声波的基本性质
- 格式:ppt
- 大小:499.50 KB
- 文档页数:21
第二章 声波的基本性质 §2.1 概述2.1.1 声波的物理量1、声压p 指由声扰动产生的逾量压强,即声波引起的介质压强起伏与介质 静压的差值。
0p P P P =∆=- 声压p 通常是空间和时间的函数。
(,)p p r t = 介质中的实际压强为0P P p =+ (2-1-1)2、介质的密度和温度与声压的概念相似,声扰动或声波同样可以引起介质密度和温度的起伏。
0=-δρρ 0T T =-τ (2-1-2)δ和τ同样是空间和时间的函数。
不过一般情况下,这种起伏通常较小(详见小振幅声波或线性声学基本假设),可以近似认为:0=ρρ ,0T T = 即忽略密度和温度的起伏,近似认为它们为常量。
3、声波中的质点振动位移s 和振动速度v 指产生或传播声波的质点(或微元体)在其平衡位置附近的振动位移和振动 速度。
通常它们是矢量(场)。
4、声速c指声波在介质中的传播速度,分为相速度和群速度。
关于它们以后再介绍。
5、声波的频率f 、角频率ω、波长λ、周期T 等是我们熟悉的物理量,此处不再赘述。
描述声波的物理量还有许多,以后还要陆续介绍。
2.1.2 声波分类关于声波有多种分类方法很多,常见的分类方法主要有:根据波阵面(或等相位面)的形状或波源的几何特征,可以将声波分为: 1、 球面波(点源);2、柱面波(直线源);3、平面波(平面源) 根据波的振动方向与波传播方向的几何关系,可以将声波分为: 1、纵波,振动方向与波传播方向平行; 2、横波,振动方向与波传播方向垂直; 根据介质的几何尺寸和形状,还可将其中的声波分类为体波和导波,前者指在无限大介质中传播的波,而后者则指在有限介质中传播的波。
另外根据介质的理想化程度和对其数学描述的近似程度,把声学划分为:线性声学 理想介质理想介质 线性声学非线性声学 实际介质 声学 或 声学线性声学 理想介质实际介质 非线性声学非线性声学 实际介质流体介质因具有不可压缩性,同时其粘滞系数较小,对剪切应力的传递能力有限,因此其中只能传播纵波。
声波的基本特性与声速声波是由物体振动产生的机械波,可以在气体、液体和固体中传播。
声波在我们日常生活中起着重要作用,它具有一些基本特性,并且传播速度也是一个重要参数。
一、声波的基本特性声波具有以下几个基本特性:1. 频率:声波振动的频率决定了声音的音调,单位为赫兹(Hz)。
频率越高,音调越高;频率越低,音调越低。
人类可以听到的频率范围约为20 Hz到20,000 Hz。
2. 波长:声波的波长表示声波一个完整振动的空间长度,通常用λ表示,单位为米(m)。
声波的波长与频率成反比关系,即频率越高,波长越短;频率越低,波长越长。
3. 振幅:声波振动的振幅表示了声音的强度或音量,通常用声压表示,单位为帕斯卡(Pa)。
振幅越大,声音越响亮;振幅越小,声音越轻柔。
4. 声速:声速是声波在介质中传播的速度,通常用v表示,单位为米每秒(m/s)。
声速与介质的性质有关,例如在空气中的声速约为343 m/s,而在水中的声速约为1500 m/s。
二、声速的影响因素声速的大小受以下几个因素的影响:1. 温度:声速与温度呈正相关关系,温度越高,声速越大。
这是因为在高温下,分子的热运动加剧,导致声波传播的速度增加。
2. 介质的类型:不同的介质具有不同的声速。
一般而言,固体的声速最高,液体次之,气体最低。
这是因为固体分子之间的相互作用力较大,导致声波传播速度较快。
3. 介质的密度和弹性系数:介质的密度越大,声速越小;弹性系数越大,声速越大。
这是因为密度和弹性系数反映了介质中分子的紧密程度和分子之间相互作用的强度。
4. 湿度:湿度对声速的影响较小,一般可以忽略。
但在特定情况下,比如高湿度和高温下的空气中,湿度的增加会略微降低声速。
三、应用与意义声波的基本特性和声速在许多领域都有广泛的应用与意义。
1. 声音传播:声波的传播使我们能够听到声音。
声波在空气中的传播使得我们能够进行语言交流,而声波在固体和液体中的传播也被用于水中通讯、超声波成像等领域。
声波的性质
声音是由物体振动所产生。
在振动介质(空气、液体或固体)中某一质点沿中间轴来回发生振动,并带动周围的质点也发生振动,逐渐向各方向扩展,这就是声波。
声波的传播不是介质分子的直接位移,而是能量以波动形式的扩展。
声波的能量随扩展的距离逐渐消耗,最后声音消失。
