5 水文地球化学过程-Hydrochemical process
- 格式:pptx
- 大小:5.08 MB
- 文档页数:83
关中盆地潜水水文地球化学演化机理地下水是人们赖以生存的宝贵资源,特别是在干旱、半干旱地区,地下水对人们生活和工农业的生产、发展具有重要的意义[12]。
地下水的水文地球化学特征是地区环境特征的重要参数,也是用来研究地下水质量的重要方法。
聚类分析、相关分析、主成分分析和地下水化学成分分析(Piper图)等多种方法被用来研究地下水水文地球化学在空间上的分布规律[35]。
研究表明,其空间分布规律是自然因素和人为因素相互作用的结果[6]。
类似的,水文地球化学沿地下水流程演化,并受到居民和农业生产活动的影响[7]。
PHREEQC等一些软件也被用来模拟水文地球化学演化进程。
KyuYoul Sung等[8]研究了地下水在花岗岩层中的水文地球化学演化,发现水化学类型从最初的ClCa型水(雨水),经浅层的HCO3Ca型水,演化为深层的HCO3Na型水。
Christian Ekberg等[9]讨论了水岩反应系统中溶解性计算的几个不确定性,包括实验数据的不确定性及概念的不确定性等。
同位素的方法也被用来研究地下水循环和水文地球化学场的演化[10],2H、18O和14C为常用示踪元素。
关中盆地位于陕西中部,总面积约2万km2,属于半干旱、半湿润季风气候。
地下水是该区工农业发展和居民生活用水的重要支撑,目前,多以开发利用浅层地下水为主[11]。
关中盆地蕴藏着丰富的地下水,地表水(雨水、河水)是其主要的补给来源[12]。
随着污染加剧、经济快速发展以及管理不当[1314],造成地表水的水量贫乏,水质急剧恶化,人们便开始寻求开发利用地下水[15]。
故本文旨在对关中盆地浅层地下水水文地球化学空间分布特征进行研究,以多种方法相结合,定性定量的描述水文地球化学过程,并阐述其机理,为地下水的合理利用与开发、饮水安全以及水质改良提供可靠依据。
1研究区概况关中盆地位于陕西省中部,是一个三面环山、东面敞开的盆地,西起宝鸡,东至潼关,南依秦岭,北靠北山。
第一章绪论第二章水溶液的物理化学基础一、水的结构2.水分子的内部结构原子结构理论表明,H2O分子呈V形结构,H-O键的夹角为104°45′,键长为0.96Å(1Å=10-10m)2.水分子的内部结构由于氧的电负性为3.5,氢的电负性为2.1,(中性原子接受电子的能力,称为电负性)这种差异导致了H、O形成共价键。
由于氧的电负性大,所以共价电子偏向氧原子,这样使氧带有部分负电性,氢还有部分正电性,这就造成了极性共价键。
由这种极性共价键所形成的分子称为极性分子。
3.电负性(E)电负性就是原子在化合成分子时把价电子吸引向自己的能力。
规定氟的电负性为4.0,并以此为标准求出其它元素的电负性。
电负性小于2.0时,多数元素显金属性,大于2时,多数元素显非金属性。
铀的电负性为1.7,显金属性。
U4+的电负性为1.4,U6+为1.9,U4+的金属性较U6+强。
电负性差值大于2的两个元素化合时,多数形成离子键化合物,电负性差值小于2时,多数形成共价键的化合物。
由于电负性影响化合物的键性,而化学键的性质又影响到化合物的许多物理化学性质,如硬度、光泽,溶解度等,所以电负性对元素的迁移和沉淀也有影响。
3.水分子间的联结水分子间是靠氢键联结起来的。
所谓氢键是一种因静电吸引作用而产生的附加键,所以一个水分子中的氢原子,在保持同本分子中氧原子的共价键的同时,又能同相邻水分子中的氧原子产生一种静电吸引力。
这样水分子就有具有了两种类型的键:(1)存在于水分子内部的极性共价键;(2)存在于水分子之间的氢键。
3.水分子间的联结水分子间的氢键联结,使水分子相互缔合形成巨型分子(H2O)n,水分子的这种缔合强度取决于温度,一般温度越低,缔合程度越稳定,4℃时,水的缔合程度最大,此时达到最大密度。
在250~300℃时,n接近1,即水具有H2O形式。
水分子在缔合过程中不会引起化学性质的变化。
这种由单分子水结合成多分子水而不引起水的化学性质改变的现象,称为水分子的缔合作用。
