运筹学基础(决策分析1)
- 格式:pdf
- 大小:827.41 KB
- 文档页数:19
运筹学知识点总结运筹学是研究在有限资源条件下,如何最优化决策问题的学科。
它是应用数学的一部分,主要包括线性规划、整数规划、图论等方向。
运筹学在工业、交通、军事、金融等各个领域有广泛的应用。
一、线性规划线性规划是运筹学中应用最广泛的部分,也是最基础的部分。
线性规划是一种数学方法,用于确定线性函数的最大值或最小值。
它被用来优化各种决策问题,例如成本最小化、收益最大化等。
如果一个问题可以通过不等式和等式来表示,同时还满足线性条件,那么这个问题就可以用线性规划来解决。
二、整数规划整数规划是指在优化问题中,变量需要满足整数限制的问题。
它是一个复杂的优化问题,通常需要使用分支定界法等高级算法来解决。
整数规划在生产安排、设备选型等问题中有广泛应用。
例如,在工厂的生产调度中,每个任务的产量必须是整数,因此需要使用整数规划来制定生产计划。
三、图论图论是运筹学的一个重要分支,它是一种研究图形结构和它们的互相关系的数学理论。
在运筹学中,图论被用来解决一些最短路径、最小花费等问题。
图论在计算机科学中也有广泛的应用。
例如,它被用来分析互联网的连接模式,制定数据传输的路径等。
四、决策分析决策分析是指选择最优行动方案的过程,它使用决策分析方法来权衡各种可行方案的利弊。
这些方法包括概率分析、统计分析、风险分析等。
决策分析在金融、政府和企业管理等领域中有广泛的应用。
例如,在股票投资中,决策分析被用来估计利润和风险,从而选择最优的投资组合。
五、排队论排队论是研究排队系统行为的学科,它被用来分析服务过程中的等待时间、系统容量和服务能力等因素。
排队论可以用来优化人员调度、设备运营和客户满意度。
排队论在交通运输领域中有广泛应用。
例如,在快速公路上,排队论可以帮助确定最佳车道数量,从而减少塞车和等待时间。
六、模拟模拟是一种数学方法,用于模拟真实世界的行为和系统。
它可以用来预测系统行为,以优化决策。
模拟通常使用计算机程序来模拟系统,这些程序称为仿真器。
填空题一1决策过程的第一步即是观察问题所处的环境,一般而言,问题域所处的环境有内部环境和外部环境两方面。
2简单移动平均法的计算公式为,而加权移动平均的计算公式为。
3悲观主义远侧也称最大最小原则,乐观主义原则也称最大最大原则。
4安全库存量也可称为保险库存量,是为了预防缺货而保存的额外库存量。
5网络图中一个活动一般有四种时间最早完成时间,最迟完成时间,最早开始时间和最迟开始时间。
6求得运输问题的一个最初方案,常用方法是西北角法,也叫阶石法或登石法。
7箭线式网络以箭线代表活动,以结点代表活动的开始和完成。
8最小枝杈树的算法是按把最近的未接点,连接到已接点上的方法来进行的。
9常用的定性预测法有特尔斐法和专家小组法,其中专家小组法适用于短期预测,特尔斐法则适用于中长期预测。
两种方法都希望在专家群中取得一致的意见。
10设某种产品的市场占有率随时间变化的过程为:…,这是一种马尔柯夫过程,对这种变化规律的研究分析称为马尔柯夫分析。
二1必须用定性和定量两种方法才能制定的决策,称为混合性决策。
2预测人员面对面进行讨论的方法是专家小组法,背对背进行表决的方法是特尔斐法。
3采用期望标准进行决策,通常步骤为:确定概率论、计算条件利润、计算各方案的期望利润与选择最优方案、具有精确情报资料的最大期望收益值的计算和情报价值的计算。
4安全库存量一方面降低了缺货损失,而另外一方面又增加了存货保管费用。
5线性规划是一种合理利用和调配各种资源并使某个目标达到最优的方法。
6解运输问题时,寻求改进方案一般有两种方法:一个是闭合回路法,另一个是修正分配法。
7在一个图中,点表示研究的对象,线表示对象之间的关系。
8在某个求解运输问题的图表中,数字格中的数字,从水平方向来看,是表示供应量,从垂直方向来看,是表示需要量。
9网路图分为箭线式网络图和结点式网络图。
10在改进一个要求运输费用最低的运输方案时,闭合回路法是从一个改进指数的绝对值最大的负数所在的空格开始,寻求一条闭合回路,在这条闭合回路上只允许有一个空格。
《管理运筹学》复习提纲管理运筹学是现代管理科学的一门重要学科,旨在帮助管理者进行决策和规划,以实现组织的最佳效益。
为了帮助大家复习管理运筹学,下面是一份复习提纲,共分为四个部分:运筹学的基础知识、线性规划、网络分析和决策分析。
每个部分都包含了相关的概念、方法和应用案例,希望对大家复习有所帮助。
