初速度为零的匀加速直线运动比例关系
- 格式:ppt
- 大小:104.00 KB
- 文档页数:8
初速度为零的匀加速直线运动比例关系(1)等分时间如图所示,一个物体从静止开始做匀加速直线运动,则:(1)前一个T 内,前两个T 内,…,前n 个T 内的位移之比为:x 1:x 2:…:x n =(2)第一个T 内,第二个T 内,…,第n 个T 内的位移之比为:x I : x II :…:x N =(3)T 秒末、2T 秒末、3T 末、……的速度之比为:=n v v v :.....::21(4)第一个T 内,第二个T 内,…,第n 个T 内的平均速度之比为解析:(1)2212x at x t =⇒∝ (3)v at v t =⇒∝(2)等分位移如图所示,一个物体从静止开始做匀加速直线运动,则:第一个x 末,第二个x 末,……,第n 个x 末上的速度之比为前一个x ,前两个x ,……,前n 个x 上所用时间之比为第一个x 上,第二个x 上,……,第n 个x 上所用时间之比为 解析:(1)22v ax v =⇒(2)212x at t =⇒∝例:如图所示,a 、b 、c 为三块相同的木块,并排固定在水平面上。
一颗子弹沿水平方向射来,恰好能射穿这三块木块。
求子弹依次穿过这三块木块所用时间之比。
解析:木块厚度相等,子弹的末速度为零。
由初速度为零的比例关系式推导如下:c b a a b c ::1:1)::::1):1t t t t t t =∴=点评:应当注意,以上所求比例问题的结果都是在初速度为零(00v =)的匀变速直线运动的前提条件下求得的,因此在许多问题中直接应用时要看清前提条件。
例1、一滑块自静止开始,从斜面顶端匀加速下滑,第5 s 末的速度是6 m /s ,试求(1)第4 s 末的速度;(2)运动后7 s 内的位移;(3)第3 s 内的位移分析:物体的初速度v 0=0,且加速度恒定,可用推论求解.解:(1)因为所以,即∝t 故第4s 末的速度(2)前5 s 的位移由于s ∝t 2 所以故7 s 内的位移(3)利用s I ∶s Ⅲ= 1∶5知第3s 内的位移s Ⅲ=5s I =5×0.6 m=3 m例2、一物体沿斜面顶端由静止开始做匀加速直线运动,最初3 s 内的位移为s 1 ,最后3s 内的位移为s 2,已知s 2-s 1=6 m ;s 1∶s 2=3∶7,求斜面的总长.分析:由题意知,物体做初速度等于零的匀加速直线运动,相等的时间间隔为3s.解:由题意知解得s 1=4.5 m s 2=10.5 m由于连续相等时间内位移的比为l ∶3∶5∶……∶(2n -1)故s n =(2n -1)s l可知10.5 = (2n -1)4.5解得n =又因为s 总 = n 2s 100=v at v t =t v 5:4:54=v v s m s m v v /8.4/6545454=⨯==m t v s 1552605=⨯+==22575:7:=s s m m s s 4.29152549575227=⨯==6,731221=-=s s s s 35得斜面总长s 总 = ×4.5=12.5 m评注:切忌认为物体沿斜面运动了6 s ,本题中前3 s 的后一段时间与后3s 的前一段时间是重合的。
物理复习:初速度为零的匀变速直线运动的几个比例式推导及应用1.初速度为0的匀加速直线运动,按时间等分(设相等的时间间隔为T )的比例式(1)T 末、2T 末、3T 末、…nT 末的瞬时速度之比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .T 末的速度: aT v =12T 末的速度: aT T a v 2)2(2==3T 末的速度: aT T a v 3)3(3==……nT 末的速度: naT nT a v n ==)(所以v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)T 内、2T 内、3T 内、…nT 内的位移之比为:x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.T 内(0-T)的位移: 2121aT x = 2T 内(0-2T)的位移: 22224)2(21aT T a x == 3T 内(0-3T)的位移: 22329)3(21aT T a x ==……nT 内(0-nT)的位移: 2222)(21aT n nT a x n == 所以x 1∶x 2∶x 3∶…∶x n =12∶22∶32∶…∶n 2.