平行四边形复习导学案
- 格式:doc
- 大小:422.00 KB
- 文档页数:8
人教版数学四年级上册平行四边形的认识导学案(精选3篇)〖人教版数学四年级上册平行四边形的认识导学案第【1】篇〗教学目标:1、知识与技能目标:使学生掌握平行四边形的意义及特征,了解它的特性。
2、过程与方法目标:通过观察、动手,培养学生抽象概括能力和初步的空间观念。
3、情感态度与价值观:培养学生观察和认识周围图形的兴趣和认识。
教学重点与难点:重点:平行四边形的意义。
难点:抽象概括平行四边形的意义。
教学准备:用木条订成的三角形、平行四边形框架,小棒、钉子板、方格纸等。
教学过程:(一)、老师出示一个长方形框架、1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?(这个图形不是长方形了,因为它的四个角不是直角)今天,我们又认识了一个图形——平行四边形,我们把这样的图形叫做平行四边形、在黑板右上角贴出一个平行四边形、2、问:同学们平时见过平行四边形吗?请举例来说、(有一种防盗网上的图形、篱笆上的图形,有的编织图案)3、动手操作,感受平行四边形的特征分组操作探究师:第一组:量一量平行四边形各边的长度。
第二组:用小棒搭平行四边形。
学生的操作,教师巡视,并参与学生活动。
4、各组汇报探究结果,互相评价。
5、画平行四边形师:请你在方格纸上画一个你最喜欢的平行四边形。
6、。
平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)巩固练习完成课本练习三十九第2题,指生订正并说出理由。
1、判断题:(1)长方形、正方形和平行四边形都是四边形。
()(2)四个角都是直角的'四边形一定是正方形。
()(3)一个四边形,它的四条边相等,这个四边形一定是正方形。
()(4)对边相等的四边形都是长方形。
()(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形。
()全课总结通过今天的学习你有什么收获?谈一谈。
温水镇中学“高效课堂”八年级数学(下)导学案主备人:_____ 审核人:_____ 班级:______ ; 姓名:________ 课型:新授课重点、难点:重点:平行四边形的判定方法及应用.难点:平行四边形的判定定理与性质定理的灵活应用.学法指导:知识链接:1、三角形全等的证明。
2、平行四边形的性质。
【学习流程】一、课前预习:1独立看书127~129页2、 独立完成下列预习作业:(1)、回顾:什么叫平行四边形,它有哪些性质?(2)、思考:如何判别一个四边形是否是平行四边形呢?二、互动探究:活动1:将两长两短的四根细木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边.转动这个四边形,使它形状改变,在图形变化的过程中,它一直是一个平行四边形吗? 你能说出你的理由吗?(如图1)尝试证明: 图1活动2、将两根细木条AC 、BD 的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD . 转动两根木条,四边形ABCD 一直是一个平行四边形吗?你能说出你的理由吗?(如图2) 动手操作 观察分析 猜想证明 总结归纳 迁移应用尝试证明:图2三、合作交流:通过上面的两个问题的探究,你得出除了平行四边形的定义之外,还可怎样来判定一个四边形是平行四边形?归纳总结:平行四边形判定方法:方法1 :两组对边___________的四边形是平行四边形。
如图:∵_________ ∴四边形ABCD是平行四边形方法2 :对角线_________的四边形是平行四边形。
如图:∵_________ ∴四边形ABCD是平行四边四、实践应用:1、已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.2、已知:如图,A′B′∥BA,B′C′∥CB, C′A′∥AC.求证:(1) ∠ABC=∠B′,∠CAB=∠A′,∠BCA=∠C′(2) △ABC的顶点分别是△B′C′A′各边的中点.五、课堂小结:平行四边形判定方法:(1)____________________________;(2) ___________________________;(3)____________________________。
《四边形复习》导学案一、教学目标1.利用基本图形结构使本章内容系统化.2.对比掌握各种特殊四边形的概念,性质和判定方法.3.运用知识解决简单数学问题。