水文地球化学电子教案第一章:水文地球化学概述1.1 水文地球化学的定义1.2 水文地球化学的研究对象和内容1.3 水文地球化学的发展简史1.4 水文地球化学的重要性第二章:水文地球化学基本概念2.1 地球化学的基本概念2.2 水的性质和分类2.3 地下水的形成和运动2.4 水文地球化学循环第三章:水文地球化学元素与同位素3.1 元素的性质和分布3.2 常见元素的水文地球化学行为3.3 同位素的水文地球化学应用3.4 元素和同位素在水文地球化学研究中的应用第四章:水文地球化学分析方法4.1 水文地球化学样品的采集与处理4.2 水文地球化学分析技术4.3 数据处理与质量控制4.4 水文地球化学分析方法的进展与挑战第五章:水文地球化学应用实例5.1 地下水污染的水文地球化学研究5.2 地下水资源评价与管理5.3 环境水文地球化学问题5.4 水文地球化学在工程中的应用第六章:水文地球化学循环与地球化学过程6.1 水文地球化学循环的基本原理6.2 岩石圈-大气圈-水圈-生物圈之间的水文地球化学循环6.3 地球化学过程在水文地球化学研究中的应用6.4 典型水文地球化学循环案例分析第七章:水文地球化学野外调查与采样技术7.1 野外调查的基本方法7.2 地下水采样技术7.3 岩石和土壤样品的采集7.4 数据处理与质量保证第八章:水文地球化学实验室分析技术8.1 常用实验室分析方法概述8.2 岩石和矿物分析8.3 水质分析8.4 同位素分析技术第九章:水文地球化学模型与应用9.1 水文地球化学模型的类型与构建9.2 地下水流动模型9.3 污染物迁移与转化模型9.4 水文地球化学模型在环境管理中的应用第十章:水文地球化学在我国的应用案例研究10.1 我国水文地球化学研究概况10.2 典型地区水文地球化学特征分析10.3 地下水资源评价与保护案例10.4 环境水文地球化学问题研究与治理案例第十一章:水文地球化学与环境健康11.1 水文地球化学与水质关系11.2 地下水中有害元素的来源与迁移规律11.3 水文地球化学指标在环境健康评估中的应用11.4 环境健康案例分析第十二章:水文地球化学在农业领域的应用12.1 农业水文地球化学背景12.2 土壤-植物系统中元素迁移与富集12.3 农业水文地球化学调查与评价方法12.4 农业水文地球化学应用案例第十三章:水文地球化学在能源领域的应用13.1 能源水文地球化学概述13.2 地下水资源在能源开发中的作用13.3 能源开发活动对水文地球化学的影响13.4 能源水文地球化学案例分析第十四章:水文地球化学在灾害防治中的应用14.1 地质灾害的水文地球化学因素14.2 水质预测与灾害预警14.3 水文地球化学在地质灾害防治中的应用14.4 灾害防治案例分析第十五章:水文地球化学研究的前沿与挑战15.1 水文地球化学研究的新技术与发展趋势15.2 跨学科研究在水文地球化学中的应用15.3 水文地球化学在全球变化研究中的作用15.4 未来水文地球化学研究的挑战与机遇重点和难点解析本教案全面覆盖了水文地球化学的基本概念、研究方法、应用领域及前沿挑战。
水文地球化学:一种地理知识的探索水文地球化学,有时也被称为水地球化学,是一门研究地球系统中水的化学特性和水与岩石、土壤及大气之间相互作用的学科。
它既是地理学的一个分支,也是地球科学的一个组成部分。
下面,我们将从定义、发展历程、研究内容以及意义等几个方面来详细了解水文地球化学。
一、定义水文地球化学主要研究的是地球上水的化学特性,包括水的来源、分布、循环以及其与岩石、土壤和大气的相互作用。
这种研究涵盖了从宏观的全球水循环到微观的局部环境下的水化学变化。
二、发展历程水文地球化学的发展历程与地理学和地球科学的发展紧密相连。
它起源于19世纪中叶的矿泉水研究,那时,科学家们开始研究水的化学成分以及其对人类和动植物的影响。
到了20世纪,随着环境科学和地球科学的发展,水文地球化学的研究范围逐渐扩大,涵盖了地下水、土壤水、河水、湖水以及海水等多种类型的水。
三、研究内容水文地球化学的研究内容包括:1.水循环过程中的化学变化:这包括雨雪、河流、湖泊、地下水以及海洋等不同类型的水体的化学特性及其变化。
2.岩石与土壤对水质的影响:岩石和土壤中的矿物和有机质会与水发生反应,改变水的化学特性。
这种影响在地理环境的塑造中起到了关键的作用。
3.水与大气的相互作用:大气中的气体和颗粒物与水相互作用,影响了水的化学特性和质量。
4.水污染的来源与影响:人类活动造成的污染对水质产生了严重影响,水文地球化学也包括了对这些污染物的来源和影响的研究。
5.水资源的管理和保护:对于一个可持续的生态系统来说,对水资源的合理管理和保护至关重要。
因此,水文地球化学也包括对水资源的管理和保护策略的研究。