(3)第一个T 内、第二个T 内、第三个T 内、…第n 个T 内的位移之比为:x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).第一个T 内(0-T )的位移: 21I 21aT x x == 第二个T 内(T-2T )的位移: 22212II 2321)2(21aT aT T a x x x =-=-= 第三个T 内(2T-3T )的位移: 22223III 25)2(21)3(21aT T a T a x x x =-=-= ……第n 个T 内[]nT T n --)1(的位移: []2221III 212)1(21)(21aT n T n a nT a x x x n n -=--=-=- 所以x 1∶x 2∶x 3∶…∶x n =1∶3∶5∶…∶(2n -1).2.初速度为0的匀加速直线运动,按位移等分(设相等的位移为x )的比例式(1)通过位置x 、2x 位置、3x 位置…nx 位置时的瞬时速度之比为:v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .当物体位移为x 时: ax v 221= ax v 21=当物体位移为2x 时: ax x a v 4)2(222== ax v 42=当物体位移为3x 时: ax x a v 6)3(223== ax v 63=……当物体位移为nx 时: nax nx a v n 2)(22== nax v n 2=所以v 1∶v 2∶v 3∶…∶v n =1∶2∶3∶…∶n .(2)通过前x 、前2x 、前3x …前nx 的位移所用时间之比为:t 1∶t 2∶t 3∶…∶t n =1∶2∶3∶…∶n .当物体位移为x 时: ax v 221= ax v 21= aax a v t 2011=-= 当物体位移为2x 时: ax x a v 4)2(222== ax v 42= a ax av t 4022=-= 当物体位移为3x 时: ax x a v 6)3(223== ax v 63= a ax a v t 6033=-=……当物体位移为nx 时: nax nx a v n 2)(22== nax v n 2= anax a v t n n 20=-= 所以t 1∶t 2∶t 3∶…∶t n =1∶2∶3∶…∶n .(3)通过连续相同的位移所用时间之比为:t 1′∶t 2′∶t 3′∶…∶t n ′=1∶(2-1)∶(3-2)∶…∶(n -n -1).当物体通过第1个x 时: ax v 21= aax a v t 2011=-=' 当物体通过第2个x 时: ax v 42= ax v 21= a ax ax av v t 24122-=-=' 当物体通过第3个x 时:axv 63= ax v 42= a ax ax a v v t 46233-=-=' ……当物体通过第n 个x 时:nax v n 2= ax n v n )1(2-= aax n nax a v v t n n n )1(221--=-='- 所以t 1′∶t 2′∶t 3′∶…∶t n ′=1∶(2-1)∶(3-2)∶…∶(n -n -1).注意 以上比例式成立的前提是物体做初速度为零的匀加速直线运动,对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,应用比例关系,可使问题简化.对于一般的匀变速直线运动,连续相等的时间T 内的位移之差是个定值,即2aT x =∆。
匀加速直线运动比例推论匀变速直线运动2——比例关系今天我们再来看一下匀变速直线运动的重要特征比例关系,关于这个比例关系,首先强调几点:一是这个运动必须是加速度不变的运动,不能是两个或者多个匀速直线运动的组合。
二是初速度必须是零或者可以通过逆向思维或者其他方法看做初速度为零。
三是比例中的n可以不是整数。
四是虽然我们比例关系是按照一秒一秒的去记忆或者推导,但是我们也要注意如果是两秒两秒甚至更长时间看做一份。
这就要求我们不光要死记硬背,还要真实去理解来龙去脉。
其实说白了,这个比例关系就是我们昨天所说的公式的数学变形或者应用。
具体来看(1)做初速度为零的匀加速直线运动的物体,在1s末、2s 末、3s末、……ns末的瞬时速度之比为1:2:3:……:n。
这是怎么回事呢?是因为v=at。
所以速度之比等于时间之比。
(2)做初速度为零的匀加速直线运动的物体,在1s末、2s 末、3s末、……ns末的位移之比为1:4:9:……:n²。
这是怎么回事呢?是因为x=½at²。
所以这个位移之比就是时间平方之比。
