热分析技术89551
- 格式:ppt
- 大小:1.91 MB
- 文档页数:50
热分析技术热分析:在程序控制温度条件下,测量材料物理性质与温度之间关系的一种技术。
从宏观性能的测试来判断材料结构的方法。
(程序控制温度:指用固定的速率加热或冷却。
) 热分析技术被广泛用于固态科学中,凡是与热现象有关的任何物理和化学变化都可以采取热分析方法进行研究。
如材料的固相转变、熔融、分解甚至材料的制备等。
同时,这些变化还能被定量的描绘,可以直接测量出这些变化过程中所吸收或放出的能量,如熔融热、结晶热、反应热、分解热、吸附或解吸热、比热容、活化能、转变熵、固态转变能等。
热分析技术中,热重法(TG)、差热分析(DTA)和差示扫描量热法(DSC)应用的最为广泛。
1、热重法(TG)在程序控制温度条件下,测量物质的质量与温度关系的一种热分析方法。
热重法通常有下列两种类型:等温热重法—在恒温下测量物质质量变化与时间的关系非等温热重法—在程序升温下测量物质质量变化与温度的关系进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。
由热重法记录的质量变化对温度的关系曲线称为热重曲线(TG曲线)。
TG曲线以质量为纵坐标,从上到下表示减少,以温度或时间作横坐标,从左自右增加。
热重曲线显示了试样的绝对质量(W)随温度的恒定升高而发生的一系列变化,如图中从质量W0到W1,从W1到W2,从W2到0是三个明显的失重阶段,它们表征了试样在不同的温度范围内发生的挥发性组分的挥发以及发生的分解产物的挥发,从而可以得到试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等有关数据。
同时还可获得试样的质量变化率与温度关系曲线,即微分热重曲线(DTG曲线),它是TG 曲线对温度的一阶导数。
以物质的质量变化速率dm/dt对温度T作图,所得的曲线。
DTG曲线的峰顶即失重速率的最大值,它与TG曲线的拐点相对应,即样品失重在TG 曲线形成的每一个拐点,在DTG曲线上都有对应的峰。
并且DTG曲线上的峰数目和TG曲线的台阶数目相等。
熱分析技術介紹完整的热分析系统由四种不同技术组成。
每种技术以独特的方式表征样品。
所有结果的组合可简化数据整理分析。
TGA 测量重量曲线,DSC 测量热流,TMA 测量长度变化,而DMA 则测量模量,所有这些测量值将随着温度或时间的变化而改变。
为测定弹性体的玻璃化转变、组分分析和聚合物的熔融、玻璃化转变、热历史等参数提供专业的差示扫描量热仪DSC、热重分析仪TGA、热机械分析仪TMA等热分析仪器。
热分析是在程序控制温度下,测量样品的性质随温度或时间变化的一组技术。
这里所说的温度程序可包括一系列的程序段,在这些程序段中可对样品进行线性速率的加热、冷却或在某一温度下进行恒温。
在这些实验中,实验的气氛也常常扮演着很重要的作用,最常使用的气体是惰性和氧化气体。
差示扫描量热,DSC差示扫描量热法是在程序控制温度下,测量输入到样品和参比样的热流差随温度(时间)变化的一种技术。
该热流差能反映样品随温度或时间变化所发生的焓变:当样品吸收能量时,焓变为吸热;当样品释放能量时,焓变为放热。
在DSC曲线中,对诸如熔融、结晶、固-固相转变和化学反应等的热效应呈峰形;对诸如玻璃化转变等的比热容变化,则呈台阶形。
热重分析TGA热重分析是在程序控制温度下,在设定气氛下测量样品的质量随温度度或时间变化的一种技术。
质量的变化可采用高灵敏度的天平来记录。
样品在加热过程中产生的气相组分可通过联用技术如TGA-MS、TGA-FTIR 进行逸出气体分析(EGA)。
TGA851 的同步SDTA 技术能同步提供样品的吸热或放热效应的DTA信号。
热重分析能提供下列结果:易挥发性成分(水分、溶剂)、聚合物、碳黑或碳纤维组分、灰分或填充组分的组分分析;聚合物样品的高温分解的机理、过程和动力学。
聚合物的典型TGA 曲线包括如下重量阶梯:1. 挥发物(水分、溶剂和单体)2. 聚合物分解3. 气氛变化4. 碳的燃烧(碳黑或碳纤维)5. 残余组分(灰分、填料、玻璃纤维)静态热机械分析,TMA静态热机械分析是用来测量在程序温度下,样品的尺寸随温度或时间变化的一种技术。