一、运筹学的基础知识(300字)1.运筹学的定义和发展历程2.运筹学的研究对象和基本方法3.运筹学在管理中的应用场景和作用4.运筹学与其他管理学科的关系二、线性规划(300字)1.线性规划的基本概念和原理2.线性规划的求解方法:图解法、单纯形法3.线性规划的应用案例:生产计划、资源分配等4.敏感性分析在线性规划中的应用三、网络分析(300字)1.网络图的表示和性质2.关键路径法和关键事件法的基本原理3.网络分析的应用案例:项目管理、生产调度等4.项目的时间和资源的优化分配四、决策分析(300字)1.决策分析的基本概念和理论2.决策树的构建和分析方法3.敏感性分析在决策分析中的应用4.决策分析的应用案例:投资决策、市场营销策略等这些提纲覆盖了管理运筹学的核心内容,帮助大家回顾基本概念、原理和方法,并通过具体的应用案例加深对管理运筹学的理解和应用能力。
在复习过程中,可以结合课堂讲义、教材和相关参考资料,做题、做案例分析,并与同学进行讨论和交流,提高自己的学习效果。
同时,也建议大家不仅仅局限于复习知识点,还要进行实际问题的解决和分析,如企业生产优化、项目管理等,这将有助于将理论知识与实践能力相结合,提高综合运筹能力。
最后提醒大家,复习不仅要注重理论的牢固掌握,更要重视实践操作的能力培养,只有理论与实践相结合,才能真正将管理运筹学的知识运用到实际管理中,并取得优秀的管理业绩。
希望大家能够在复习中找到适合自己的方法和学习策略,取得好成绩。
加油!。
运筹学基础运筹学基础运筹学是一门研究问题的建模、分析和解决方法的学科,它涵盖了数学、统计学、计算机科学和工程等多个领域。
运筹学的目标是通过科学的方法,优化决策和资源利用,以达到最佳的效果。
运筹学的基础包括线性规划、整数规划、非线性规划、动态规划、排队论、网络流和图论等内容。
这些方法可以在许多领域中应用,包括物流、生产、供应链管理、交通运输、金融和资源分配等。
线性规划是运筹学中的一种基础方法。
它适用于求解具有线性目标函数和线性约束条件的问题。
线性规划常常涉及到资源的分配和决策的优化,例如在生产中如何最大化利润或者在供应链中如何最小化运输成本。
整数规划是在线性规划的基础上引入整数变量的一种问题求解方法。
这种方法可以用于求解一些离散决策问题,例如在物流中如何选择配送点和配送路线,以及如何安排生产任务等。
非线性规划是针对目标函数或约束条件中存在非线性项的问题的求解方法。
这种方法用于求解一些复杂的决策问题,例如在金融投资中如何优化投资组合,以及在环境保护中如何最小化排放量等。
动态规划是一种将多阶段决策问题转化为一系列单阶段决策问题的方法。
它适用于一些需考虑时序和状态转移的问题,例如旅行商问题和生产计划问题等。
排队论是研究顾客到达和服务系统间关系的数学方法。
它可以用于分析和优化服务系统的性能指标,例如等待时间和服务效率等。
排队论可以应用于各种排队系统,包括银行、餐厅和交通等。
网络流是研究网络中物质或信息流动的数学方法。
它可以用于解决一些网络中的最优路径或最小费用问题,例如在物流中如何选择最佳配送路径,以及在通信网络中如何优化数据传输等。
图论是研究图结构和图算法的学科。
它可以用于模型建立和问题求解,例如在地图上如何规划最短路径,以及在社交网络中如何分析人际关系等。
总之,运筹学提供了一系列数学方法和工具,用于解决决策和资源分配问题。
这些方法不仅可以优化决策效果,还可以提高经济效益和资源利用效率。
运筹学的应用范围广泛,对提高社会生产力和改善生活质量具有重要意义。
运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。
它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。
线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。
而当目标是最小化cx时,则是最小化问题。
线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。
而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。
二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。
这样的问题往往更加接近实际情况。
整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。
因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。
但是对于特定结构的整数规划问题,可以设计专门的算法来求解。
比如分枝定界法、动态规划等。
整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。