(3)做初速度为零的匀加速直线运动的物体,在第1s内、第2s内、第3s内、……第ns内的位移之比为1:3:5:……(2n-1)。
这又是怎么回事呢?由上面第二个比例关系推导非常容易。
(4)做初速度为零的匀加速直线运动的物体,从静止开始通过连续相等的位移所对应的时刻之比为t1:t2:……:tn=1:√2:√3……:√n。
这是怎么回事呢?是因为x=½at²。
所以这个时刻之比就是位移的平方根之比。
⑤做初速度为零的匀加速直线运动的物体,从静止开始通过连续相等的位移所需时间之比tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)。
这个由上面这个公式也是比较容易推导的。
⑥做初速度为零的匀加速直线运动的物体,从静止开始通过连续相等的位移时所对应的速度大小之比为1:√2:√3……:√n。
高中物理:初速度为零的匀变速直线运动的比例关系[探究导入]如图所示,一冰壶以速度v垂直进入两个矩形区域做匀减速运动,且刚要离开第二个矩形区域时速度恰好为零,若冰壶可看成质点,试推导冰壶依次进入每个矩形区域时的速度之比和穿过每个矩形区域所用的时间之比.提示:将冰壶的运动看成反向初速度为零的匀加速直线运动,设经过第二个矩形的时间为t1,经过两个矩形的时间为t2,由位移时间关系x=12at2可知,t1∶t2=1∶2,所以经过第二个矩形和经过第一个矩形的时间之比为1∶(2-1),故所求时间之比为(2-1)∶1,同理由v=at可得经过第二个矩形和经过第一个矩形的速度之比为1∶2,则所求的速度之比为2∶1.1.初速度为零的匀加速直线运动,按时间等分(设相等的时间间隔为T)(1)1T末、2T末、3T末、…、nT末的瞬时速度之比v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n(2)1T内、2T内、3T内、…、nT内的位移之比x1∶x2∶x3∶…∶x n=12∶22∶32∶…∶n2(3)第一个T内,第二个T内,第三个T内,…,第n个T内的位移之比xⅠ∶xⅡ∶xⅢ∶…∶x N=1∶3∶5∶…∶(2n-1)2.初速度为零的匀加速直线运动,按位移等分(设相等的位移为x)(1)发生位移x、2x、3x、…、nx所达到的速度之比v1∶v2∶v3∶…∶v n=1∶2∶3∶…∶n(2)发生位移x、2x、3x、…、nx所用时间之比t1∶t2∶t3∶…∶t n=1∶2∶3∶…∶n(3)通过连续相等的位移所用时间之比tⅠ∶tⅡ∶tⅢ∶…∶t N=1∶(2-1)∶(3-2)∶…∶(n-n-1)[典例2]一小球沿斜面由静止开始匀加速滚下(斜面足够长),已知小球在第 4 s末的速度为4 m/s.求:(1)第6 s末的速度;(2)前6 s内的位移;(3)第6 s内的位移.[思路点拨]解此题注意以下两点:(1)小球做初速度为零的匀加速直线运动.(2)注意区别前 6 s和第6 s的确切含义.[解析](1)由于第 4 s末与第 6 s末的速度之比v1∶v2=4∶6=2∶3故第6 s末的速度v2=32v1=6 m/s.(2)由v1=at1得a=v1t1=4 m/s4 s=1 m/s2.所以第 1 s内的位移x1=12a×(1 s)2=0.5 m第1 s内与前 6 s内的位移之比x1∶x6=12∶62故前6 s内小球的位移x6=36x1=18 m.(3)第1 s内与第 6 s内的位移之比xⅠ∶xⅥ=1∶(2×6-1)=1∶11故第6 s内的位移xⅥ=11xⅠ=5.5 m.[答案](1)6 m/s(2)18 m(3)5.5 m[方法技巧]有关匀变速直线运动推论的选取技巧(1)对于初速度为零,且运动过程可分为等时间段或等位移段的匀加速直线运动,可优先考虑应用初速度为零的匀变速直线运动的常用推论.(2)对于末速度为零的匀减速直线运动,可把它看成逆向的初速度为零的匀加速直线运动,然后用比例关系,可使问题简化.2.小物块以一定的初速度自光滑斜面的底端a点上滑,最远可达b点,e为ab的中点,如图所示,已知物体由a到b的总时间为t0,则它从a到e所用的时间为()A.2+12t0 B.22t0C.(2-1)t0 D.2-22t0解析:将小物块的运动看作从b由静止开始匀加速下滑,运动相同位移所需时间之比为1∶(2-1)∶(3-2)∶(2-3)∶…,所以t eb∶t ea=1∶(2-1),t ae=t ab2-1+1·(2-1),故t ae=2-22t0.答案:D。
初速度为零的匀加速直线运动的比例式推导哎呀呀,这题目可把我难住啦!我是个小学生,初速度为零的匀加速直线运动的比例式推导对我来说简直就像一座超级难爬的大山!
