运筹学多属性决策分析
- 格式:ppt
- 大小:6.01 MB
- 文档页数:54
运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
AbstractSensitivity analysis is an important tache of using models and making quantitative decisions.People will be affected by the uncertain decision parameters when they are devoted to the study on multi-attribute decision making to obtain optimal solutions.Due to the influence of the uncertain problems or parameters on the results of the evaluation,the reliability of evaluation results is often a problem for the decision makers. Sensitivity analysis can reflect the degree of influence on the decision from uncertainty factors, and decision makers can know which parameters are most sensitive, so as to turn their attention more effectively on the key part, which has important practical significance for the multi-attribute decision making.Based on the National Natural Science Foundation of China and the Hubei Electric Power Commission project "Research on the methods and mechanism of bidding and purchasing of electric power materials", the following research work has been carried out: First of all, we discuss the common methods of multi-attribute decision making, and analyze their advantages and disadvantages as well as the future development.Then we research sensitivity measurements based on distance measure and vectorial angle measure,and test the sensitivity of the project by the minimum variation of the local parameters and the vector angle of the global parameters separately.Next,we regard the bidding as multi-attribute decision making under SAW, establish the model and analyze the sensitivity of attribute value,attribute weights and expert weights individually.We put forward the concept and calculation method of minimum variation and sensitivity coefficient when analyzing the sensitivity of attribute value.While introducing the vectorial angle to analyze the sensitivity of attribute weights and expert weights.We give some definitions ,geometric representation and solving methods and then discuss the rationality and validity.Combining with the specific bidding example and datas,we verify and compare the methods of sensitivity analysis,then give some suggestions for experts.The methods of sensitivity analysis in this paper extend the range of sensitivity analysis on multi-attribute decision making to a certain degree,which have theoretical significance and application value on research of decision making theory.Keywords:Multi-attribute Decision Making; Sensitivity Analysis; Angle