连续振动的音叉,使周围的空气分子形成疏密相间的连续波形。
在空气中传播的声波是纵波,在纵波中,介质分子的振动方向和波前进的方向平行。
根据物理学,声波是一种振动的机械波,它的基本参数是频率f (frequency)和振幅(amplitude)。
频率是某一质点以中间轴为中心,1秒内来回振动的次数(单位为赫兹Hz),而质点完成一次全振动经过的时间为一个周期 T,其单位为秒。
显然,f=1/T。
频率与人耳主观感觉声音的音调有关。
频率越高,音调也越高。
振幅是某一质点振动时距中间轴的位移。
对某一质点而言,振幅随时间周期性变化。
距中间轴的最大位移为最大振幅。
振幅与声音的强度有关。
声波传播时,介质中每个质点都是在自己的平衡位置做往返的简谐运动,所谓简谐运动就是质点的位移幅度与时间变化的关系呈正弦函数关系。
人耳能感觉到的声波频率范围在20~20000Hz ,称为音频波。
在这个频率范围以外的振动波,就其物理特性而言与声波相似,但在人类不引起声音感觉。
声速亦称音速,是声波通过介质传播的速度,它和介质的性质与状态(如温度)等因素有关。
在空气中声速为334.8m/s(22℃时),水中声速为1440m/s ,在钢铁中声速为5000m/s 。
大学声学知识点总结一、声波的基本特性1. 声波的定义和特点声波是由物体振动产生的机械波,可以在各种介质中传播。
声波的传播受介质的性质影响,可以是固体、液体或气体。
2. 声波的频率和波长声波的频率是指声波振动的次数,通常以赫兹(Hz)为单位。
声波的波长是声波在介质中传播一个完整波周期所需要的距离。
3. 声波的速度声波在不同介质中的传播速度不同,一般情况下在空气中的速度约为343米/秒。
声波的速度与介质的物理性质有关。
4. 声波的幅度和声压声波的幅度影响声音的大小,通常以分贝(dB)为单位来表示。
声波的声压是声波引起的气体压力变化,通常以帕斯卡(Pa)为单位。
二、声音的传播1. 声音的传播方式声音可以通过空气、水或固体传播,传播方式主要有远场传播和近场传播两种。
2. 声音的传播路径声音传播的路径包括直接传播、反射传播和绕射传播。
在不同环境中,声音的传播路径会发生改变。
3. 驻足波和行波声音传播时会形成驻足波和行波,行波是指声波的传播波动过程,而驻足波是指声波在固定位置上形成的波动。
三、声学原理1. 声源和声响声音产生的物体称为声源,声音在空间中的传播形成声响。
声源和声响的关系影响了声音的传播和接收。
2. 声音的特性声音具有频率、强度、音色和音高等特性,这些特性影响了声音的识别和分析。
3. 振动和声波声音是由物体的振动产生的声波,振动和声波的频率和幅度对声音的质量和响度有影响。
四、声音的接收和分析1. 声音接收器件常见的声音接收器件包括麦克风、声纳和耳朵等,它们可以将声音转换成电信号或神经信号。
2. 声学信号处理声学信号处理是将声音信号进行采集、分析和处理的过程,包括信号的滤波、压缩、识别和定位等操作。
3. 声学信息识别声音的频率、强度和音色等特性可以帮助人们识别声音的来源和含义,如语音识别和环境声音识别等。
五、声学应用1. 声学测量和监测声学可以用于测量和监测环境中的声音和振动,包括噪声、震动和声场等参数的检测。
第二章声波的基本性质及其传播规律在日常生活中存在各种各样的声音。
例如,人们的交谈声、汽车喇叭声、机器运转声、演奏乐器的乐声等等。
在所有各种声音中,凡是有人感到不需要的声音,对这些人来说,就是噪声。
简单地讲,噪声就是指不需要的声音。
为了对噪声进行测量、分析、研究和控制,需要了解声音的基本特性。
本章介绍声波的基本性质及其传播规律。
2. 1 声波的产生及描述方法2. 1. 1 声波的产生各种各样的声音都起始于物体的振动。
凡能产生声音的振动物体统称为声源。
从物体的形态来分,声源可分成固体声源、液体声源和气体声源等。
例如,锣鼓的敲击声、大海的波涛声和汽车的排气声都是常见的声源。
如果你用手指轻轻触及被敲击的鼓面,就能感觉到鼓膜的振动。
所谓声源的振动就是物体(或质点)在其平衡位置附近进行往复运动。
当声源振动时,就会引起声源周围空气分子的振动。
这些振动的分子又会使其周围的空气分子产生振动。
这样,声源产生的振动就以声波的形式向外传播。
声波不仅可以在空气中传播,也可以在液体和固体中传播。
但是,声波不能在真空中传播。
因为在真空中不存在能够产生振动的媒质。