二、导入与自主预习1、(在箭头上填上合适的数字序号)(1)两组对边分别平行(2)有一个角为直角(3)一组对边平行(4)另一组对边不平行(5)一组邻边相等(6)一组对边相等三、知识探究与合作学习例3例2. ①如图,矩形ABCD的对角线AC、BD交于点O,过点D作 DP∥OC,且 DP=OC,连结CP,试说明:四边形CODP是的形状。
A BD COP四、总结归纳本节课你复习了什么?你能说出平行四边形及矩形、菱形、正方形的性质和判定吗?五、当堂演练 2、选择题3、填空题(1)如图,矩形ABCD 沿AE 折叠,使D 点落在 BC 边上的F 点处,如果∠BAF=60°,则∠DAE= 。
(2)矩形的面积为12cm 2,一条边长为3cm ,则对角线长为 。
4、(选做)以△ABC 的边AB 、AC 为边的等边三角形ABD 和等边三角形ACE ,四边形ADFE 是平行四边形。
(1)当∠BAC 满足 时,四边形ADFE 是矩形;(2)当∠BAC 满足 时,平行四边形ADFE 不存在(3)当△ABC分别满足什么条件时,平行四边形是菱形、正方形。
1、判断题:1)两条对角线相等且互相垂直的四边形是矩形. ( ) 2)两条对角线互相垂直平分的四边形是菱形. ( ) 3)两条对角线互相垂直的矩形是正方形. ( ) 4)两条对角线相等的菱形是正方形. ( ) 5)两条对角线垂直且相等的平行四边形是正方形.( ) 6)两条对角线垂直且相等的四边形是正方形. ( ) ②正方形具有而矩形不一定具有的特征是 ( ) A.对角线互相平分 B.对角线相等 ①下列图形中既是轴对称图形,又是中心对称图形的是( ) A.等边三角形 B.平行四边形 C.菱形 D.等腰梯形 ③下列条件中,能判定四边形ABCD 是平行四边形的是( ) A.AB ∥CD ,AB=BC B.AB=CD ,AD=BC ④梯形ABCD 中,ADBC ,对角线AC 与BD 交于O ,则其中面积相等的三角形有 ( ) OD C B A B CA E F D。
人教版初中数学八年级下册18.1.3 平行四边形的判定(1) 导学案一、学习目标:1.经历平行四边形判定定理的猜想与证明过程,体会类比思想及探究图形判定的一般思路;2.掌握平行四边形的三个判定定理,能根据不同条件灵活选取适当的判定定理进行推理论证.重点:掌握平行四边形的判定定理.难点:综合运用平行四边形的性质与判定解决问题.二、学习过程:课前自测平行四边形的性质:边:_____________________________;∵ _______________________________∴ _______________________________角:_____________________________;∵ _______________________________∴ _______________________________对角线:_____________________________;∵ _______________________________∴ _______________________________自主学习思考:反过来,对边相等,或对角相等,或对角线互相平分的四边形是平行四边形吗?也就是说,平行四边形的性质定理的逆命题成立吗?逆命题1:____________________________________________.逆命题2:____________________________________________.逆命题3:____________________________________________.逆命题1:(证明过程)如图,在四边形ABCD中,AB=CD,AD=CB.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理1:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题2:(证明过程)如图,在四边形ABCD中,∠A=∠C,∠B=∠D.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理2:_________________________________________. 几何符号语言:∵ _______________________,∴ _________________________.