四、意义水文地球化学的研究对于我们理解地球上的水循环、环境变化以及人类活动的影响具有重要意义。
它不仅帮助我们了解水的来源和分布,也帮助我们预测和管理水资源。
在当今全球水资源紧张和环境问题日益严重的情况下,对水文地球化学的深入研究尤为重要。
总结来说,水文地球化学是地理学和地球科学的一个重要分支,它为我们提供了深入理解地球上水的化学特性和其在环境中的作用的知识。
水文地球化学专业术语(中英文对照)水文地球化学1 水文地球化学基础1.1 水化学 hydrochemistry研究天然水化学成分的形成、分布和演变的学科。
1.2 地下水物理性质physical properties of groundwater地下水的比重、温度、透明度、颜色、味、嗅味、导电性、放射性等物理特性之总和。
1.3 地下水化学成分chemical constituents in groundwater地下水中各类化学物质之总称。
它包括离子、气体、有机物、微生物、胶体以及同位素成分等。
1.4 库尔洛夫式 kurllov formation以类似数学分式形式表示单个水样化学成分的含量和组成的方法。
1.5 水文地球化学作用hydrogeochemical process在一定地球化学环境下,影响地下水化学成分形成、迁移和变化的作用。
1.5.1 水解作用 hydrolytic dissociation地下水与岩石相互作用,成岩矿物的晶格中,发生阳离子被水中氢离子取代的过程。
1.5.2 溶滤作用 lixiviation地下水与岩石相互作用,使岩石中一部分可溶成分转入水中,而不破坏矿物结晶格架的作用。
1.5.3 蒸发浓缩作用evaporation—concentration process地下水遭受蒸发,引起水中成分的浓缩,使水中盐分浓度增大,矿化度增高。
1.5.4 混合作用mixing hydrochemical reaction in groundwater两种或两种以上不同成分水之间的混合,使原有水的化学成分发生改变的作用。
1.5.5 阳离子交替吸附作用cation exchange and adsorption地下水与岩石相互作用,岩石颗粒表面吸附的阳离子被水中阳离子置换,并使水化学成分发生改变的过程。
1.5.6 脱碳酸作用 decarbonation在温度升高,压力降低的情况下,CO2自水中逸出,而HCO-3含量则因形成碳酸盐沉淀减少的过程。
水文地球化学研究现状、基本模型与进展摘要:1938 年, “水文地球化学”术语提出, 至今水文地球化学作为一门独立的学科得到长足的发展, 其服务领域不断扩大。
当今水文地球化学研究的理论已经广泛地应用在油田水、海洋水、地热水、地下水质与地方病以及地下水微生物等诸多领域的研究。
其研究方法也日臻完善。
随着化学热力学和化学动力学方法及同位素方法的深入研究, 以及人类开发资源和保护生态的需要, 水文地球化学必将在多学科的交叉和渗透中拓展研究领域, 并在基础理论及定量化研究方面取得新的进展。
早期的水文地球化学工作主要围绕查明区域水文地质条件而展开, 在地下水的勘探开发利用方面取得了可喜的成果( 沈照理, 1985) 。
水文地球化学在利用地下水化学成分资料, 特别是在查明地下水的补给、迳流与排泄条件及阐明地下水成因与资源的性质上卓有成效。
20 世纪60 年代后, 水文地球化学向更深更广的领域延伸, 更多地是注重地下水在地壳层中所起的地球化学作用( 任福弘, 1993) 。
1981 年, Stumm W 等出版了5水化学) ) ) 天然水化学平衡导论6 专著, 较系统地提供了定量处理天然水环境中各种化学过程的方法。
1992 年, C P 克拉依诺夫等著5水文地球化学6分为理论水文地球化学及应用水文地球化学两部分, 全面论述了地下水地球化学成分的形成、迁移及化学热力学引入水文地球化学研究的理论问题, 以及水文地球化学在饮用水、矿水、地下热水、工业原料水、找矿、地震预报、防止地下水污染、水文地球化学预测及模拟中的应用等, 概括了20 世纪80 年代末期水文地球化学的研究水平。
特别是近二十年来计算机科学的飞速发展使得水文地球化学研究中的一些非线性问题得到解答( 谭凯旋, 1998) , 逐渐构架起更为严密的科学体系。
1 应用水文地球化学学科的研究现状1. 1 油田水研究水文地球化学的研究在对油气资源的勘查和预测以及提高勘探成效和采收率等方面作出了重要的贡献。