三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。
它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。
动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。
动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。
动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。
四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。
它可以应用在各种风险决策、投资决策、生产决策等方面。
决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。
运筹学基础(中文版第10版)哈姆迪塔哈课后习题答案解析第一章线性规划模型1.1 线性规划的基本概念1.请解释线性规划模型的基本要素以及线性规划模型的一般形式。
答:- 线性规划模型的基本要素包括决策变量、目标函数、约束条件。
- 线性规划模型的一般形式如下:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 01.2 线性规划模型的几何解释1.请说明线性规划模型的几何解释。
答:线性规划模型在几何上可以表示为一个多维空间中的凸多面体(可行域),目标函数为该多面体上的一条直线,通过不同的目标函数系数向量c,可以得到相应的最优解点。
通过多面体的边界和顶点,可以确定最优解点的位置。
如果可行域是无限大的,则最优解点可以在其中的任何位置。
1.3 线性规划模型求解方法1.简要说明线性规划模型的两种求解方法。
答:线性规划模型可以通过以下两种方法进行求解: - 图形法:根据可行域的几何特征,通过图形方法确定最优解点的位置。
- 单纯形法:通过迭代计算,逐步靠近最优解点。
单纯形法是一种高效的求解线性规划问题的方法。
第二章单变量线性规划2.1 单变量线性规划模型1.请给出单变量线性规划模型的一般形式。
答:Max/Min Z = cxSubject to:ax ≤ bx ≥ 02.2 图形解法及其应用1.请解释图形解法在单变量线性规划中的应用。
答:图形解法可以直观地帮助我们确定单变量线性规划模型的最优解。
通过绘制目标函数和约束条件的图像,可以确定最优解点的位置。
对于单变量线性规划模型,图形解法特别简单,只需要绘制一条直线和一条水平线,求解它们的交点即可得到最优解点的位置。
第一章导论1.1概述1.1.1运筹学与管理决策运筹学是一门研究如何有效地组织和管理人机系统的科学。
分析程序有两种基本形式:定性的和定量的。
定性分析的技巧是企业领导固有的,随着经验的积累而增强。
运筹学的定义:运筹学利用计划方法和有关多学科的要求,把复杂功能关系表示成数学模型,其目的是通过定量分析为决策和揭露新问题提供数量根据。
1.1.2 计算机与运筹学计算机是运筹学的不可分割的部分和不可缺少的工具,并且计算机方法和运筹学是并行发展的。
1.1.3 决策方法的分类分类:1定性决策:基本上根据决策人员的主观经验或感觉或知识制定的决策。
2定量决策:借助于某些正规的计量方法做出的决策。
3混合性决策:决策人员采用计量方法的几种情况:1要解决的问题是复杂的并且具有许多变量。
2说明能决策的问题的各种状况的数据是可以得到的。
3待决策的各项目标可以确定为各种数量关系。
4对应于上述情况,有关的切实可行的模型是当前可以建立起来的。
1.2应用运筹学进行决策过程的几个步骤1.观察待决策问题所处的环境2.分析和定义待决策的问题3.拟定模型:符号或抽象模型4.选择输入资料:保存的记录,当前实验,推测等方式收集这些资料5提出解并验证它的合理性:要试图改变输入观察发生什么样的输出,叫做敏感度试验。
6实施最优解第二章预测2.1 预测的概念和程序2.1.1预测的概念和作用预测就是对未来的不确定的事件进行估计或判断。
预测是决策的基础。
2.1.2 预测的方法和分类:分类:1 经济预测2科技预测3社会预测4军事预测方法:1 定性预测(直观预测,有专家座谈法,特尔斐法)2定量预测:利用历史数据来推算叫外推法,常有的有时间序列分析法利用实物内部因素发展的因果关系来预测叫因果法,常有的有回归分析法,经济计量法,投入产出分析法等。
以时间来分:经济预测:长期预测:3—5年,中期预测:1—3,短期预测:一年以内科技预测:30—50年为长期,10—30年为中期,5—10年为短期。