逆命题3:(证明过程)如图,在四边形ABCD中,OA=OC,OB=OD.求证:四边形ABCD是平行四边形.【归纳】平行四边形判定定理3:_________________________________________.几何符号语言:∵ _______________________,∴ _________________________.典例解析例1.如图,以△ABC的各边向同侧作正三角形,即等边△ABD、等边△ACE、等边△BCF,连接DF,EF.求证:四边形AEFD是平行四边形.【针对练习】如图,将□ABCD的四边DA,AB,BC,CD分别延长至点E,F,G,H,使得AE=CG,BF=DH,连接EF,FG,GH,HE.求证:四边形EFGH为平行四边形.例2.如图,四边形ABCD中,AB∥DC,∠B=55°,∠1=85°,∠2=40°.(1)求∠D的度数;(2)求证:四边形ABCD是平行四边形.【针对练习】如图,在□ABCD中,∠DAB=60°,点E,F分别在CD,AB的延长线上,且AE=AD,CF=CB.求证:四边形AFCE是平行四边形.例3.如图,□ABCD的对角线AC、BD相交于点O,E、F是AC上的两点,并且AE=CF.求证:四边形BFDE是平行四边形.【针对练习】变式1:若E、F继续移动至OA、OC的延长线上,仍使AE=CF,则结论还成立吗?为什么?变式2:问题中AE=CF,过点O作一直线分别交AB、CD于G、H,则四边形GFHE 是平行四边形吗?为什么?达标检测1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD是平行四边形的是( )A.1:2:3:4B.2:3:2:3C.2:3:3:2D.1:2:2:32.如图,在四边形ABCD中,AB=CD,BC=AD.若∠D=120°,则∠C的度数为( )A.60°B.70°C.80°D.90°3.如图,在□ABCD中,对角线AC、BD交于点O,E、F是对角线AC上的两点,给出下列四个条件:①AE=CF;②DE=BF;③∠ADE= ∠CBF;④∠ABE= ∠CDF.其中不能判定四边形DEBF是平行四边形的有( )A.0个B.1个C.2个D.3个4.四边形ABCD中,AB=9cm,BC=6cm,CD=9cm,当AD=____cm时,四边形ABCD 是平行四边形.5.如图,在□ABCD中,点E,F分别在边AD,BC上,且BE//DF,若AE=5,则CF=_____.6.如图,线段AB,CD相交于点O,且图上各点把线段AB,CD四等分,这些点可以构成平行四边形的个数是_____.7.如图,在□ABCD的各边AB、BC、CD、DA上,分别取点K、L、M、N,使AK=CM、BL=DN,求证:四边形KLMN为平行四边形.8.如图,在□ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.9.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.10.如图,AC是平行四边形ABCD的一条对角线,BM⊥AC于M,DN⊥AC于N,四边形BMDN是平行四边形吗?说说你的理由.。
平行四边形及特殊的平行四边形复习导学案一、平行四边形:(一)知识点总结:1.平行四边形的定义:两组对边分别 的四边形叫做平行四边形。
2.平行四边形的性质(1)边:(2)角: (3)对角线: (4)对称性: 3.平行四边形的判定: 从边考虑:(1)(2) (3) 从角考虑:(4)两组对角 的四边形是平行四边形。
从对角线考虑:(5)对角线 的四边形是平行四边形。
(二)典型例题:如图,E F ,是四边形A B C D 的对角线A C 上两点,AF C E D F BE D F BE ==,,∥. 求证:(1)A F D C E B △≌△. (2)四边形A B C D 是平行四边形.(三)练一练:1、□ABCD 中, AB :BC=1:2,周长为24cm, 则AB=_____cm, AD=_____cm2、平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 。