根据传播媒质的不同,可以将声分成空气声、水声和固体(结构)声等类型。
在噪声控制工程中主要涉及空气媒质中的空气声。
在空气中,声波是一种纵波,这时媒质质点的振动方向是与声波的传播方向相一致。
与之对应,将质点振动方向与声波传播方向相互垂直的波称为横波。
在固体和液体中既可能存在纵波,也可能存在横波。
需要注意,声波是通过相邻质点间的动量传递来传播能量的。
而不是由物质的迁移来传播能量的。
例如,若向水池中投掷小石块,就会引起水面的起伏变化,一圈一圈地向外传播,但是水质点(或水中的飘浮物)只是在原位置处上下运动,并不向外移动。
2. 1. 2 描述声波的基本物理量当声源振动时,其邻近的空气分子受到交替的压缩和扩张,形成疏密相间的状态,空气分子时疏时密,依次向外传播(图2-1)。
图2-1 空气中的声波当某一部分空气变密时,这部分空气的压强P变得比平衡状态下的大气压强(静态压强)P0大;当某一部分的空气变疏时,这部分空气的压强P变得比静态大气压强P o小。
声学基础第三版
声学基础是一门研究声波传播规律和声音特性的学科,本书为声
学基础第三版,是一本广受欢迎的声学学科教材。
本文将结合本书的
主要内容,分为以下几个部分进行讲解。
一、声波的基本性质
声波是一种横波,传播速度与介质密度及其刚度有关,可分为纵
波和横波。
本书着重讲述了声波的基本性质,如声速和声阻抗,同时
也对声波的衍射和干涉等现象做了详细的介绍。
二、声场的分析和计算
声场是指某一声源在其周围空间内造成的声压、声强变化情况。
本书讲解了声场的分析和计算方法,包括偏微分方程、辐射问题、线
性近似和波导问题等内容,为读者提供了深入了解声场的基础。
三、声学信号处理
声学信号处理是指对声音信号进行采集、处理和分析的方法和技术。
本书介绍了声音信号的性质和特点,以及用于信号分析和处理的
数字信号处理技术。
四、声学测量和计量
声学测量和计量是利用仪器和技术手段对声音进行测量和分析,
以获得声音传播和声波性质的相关数据和信息。
本书讲解了声学测量
和计量的方法和技术,包括声压级、声强级和声功率级等数值指标的
计量方法和常用仪器的使用。
总结
声学基础第三版是一本详尽、全面的声学教材,主要内容包括声
波的基本性质、声场的分析和计算、声学信号处理以及声学测量和计量。
通过本书的学习,读者不仅可以深入了解声学的基本理论和性质,还能够掌握相关技术和方法,为声学相关领域的学习和工作提供有力
支持。
声波性质与波导的研究——在声波跨界之路上声波,是一种机械波,传播的介质为固体、液体和气体,是我们日常生活中不可或缺的一部分。
随着科技进步,人们不断深入地研究声波的性质和应用,其中的一个核心领域就是在波导中进行声波的传输和控制。
本文将介绍一些声波的基本性质以及相关的波导研究。
一、声波的基本性质1.速度和相速度声波的传播速度取决于介质类型、密度和温度等因素。
在空气中,声波速度约为340米/秒。
相速度是指波峰或波谷在空间中移动的速度,当声波在传播过程中遇到不同介质时,会发生声速改变,此时声波的相速度保持不变。
2.反射和折射当声波从一个介质传播到另一个介质时,会发生反射和折射现象。
反射是指声波遇到介质边界时,一部分能量被反射回来,而折射则指声波在经过媒介边界时,其传播方向发生偏转的现象。
3.干涉和衍射干涉是指两个或多个声波在遇到经过干涉的区域时相遇并叠加产生的现象。
衍射是指声波在遇到障碍物或孔径时发生弯曲和扩散的现象。
二、基本波导波导是指一种用于声波传输的结构,它由刚性、有限阻抗的壁面限制,声波在波导中的传播与绕过固定障碍物的运动很相似,经过优化设计方能获得更好的声传播效果,除此之外,波导还可以用于声源和接收器之间的测量,从而得到更为精确的实验结果。
1.开放式波导开放式波导是指开口环境(如液面或气体)作为波导的一部分,是较为简单和直观的一种波导形式。
在采用开放式波导进行实验时,需要解决相应的环境噪声消除问题。
2.封闭式波导封闭式波导是通过封闭某种介质内部来限制声波传播,具体实现方法包括箍板(反射壁)、介质管和管壳结构等。
在进行封闭式波导实验时,需要保证内部强度及效率而进行一系列的设计优化。
三、特殊波导的研究为了更好地降低噪声干扰并提高传输效率,研究人员不断探索新型波导的设计和改进,这其中涉及到了许多有趣的研究。
以下简单介绍其中一些特殊的波导设计:1.超材料波导超材料波导具有负折射率特性,通过改变材料和几何形状,实现声波的负折射,即折射角小于入射角。