我们先来想想,匀加速直线运动,速度一直在增加,就好像跑步的时候后面一直有人使劲儿推你,越来越快。
假如有个小车,刚开始速度是零,然后加速度让它速度越来越快。
那速度和时间之间会有啥关系呢?
我们设加速度是a ,时间分别是t1 、t2 、t3 等等。
经过时间t1 ,速度v1 = a × t1 ;经过时间t2 ,速度v2 = a × t2。
那速度之比不就是v1 : v2 = a × t1 : a × t2 = t1 : t2 嘛!这难道不神奇吗?
再看看位移,位移s = 1/2 × a × t² 。
那经过时间t1 的位移s1 = 1/2 × a ×
t1² ,经过时间t2 的位移s2 = 1/2 × a × t2² 。
位移之比s1 : s2 不就等于t1² : t2² 吗?
这就好像我们比赛跑步,跑的时间长,速度快,跑的距离就远。
总之,初速度为零的匀加速直线运动的比例式推导虽然有点复杂,但仔细想想,还是能发现其中的规律的。
我的观点就是,只要我们认真思考,多琢磨琢磨,再难的知识也能被我们搞明白!。
初速度为0的匀加速直线运动比例关系
对于初速度为0的匀加速直线运动,物体运动的位移s、时间t、加速度a和速度v之间存在以下比例关系:
1. 速度和时间的关系:物体的瞬时速度v与其运动时间t的平方成正比,即\( v = at \),其中a是加速度。
2. 位移和时间的关系:物体的位移s与其运动时间t的平方成正比,即\( s = \frac{1}{2}at^2 \)。
3. 位移和速度的关系:物体的位移s与其最终速度v成正比,即\( s = \frac{v}{2a} \)。
4. 速度和加速度的关系:物体的瞬时速度v与其加速度a成正比,即\( v = at \)。
这些比例关系基于牛顿的运动定律,特别是第二定律(F=ma),以及匀加速直线运动的运动学方程。
在初速度为0的情况下,这些方程简化,因为初速度项为零。
第1页/ 共1页。
初速度为零的匀变速直线运动的推论理解推论一、初速度为零的匀变速直线运动的速度与所用时间成正比,即t 秒末、2t 秒末、3t 秒末……n t 秒末物体的位移之比:v 1 :v 2 :v 3 :… :v n =1 :2:3… :n推导:已知初速度00=v ,设加速度为a ,根据位移的公式v=v 0+at 在t 秒末、2t 秒末、3t 秒末……n t 秒末物体的位移分别为: v 1=at、v 2=a2t、v 3=a3t ……v n =antv 1 :v 2 :v 3 :…v n =1:2:3:……n推论二、初速度为零的匀变速直线运动的位移与所用时间的平方成正比,即t 秒内、2t 秒内、3t 秒内……n t 秒内物体的位移之比:1S :2S :3S :... :n S =1 :4 :9 (2)推导:已知初速度00=v ,设加速度为a ,根据位移的公式221at S =在t 秒内、2t 秒内、3t 秒内......n t 秒内物体的位移分别为: 2121at S =、22)2(21t a S =、23)3(21t a S = ......2)(21nt a S n = 则代入得 1S :2S :3S :... :n S =1 :4 :9 (2)推论三、初速度为零的匀变速直线运动,从开始运动算起,在连续相等的时间间隔内的位移之比:是从1开始的连续奇数比,即1S :2S :3S :… :n S =1 :3 :5…… :(2n-1)推导:连续相同的时间间隔是指运动开始后第1个t 、第2个t 