3、如图(1),在□A B C D 中,C E AB ⊥,E 为垂足.如果125A = ∠,则B C E =∠( )A.55B.35 C.25 D.30二、矩形:(一)知识点总结:1.定义: 的平行四边形是矩形.2.性质:ABDEFCA EBCD图(1)①矩形的 角都是直角 ②矩形的对角线 . 3.判定:①有 角是直角的平行四边形是矩形. ②有 角是直角的四边形是矩形. ③对角线 的平行四边形是矩形. (二) 典型例题:如图所示,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(三)练一练:1、矩形具有而平行四边形不具有的性质是( ) A.对边相等 B.对角相等 C.对角互补 D.对角线平分2、矩形ABCD 对角线AC 、BD 交于点O ,AB=5,12,cm BC cm 则△ABO 的周长为 cm.3、 如图所示,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( ) A.34B.33C.24D.8三、菱形:(一)知识点总结:1、定义:一组邻边 的平行四边形是菱形.2、性质:①菱形的 都相等.②菱形的对角线 3、判定:①一组邻边 的平行四边形是菱形. ② 都相等的四边形是菱形③对角线 平行四边形是菱形.4、面积公式: (二)典型例题:.如图.矩形ABCD 的对角线相交于点0.DE ∥AC , CE ∥BD .求证:四边形OCED 是菱形;A BC DEF 第3题图(三)练一练:1、下列条件中,能判断四边形是菱形的是( ) A 、两条对角线相等。
《平行四边形》复习教案仁德一中妥连军一学习目标:1.知识目标:通过运用平行四边形、矩形、菱形、正方形的性质和判定解决问题,加深对平行四边形、矩形、菱形、正方形的性质和判定的理解.2.能力目标:(1)通过平行四边形、矩形、菱形、正方形性质和判定的归纳梳理,建立良好的思维体系.(2)通过探究平行四边形有关问题,建立模型,提高探究能力.3.情感目标:在学习过程中积累经验,体验成功,激发兴趣,发展创新精神和实践能力.二教学重点:平行四边形、矩形、菱形、正方形的性质和判定的灵活运用.三教学难点:综合运用平行四边形、矩形、菱形、正方形的性质和判定解决问题.四知识链接:平行四边形、矩形、菱形、正方形的性质和判定,三角形中位线定理.五课时安排:1课时六教学过程设计:昆明中考考情分析:1、考频及权重分析平行四边形在昆明市近五年的中考中,共考了9次。
其中市统测(2015,2016,2018)三年出现5次,省统测(2017,2019)两年出现4次。
分值在11-14分之间,所占比重为10%左右。
2、题型分析在填空题和选择题中主要考查平行四边形及特殊平行四边形的性质以及利用性质求长度、角度、三角函数值等计算;简答题中主要考查判定与计算,也常以平行四边形、特殊平行四边形为载体,考查全等、线段位置关系及圆的计算等。
在压轴题中以会出现平行四边形哦,主要考查平行四边形的存在性、探究性等问题。
【任务一】知识梳理(一)思维导图回顾平行四边的性质判定:(二)平行四边形及特殊平行四边形的性质(三)平行四边形及特殊平行四边形的判定【任务二】条件探索如图,在△ABC中,D、E、F分别是BC、AB、AC的中点,(1)猜想四边形AEDF是什么四边形,并证明你的结论.(2)当△ABC的边和角满足什么条件时,四边形AEDF是矩形?(3)当△ABC的边和角满足什么条件时,四边形AEDF是菱形?(4)当△ABC的边和角满足什么条件时,四边形AEDF是正方形?教学策略:学生看、说、展示思维,构建模型,教师展示规范答题格式。
人教版数学五年级上册平行四边形的面积导学案(优选3篇)〖人教版数学五年级上册平行四边形的面积导学案第【1】篇〗教学目标:1、使学生在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积2、通过操作、观察、比较,发展学生的空间观念,培养学生运用转化的思考方法解决问题的能力和逻辑思维能力.3、对学生进行辩诈唯物主义观点的启蒙教育.教学重点:理解公式并正确计算平行四边形的面积.教学难点:理解平行四边形面积公式的推导过程.学具准备:每个学生准备一个平行四边形。
教学过程:一、导入新课。
1、请同学翻书到86页,仔细观察,找一找图中有哪些学过的`图形?2、好,下面谁来说一说你找到了哪些学过的图形?3、请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习平行四边形面积计算。
二、民主导学(一)、数方格法用展示台出示方格图1、这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)2、这是什么图形?(平行四边形)每一个方格表示1平方厘米,自己数一数是多少平方厘米?请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。
