贝叶斯网络简介.共36页
- 格式:ppt
- 大小:3.31 MB
- 文档页数:36
贝叶斯网络(Ⅰ)本章正式介绍不确定推理的贝叶斯网络,也叫概率网络或者信度网络。
在很多应用领域中贝叶斯网络都是一个强大的工具。
1 贝叶斯网络的定义1.1贝叶斯网络的定义贝叶斯网络是由网络节点和连接网络节点的带方向的边构成的有向无环图,或者说是一种数据结构。
网络中的每个节点都表示一个变量,并且每个变量对应一个条件概率表,整个贝叶斯网络和其中的变量的条件概率表将变量的联合概率分布进行分解表示。
所以贝叶斯网络用于表示变量之间的依赖关系,并为联合概率分布提供了一种简明的规范。
其详细描述如下:1)其所有网络节点构成一个随机变量集。
变量可以是离散的或连续的。
2)其连接网络节点的是有向边或箭头。
如果存在从节点X指向Y的有向边,则称X是Y 的一个父节点。
3)其每个节点V i都有一个条件概率分布P(V i|Parents(V i)),量化其父节点对该节点的影响,就是给出在父节点的条件下当前节点各种状态的出现概率。
4)图中不存在有向环,因此是一个有向无环图,简写为DAG;1.2贝叶斯网络的一些例子例1 汽车诊断的部分贝叶斯网络图1:对汽车不能启动进行诊断的贝叶斯网络(先验概率)当任何变量的状态已知时,可将其作为证据输入,并对网络概率进行更新图2:输入证据汽车启动=false(100%)的贝叶斯网络进行概率更新(后验概率)图2在已知汽车不能正常工作的情况下,可以看出导致该结果的最大可能原因是火花塞(spark plugs=ok(45%), battery voltage=strong(80%))。
图3输入证据汽车启动=false(100%) 前灯=off(100%)的网络概率更新(后验概率) 图3是在输入证据汽车启动=false (100%)的基础上一个好的诊断系统可能推荐测试车前灯,如果车前灯不能正常工作,前灯=off (100%)也作为证据输入,并对网络进行更新,battery voltage=none(53%),火花塞电压=ok=62.6,可以推断是电池电压不正常。
2.贝叶斯网络贝叶斯网络(Bayesian network),又称信念网络(Belief Network),或有向无环图模型(directed acyclic graphical model),是一种概率图模型,于1985年由Judea Pearl 首先提出。
它是一种模拟人类推理过程中因果关系的不确定性处理模型,其网络拓朴结构是一个有向无环图(DAG)。
贝叶斯网络的有向无环图中的节点{}12,,,n X X X 表示随机变量,它们可以是可观察到的变量,或隐变量、未知参数等。
认为有因果关系(或非条件独立)的变量或命题则用箭头来连接。
若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(children)”,两节点就会产生一个条件概率值。
连接两个节点的箭头代表此两个随机变量是具有因果关系,或非条件独立。
例如,假设节点E 直接影响到节点H ,即E→H ,则用从E 指向H 的箭头建立结点E 到结点H 的有向弧(E,H),权值(即连接强度)用条件概率P(H|E)来表示,如下图所示:简言之,把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,就形成了贝叶斯网络。
其主要用来描述随机变量之间的条件依赖,用圈表示随机变量(random variables),用箭头表示条件依赖(conditional dependencies)。
令G = (I,E)表示一个有向无环图(DAG),其中I 代表图形中所有的节点的集合,而E 代表有向连接线段的集合,且令X = (X i ),i ∈ I 为其有向无环图中的某一节点i 所代表的随机变量,若节点X 的联合概率可以表示成:()()()i pa i i Ip x p x x ∈=∏则称X 为相对于一有向无环图G 的贝叶斯网络,其中,()pa i 表示节点i 之“因”,或称()pa i 是i 的parents (父母)。
此外,对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出:()()()()111211,,,,K K K p x x p x x x p x x p x -=下图所示,便是一个简单的贝叶斯网络:因为a 导致b ,a 和b 导致c ,所以有:()()()(),,,p a b c p c a b p b a p a =2.1贝叶斯网络的3种结构形式:给定如下图所示的一个贝叶斯网络:(1) x 1, x 2 , …,x 7的联合分布为:()()()()()()()()1234567123412351364745,,,,,,,,,,p x x x x x x x p x p x p x p x x x x p x x x p x x p x x x =(2)x 1和x 2独立(对应head-to-head );(3)x 6和x 7在x 4给定的条件下独立(对应tail-to-tail )根据上图,第(1)点可能很容易理解,但第(2)、(3)点中所述的条件独立是啥意思呢?其实第(2)、(3)点是贝叶斯网络中3种结构形式中的其中二种。
贝氏网络维基百科,自由的百科全书(重定向自贝叶斯网络)贝氏网络(Bayesian network),又称信任网络(belief network)或是有向非循环图形模型(directed acyclic graphical model),是一种机率图型模型,借由有向非循环图形(directed acyclic graphs, or DAGs )中得知一组随机变量{}及其n组条件机率分配(conditional probability distributions, or CPDs)的性质。
举例而言,贝氏网络可用来表示疾病和其相关症状间的机率关系;倘若已知某种症状下,贝氏网络就可用来计算各种可能罹患疾病之发生机率。
一般而言,贝氏网络的有向非循环图形中的节点表示随机变量,它们可以是可观察到的变量,抑或是潜在变量、未知参数等。
连接两个节点的箭头代表此两个随机变量是具有因果关系或是非条件独立的;而节点中变量间若没有箭头相互连接一起的情况就称其随机变量彼此间为条件独立。
若两个节点间以一个单箭头连接在一起,表示其中一个节点是“因(parents)”,另一个是“果(descendants or children)”,两节点就会产生一个条件机率值。
比方说,我们以表示第i个节点,而的“因”以表示,的“果”以表示;图一就是一种典型的贝氏网络结构图,依照先前的定义,我们就可以轻易的从图一可以得知:,以及大部分的情况下,贝氏网络适用在节点的性质是属于离散型的情况下,且依照此条件机率写出条件机率表(conditional probability table, or CPT),此条件机率表的每一列(row)列出所有可能发生的,每一行(column)列出所有可能发生的,且任一行的机率总和必为1。
写出条件机率表后就很容易将事情给条理化,且轻易地得知此贝氏网络结构图中各节点间之因果关系;但是条件机率表也有其缺点:若是节点是由很多的“因”所造成的“果”,如此条件机率表就会变得在计算上既复杂又使用不便。