Measure; Electric Power Materials Bid; Simple Additive Weighting目录摘要 (I)Abstract ........................................................................................................... I I 1 绪论.. (1)1.1 研究背景、目的及意义 (1)1.2多属性决策的敏感性分析及研究概况 (2)1.3 电力物资评标及研究概况 (7)1.4 研究内容与结构安排 (9)2 多属性决策及敏感性分析方法研究 (11)2.1 多属性决策方法研究 (11)2.2 敏感性分析方法研究 (16)2.3 本章小结 (20)3 基于多属性决策的评标模型及其敏感性分析 (22)3.1 评标模型的建立 (22)3.2 方案排序关于属性值的敏感性分析 (25)3.3 方案排序关于属性权重的敏感性分析 (30)3.4 方案排序关于专家权重的敏感性分析 (34)3.5 本章小结 (37)4 湖北电力公司评标结果的敏感性分析 (39)4.1 案例背景 (39)4.2 专家评价及各方案排序 (41)4.3 排序结果的敏感性分析 (43)4.4 本章小结 (49)5 总结与展望 (50)5.1 主要结论与创新点 (50)5.2 研究展望 (51)致谢 (52)参考文献 (53)附录1 攻读硕士学位期间参加的科研项目 (57)附录2 技术专家和商务专家的评分表 (58)1 绪论1.1研究背景、目的及意义作为决策科学的一个重要研究领域[1],多属性决策(Multiple Attribute Decision Making,MADM)方法,是指决策者在考虑多个属性的情况下对有限个备选方案进行科学合理排序的理论和方法。
30个运筹学的解题方法与技巧1. 线性规划:解决在一定约束条件下最大化或最小化线性目标函数的问题。
常用方法有单纯形法、对偶理论和分解算法等。
2. 整数规划:处理决策变量取整数值或只能取整点值的线性规划问题。
常用方法有分支定界法、割平面法等。
3. 动态规划:通过将原问题分解为相互重叠的子问题,解决具有重叠子问题和最优子结构性质的问题。
4. 图论方法:用于解决最短路、最小生成树、最小割、最大流等问题,常用算法有Dijkstra 算法、Prim算法、Ford-Fulkerson算法等。
5. 网络优化:解决运输、分配和布局等问题,常用方法有运输问题算法、分配问题算法等。
6. 排队论:研究等待队列的结构和特性,以及服务机构的工作规律。
主要模型有M/M/1、M/M/c等。
7. 存储论:研究如何科学地管理物资库存,以最低的费用保证生产和销售需要。
常用模型有不允许缺货模型、一次性订货模型等。
8. 决策分析:根据已知信息评估不同行动方案的效果,从而选择最优方案。
常用方法有期望值法、决策树法等。
9. 对策论:研究竞争、对抗和冲突问题的数学模型,常用方法有Nash均衡、优势策略和必胜策略等。
10. 随机规划:处理具有随机性的决策问题,常用的求解方法有期望值法、机会约束规划和贝叶斯决策等。
11. 多目标规划:解决具有多个冲突目标的优化问题,常用的求解方法有主要目标法、权衡法和分层序列法等。
12. 非线性规划:处理目标函数或约束条件非线性的优化问题,常用的求解方法有梯度法、牛顿法等。
13. 启发式方法:采用直观和经验的方法求解问题,如遗传算法、模拟退火算法等。
14. 数学仿真:通过建立数学模型并模拟实际情况,评估不同方案的性能和效果。
15. 多属性决策分析:处理具有多个评估属性的决策问题,常用的求解方法有多属性效用理论、层次分析法等。
16. 模拟退火算法:一种启发式优化算法,通过模拟固体退火过程来寻找全局最优解。
17. 遗传算法:模拟生物进化过程的优化算法,通过遗传、交叉和变异等操作寻找最优解。
层次分析法和聚类分析法层次分析法(Analytic Hierarchy Process,AHP)是由美国运筹学家托马斯·萨亨于20世纪70年代提出的一种多属性决策方法,用于处理和解决具有多个因素和多个层次的决策问题。
层次分析法基于对决策问题的分解和层次化处理,通过对不同因素的权重进行评估和比较,最终得到最优的决策方案。
层次分析法的主要步骤包括:建立层次结构、构造判断矩阵、计算权重向量、一致性检验和综合权重。
首先,建立层次结构,将问题分解为不同的层次和因素,形成一个树状结构。
然后,通过构造判断矩阵,对不同层次和因素进行两两比较,得到判断矩阵。
接着,计算权重向量,通过对判断矩阵进行归一化和求和,得到每个因素的权重。
进行一致性检验,判断判断矩阵是否具有一致性。
最后,综合权重,将各个层次和因素的权重进行综合,得到最终的决策方案。
层次分析法的特点是简单、直观、易于理解和操作。
它可以将复杂的决策问题分解为易于处理的因素,通过权重比较将主观感受量化为数值,从而获得可操作的决策方案。
同时,层次分析法还可以根据不同的需求和偏好进行灵活调整,具有较强的适应性。
聚类分析法(Cluster Analysis)是一种基于样本相似性的数据分析方法,用于将相似的对象或观测分组成为簇。
聚类分析通过计算样本之间的相似性或距离,并基于相似性将样本进行分组,从而实现对数据的分类和整理。
聚类分析的主要步骤包括:选择合适的距离或相似性度量方法、选择合适的聚类算法、确定聚类数目、计算样本之间的相似性或距离、进行聚类分析和评价聚类结果。
首先,选择合适的距离或相似性度量方法,用于衡量样本之间的相似性或距离。
然后,选择合适的聚类算法,如K-means、层次聚类等,用于将样本分组成簇。
确定聚类数目,根据具体问题确定簇的个数。
接着,计算样本之间的相似性或距离,根据所选的度量方法计算样本之间的距离或相似性。
进行聚类分析,将样本分组成簇,并通过可视化和统计等方法对结果进行解释和评价。