然后指名说出数得的结果,并说一说是怎样数的。
3、请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法1、这是一个平行四边形,请同学们把自己准备的平行四边形沿着所作的高剪下来,自己拼一下,看可以拼成我们以前学过的什么图形?2、然后指名到前边演示。
小学四年级数学导学案
班级:姓名:上课教师:备课日期:11月11日课题 :整理和复习
学习目标1、整理和回顾本单元的知识要点,运用本单元的知识解决实际问题。
2、在学习活动中,培养良好的学习习惯,体会知识间的密切联系,增强解
决问题的能力。
学习重点整理和回顾本单元的知识要点。
学习难点总结和归纳四边形的内角和是360°。
教学程序、内容及预见性问题
课前热身
①平行四边形具有()性,易()。
②以平行四边形的一条边为底,能作()条高。
③在同一平面内,()的两条直线叫平行线。
平行线之间的距离(
)。
④两条直线相交成直角,就说这两条直线互相(),这两条直线的交点叫做
()。
学习提升
1、小组交流本单元的知识要点,谈一谈你的学习收获。
2、回顾整理:
平行线和垂线
两条直线()———平行画图:
在同一平面里
两条直线()——垂直画图:
两组对边分别()——平行四边形画图:
四边形
()一组对边平行————梯形画图:
点到直线的()最短,。
A EDBFC20.1 平行四边形的判定学案(1)学习目标:掌握用“平行四边形的定义”判定一个四边形是平行四边形;理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习重点:理解并掌握用“两组对边分别相等的四边形是平行四边形”判定一个四边形是平行四边形. 学习过程:一、回顾旧知,自主学习:1、什么叫平行四边形?平行四边形有哪些性质?并将其性质分别用命题形式叙述出来. ①如果一个四边形是平行四边形,那么它的 两组对边分别平行;(边) ②如果一个四边形是平行四边形,那么它的 ;(边) ③如果一个四边形是平行四边形,那么它的 ;(边) ④如果一个四边形是平行四边形,那么它的 ;(角) ⑤如果一个四边形是平行四边形,那么它的 . (对角线) 以上命题的逆命题分别是什么?并判断命题①②的逆命题是否是真命题?如果是,有何作用?2、①平行四边形的判定方法一(定义法):两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. ②平行四边形的判定方法二:两组对边分别 的四边形是平行四边形.用几何语言表达为:∵ , , ∴四边形ABCD 是平行四边形. 二、边学边导,基础过关:1、如图,,,AB D C EF AD BC D E C F ====,图中哪些线段互相平行?A B D CABDC2、如图,已知□ABCD 中DE ⊥AC ,BF ⊥AC . 求证:四边形DEBF 为平行四边形.三、精讲点拨,巩固提升:如图,E 、F 分别为□ABCD 两边AD 、BC 的中点,连结BE 、DF . 求证:21∠=∠.四、达标检测,当堂过关:1、一组对边平行,另一组对边相等的四边形是平行四边形吗?2、如图,在□ABCD 中,AE 、CF 分别是DAB ∠、BC D ∠的平分线. 求证:四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,四边形ABCD 中,△ADE ≌△CBF ,点E 、F 分别为AB 、CD 的中点,BD 是对角线,AG //DB 交CB 的延长线于点G . ①求证:四边形ABCD 是平行四边形;②若四边形BFDE 是菱形,求证:四边形AGBD 是矩形; ③在②中应增加什么条件,才能判定矩形AGBD 是正方形.六、作业:教材P 107习题20.1:2E FABDC12DABCFE EFDACB20.1 平行四边形的判定学案(2)学习目标:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习重点:掌握“一组对边平行且相等的四边形是平行四边形”这一判定定理进行有关的论证和计算. 学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.2、若一个四边形有一组对边平行且相等,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法三:一组对边 的四边形是平行四边形.