、第3个t ……第n 个t ,设对应的位移分别为、、、321S S S ……n S ,则根据位移公式得第1个t 的位移为2121at S =第2个t 的位移为22222321)2(21at at t a S =-=第3个t 的位移为222325)2(21)3(21at t a t a S =-=……第n 个t 的位移为222212])1[(21)(21at n t n a nt a S n -=--= 代入可得: )12(:5:3:1::::321-=n S S S S n推论四、初速度为零的匀变速直线运动,从开始运动算起,物体经过连续相等的位移所用的时间之比为:1t :2t :3t …… :n t =1 :(12-) :(23-)…… :(1--n n ) 推导:通过连续相同的位移是指运动开始后,第一个位移S、第二个S、第三个S……第n 个S,设对应所有的时间分别为 321t t t 、、n t , 根据公式221at S = 第一段位移所用的时间为aS t 21= 第二段位移所用的时间为运动了两段位移的时间减去第一段位移所用的时间aS a S a S t 2)12(242-=-= 同理可得:运动通过第三段位移所用的时间为 aS a S a S t 2)23(463-=-= 以此类推得到aS n n a S n a nS t n 2)1()1(22--=--= 代入可得)1(:)23(:)12(:1::321----=n n t t t t n。
2023届高三物理一轮复习多维度导学与分层专练专题03 初速度为零的匀加速直线运动的比例关系和自由落体运动导练目标导练内容目标1初速度为零的匀加速直线运动的比例关系目标2自由落体运动一、初速度为零的匀加速直线运动的比例关系1.等分时间:(1)1T末、2T末、3T末、……瞬时速度的比为:v1∶v2∶v3∶…∶v n=1:2:3:……:n;(2)1T内、2T内、3T内……位移的比为:x1∶x2∶x3∶…∶x n=12:22:32:……:n2;(3)第一个T内、第二个T内、第三个T内……位移的比为:x∶∶x∶∶x∶∶…∶x n=1:3:5:……:(2n-1)。
注意:可以利用v-t图像,利用三角形面积比和相似比的关系加以推导2.等分位移:(1)通过1x末、2x末、3x末……的瞬时速度之比为:1:23:n;(2)通过1x、2x、3x……所用时间之比为:1:23:n;(3)通过第一个1x、第二个x、第三个x……所用时间之比为:1:21):32)::(1)n n ---。
注意:可以利用v -t 图像,利用三角形面积比和相似比的关系加以推导3. 速度可以减为零的匀减速直线运动,可以逆向利用初速度为零匀加速直线运动的比例关系。
【例1】在2021年全国跳水冠军赛10米台的比赛中,张家齐和陈芋汐顺利夺冠。
若将她们入水后向下的运动视为匀减速直线运动,该运动过程的时间为t 。
张家齐入水后第一个4t时间内的位移为x 1,最后一个4t时间内的位移为x 2,则12x x =( )A .3∶1B .4∶1C .7∶1D .8∶1【答案】C【详解】将运动员入水后的运动逆过来可看作初速度为零的匀加速直线运动,根据匀加速直线运动规律可知,连续相等的时间间隔内的位移之比为1∶3∶5∶7…,所以有1271x x =故选C 。
【例2】如图所示,音乐喷泉竖直向上喷出水流,喷出的水经3s 到达最高点,把最大高度分成三等份,水通过起始的第一等份用时为1t ,通过最后一等份用时为2t 。