检验统计量的观测值为,相应的概率 性水平为,由于概率P-值小于显著性水平a,则应拒绝原假设,认为相关系数矩阵与单位P-值接近0.如果显著阵有显著差异,原有变量适合做因子分析。
同时, 量可以进行因子分析。
KMO 直为,根据KMC 度量标准可知原有变由表三可知,利用外资、自筹资金、其他投资等变量的绝大部分信息(大于 因子解释,这些变量的信息丢失较少。
但国家预算内资金这个变量的信息丢失较为严重(近80%。
第十一章 典型相关分析主成分分析、因子分析研究的是一组变量间或一组观测间的相互关系。
而当研究两组变量间的相互关系时,一般不采用各自的分析或两个变量一对一的直接分析。
例如,在研究一组环境因素与畜禽诸生产性能间的相关性时,通常是把各环境因素当作一个整体,把各生产性能也作一个整体来研究。
这时研究两个整体之间的相关可化为研究两个新变量之间的相关关系,而这两个新变量将分别由各自整体中变量的线性组合所构成,因此不会丢失原有诸变量的任何信息。
这样构成的两个新变量具有最大相关的性质。
类似地还可找出由两组变量构成的第二对线性组合,该组合与第一对线性组合不相关,但该对组合间有最大的相关。
如此类推,直到两组变量的相关被分解完毕。
这种逐步得到的线性组合称为典型变量,它们之间的相关系数称为典型相关系数。
这种分析方法称为典型相关分析(Canonical Correlations Analysis )。
可见,典型相关分析是研究两组变量之间相关关系的一种统计方法,它避免了孤立地对两个变量间的研究,分析结果较为全面,且各组中变量的个数不受限制,两组的内容可以不相同。
因此,应用十分广泛。
11.1 概述在实际工作中,通常接触到的多为样本资料,所以典型相关系数及典型变量多数是从样本资料中获取。
其计算方法如下。
设有两组变量X 1{x 1,x 2,…,x p }和X 2{x p+1,x p+2,…,x p+q }的n 次观察值,取自多元正态总体N p+q (μ,∑),由X[X 1,X 2]算得协差阵为∑的最大似然估计,若对X 1、,X 2进行标准化,此时协差阵为相关阵R :()()q p q p R R R R R ++⎥⎦⎤⎢⎣⎡=22211211其中R 11为第一组各变量间的相关系数阵,R 22为第二组各变量间的相关系数阵,'2112R R =各变量间的相关系数阵。
设P ≤q 解得特征方程()01222112212=--αλR R R R 或()02221211121=--βλR R R R的非零特征根22221r λλλ≥≥≥ (r ≤p )的算术平方根,即为典型相关系数。