用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,已知AD ∥BC ,要使四边形ABCD 为平行四边形,需添加一个条件为 . 2、如图,在□ABCD 中,E 、F 分别为对边BC 、AD 上的点,连结AE 、CF ,且DF =BE ,求证:四边形AECF 为平行四边形.三、精讲点拨,巩固提升:1、以不在同一直线上的三个点为顶点作平行四边形最多能作 个. 并将它们画出来.A BDCAB DCA ·B ·C ·A ·B ·C ·A ·B ·C ·2、如图,已知DC ∥AB ,且DC =12AB ,E 为AB 的中点.①求证:△AED ≌△EBC .②观察图形,在不添加辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相 等的三角形(直接写出结果,不要求证明): .四、达标检测,当堂过关:1、不能判断四边形ABCD 是平行四边形的是( )A 、AB =CD ,AD =BC B 、AB =CD ,AB ∥CDC 、AB =CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC2、如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,DF =BE ,DF ∥BE . 求证:四边形ABCD 是平行四边形.五、拓展延伸,智力闯关:已知点D 、E 、F 分别在△ABC 的边BC 、AB 、AC 上,且DE ∥AF , G 在FD 的延长线上,DG =DF . 求证:AG 与ED 互相平分.六、作业:教材P 107习题20.1:3;A GFEDCB20.1 平行四边形的判定学案(3)学习目标:理解并掌握用“对角线互相平分的四边形是平行四边形”判定一个四边形是平行四边形;理解并掌握用“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形,会用这些定理进行有关的论证和计算.学习重点:掌握“对角线互相平分的四边形是平行四边形”和“两组对角分别相等的四边形是平行四边形”判定一个四边形是平行四边形.学习过程:一、回顾旧知,自主学习:1、我们已学过哪些方法来判定一个四边形是平行四边形?平行四边形的判定方法一: 的四边形是平行四边形. 平行四边形的判定方法二: 的四边形是平行四边形.平行四边形的判定方法三: 的四边形是平行四边形. 2、若一个四边形的对角线互相平分,能否判定这个四边形也是平行四边形呢? 已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法四:对角线 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.3、若一个四边形的两组对角分别相等,能否判定这个四边形也是平行四边形呢?已知:如图, . 求证:四边形ABCD 是平行四边形. 证明:结论:平行四边形的判定方法五:两组对角 的四边形是平行四边形. 用几何语言表达为:∵ , ∴四边形ABCD 是平行四边形.二、边学边导,基础过关:1、如图,AO =OC ,BD =16cm ,则当OB = cm 时,四边形ABCD 是平行四边形.ABDCABDCOABDCO2、如图,在□ABCD 中,点E 、F 是对角线BD 上的两点,且BE =DF ,求证:四边形AECF 是平行四边形.三、精讲点拨,巩固提升:1、如图,在□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 是对角线AC 上的两点,当E 、 F 满足下列哪个条件时,四边形DEBF 不一定是平行四边形( ) A 、AE =CF B 、DE =BF C 、∠ADE =∠CBF D 、∠AED =∠CFB2、如图,在□ABCD 中,MN // AC ,分别交DA 的延长线于点M ,DC 的延长线于点N ,AB 于点P ,BC 于点Q . 求证:PM =QN .四、达标检测,当堂过关:1、如图,延长△ABC 的中线AD 至E ,使得DE =AD ,那么四边形ABEC 是平行四边形吗?为什么?2、如图,在□ABCD 中,已知AE 、CF 分别是∠DAB 、 ∠BCD 的角平分线,试证明四边形AECF 是平行四边形.五、拓展延伸,智力闯关:如图,在△ABC 中,AB =5,AC =2,试求BC 边上的中线AD的取值范围.六、作业:教材P 105练习:1(做书上);P 106练习:2;A BDCEF A B CD M N PQA BCDE ABC D20.1 平行四边形的判定学案(4)学习目标:灵活运用平行四边形的判定方法. 学习重点:平行四边形的判定方法的综合运用. 学习过程:一、回顾旧知,自主学习:平行四边形的性质和判定方法有哪些?它们之间有何联系?二、边学边导,基础过关:1、刘师傅给客户加工一个平行四边形零件,如图,他要检查这个零件是否符合要求,以下方法不正确的是( ) A 、AB ∥CD ,AB =CD B 、AB ∥CD ,AD =BC C 、∠A =∠C ,∠B =∠D D 、AB =CD ,BC =AD2、一个四边形的边长依次是a 、b 、c 、d ,且222222a b c d ac bd +++=+,则这个四边形 是 ,依据是 .3、如图,在△ABC 中,D 是BC 的中点,F 、E 分别是AD 及其延长线上的点,CF ∥BE ,连结BF 、CE ,试判断四边形BECF 是不是平行四边形.4、如图,请在下列四个关系中,选出两个恰当....的关系作为条件,推出四边形ABCD 是平行四边形,并予以证明.(写出一种即可)关系:①AD ∥BC ,②AB =CD ,③∠A =∠C ,④∠B +∠C =180°. 已知:在四边形ABCD 中, , .求证:四边形ABCD 是平行四边形.A B D CABC DF EABCD三、精讲点拨,巩固提升:1、如图,在□ABCD 中,AE =CF ,M 、N 分别是DE 、BF 的中点. 求证:四边形MFNE 是平行四边形.2、如图,在△ABC 中,D 是AB 的中点,E 是AC 的中点. 求证:DE 12BC .四、达标检测,当堂过关:1、如图,AB 、CD 相交于点O ,AC ∥DB ,AO =BO ,E 、F 分别是OC 、OD 的中点. 求证:四边形AFBE 是平行四边形.2、如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF .(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形.六、作业:教材P 125复习题B 组:8,9.ABDCEABCDE F20.2 矩形的判定学案学习目标:掌握矩形的判定方法及与其性质的综合应用.学习重点:矩形的判定方法.学习过程:一、回顾旧知,自主学习:1、什么叫做矩形?矩形有哪些特殊性质?2、矩形与平行四边形有什么共同之处?有什么不同之处?3、类比平行四边形的判定方法如何判定一个四边形是矩形呢?你能猜想出几种判定矩形的方法?并对你的猜想加以论证.归纳:矩形的判定方法:①;②;③.二、边学边导,基础过关:1、判断:①对角线相等的四边形是矩形;()②对角线互相平分且相等的四边形是矩形;()③有一个角是直角的四边形是矩形;()④四个角都是直角的四边形是矩形;()⑤四个角都相等的四边形是矩形;()⑥对角线相等且有一个角是直角的四边形是矩形;()⑦对角线相等且互相垂直的四边形是矩形. ()2、如图,O是矩形ABCD的对角线AC与BD的交点,E、F、G、H分别是AO、BO、CO、DO上的一点,且AE=BF=CG=DH.求证:四边形EFGH是矩形.三、精讲点拨,巩固提升:1、如图,在△ABC中,AB=AC,若将△ABC绕点C旋转180º,得到△EDC,当∠ACB为多少度时,四边形ABED为矩形?说明理由.DA ECB2、如果平行四边形四个内角的平分线能够围成一个四边形,那么这个四边形是矩形.四、达标检测,当堂过关:如图,四边形ABCD 是由两个全等的正三角形ABD 和正三角形BCD 组成的,M 、N 分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.五、拓展延伸,智力闯关:如图,点O 是△ABC 的边AC 上一动点,过O 点作直线MN ∥BC ,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F .(1)证明:OE =OF ;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.六、作业:教材P 110习题20.2:1,2,3;.ADC BE FGHMNBCOAF EDBACDNM20.3 菱形的判定学案学习目标:掌握菱形的判定方法及与其性质的综合应用. 学习重点:菱形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做菱形?菱形有哪些特殊性质?2、根据菱形的定义及其特殊性质,你能猜想出菱形的判定方法吗?并加以论证. 归纳:菱形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、判断:①对角线互相垂直的四边形是菱形;( ) ②对角线互相垂直平分的四边形是菱形;( ) ③对角线互相垂直,且有一组邻边相等的四边形是菱形; ( ) ④两条邻边相等,且一条对角线平分一组对角的四边形是菱形; ( ) ⑤一条对角线平分一组对角的平行四边形是菱形.( )2、如图,在□ABCD 中,AE 平分∠BAD ,与BC 相交于点E ,EF ∥AB ,与AD 相交于点F ,求证:四边形ABEF 是菱形.三、精讲点拨,巩固提升:已知□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.CFODE ABBA CEDF四、达标检测,当堂过关:1、如图,已知AD平分∠BAC,DE∥AC,DF∥AB. 判断四边形AEDF的形状.2、如图,□ABCD的两条对角线AC、BD相交于点O,AB=5,AC=8,DB=6.求证:四边形ABCD是菱形.五、拓展延伸,智力闯关:如图,△ABC中,∠ACB=90°,BF平分∠ABC,CD⊥AB于点D,与BF交于点G,GE∥CA. 求证:CE和FG互相垂直平分.六、作业:教材P116习题20.3:1,2,3;GEFDCBAAB CFDEABCDO20.4 正方形的判定学案学习目标:掌握正方形的判定方法及与其性质的综合应用. 学习重点:正方形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么叫做正方形?正方形有哪些特殊性质?2、正方形与平行四边形、矩形、菱形有什么共同之处?有什么不同之处?由此你能猜想出正方形的判定方法吗?并加以论证. 归纳:正方形的判定方法:① ; ② ; ③ . 二、边学边导,基础过关:1、在四边形ABCD 中,O 是对角线的交点,能判定这个四边形是正方形的是( ) A 、AC =BD ,AB ∥CD ,AB =CD B 、AD ∥BC ,∠A =∠C C 、AO =BO =CO =DO ,AC ⊥BD D 、AO =CO ,BO =DO ,AB =BC2、如图,△ABC 中,∠ACB =90°,CD 平分∠ACB ,DE ⊥BC , DF ⊥AC ,垂足分别为E 、 F .求证:四边形CFDE 是正方形.三、精讲点拨,巩固提升:如图,矩形ABCD 的外角平分线围成四边形EFGH .求证:四边形EFGH 是正方形.BACQE D PNMHGF四、达标检测,当堂过关:1、矩形ABCD加上一个条件:,就可以得到正方形ABCD.2、菱形ABCD加上一条条件:,就可以得到正方形ABC D.3、判断:(1)四个角都相等的四边形是正方形;()(2)四条边都相等的四边形是正方形;()(3)对角线相等的菱形是正方形;()(4)对角线互相垂直的矩形是正方形;()(5)对角线垂直且相等的四边形是正方形;()(6)四边相等,有一角是直角的四边形是正方形. ()4、在正方形ABCD中,点E、F、G、H分别在各边上,且AH=BE=CF=DG.四边形EFGH是正方形吗? 为什么?五、拓展延伸,智力闯关:如图,在△ABC中,AB=AC,点D在边BC上,DE⊥AB,DF⊥AC,垂足分别为E、F.请探究,当∠A满足什么条件或点D在什么位置时,四边形AEDF将成为矩形?四边形AEDF 将成为正方形?画出符合条件的图形,并证明.六、作业:教材P118习题20.4:1,2,3;BAC EDFHG ED AB F C20.5 等腰梯形的判定学案学习目标:掌握等腰梯形的判定方法,能用它们解决简单的问题. 学习重点:等腰梯形的判定方法. 学习过程:一、回顾旧知,自主学习:1、什么样的几何图形是梯形?什么样的几何图形是等腰梯形?2、等腰梯形有何特殊性质?3、根据等腰梯形的定义及其特殊性质,你能猜想出等腰梯形的判定方法吗?并加以论证. 归纳:等腰梯形的判定方法:① ; ② ;③ .二、边学边导,基础过关:1、如图,在四边形ABCD 中, AD ∥ BC ,但 AD ≠B C ,若使它成为等腰梯形,则需要添 加的条件是_______________________.(写出一个即可)2、如图,矩形ABCD 中,点E 、F 在边AD 上,AE =FD . 求证:四边形EBCF 是等腰梯形.3、如图,梯形ABCD 中,AD ∥BC ,∠1=∠2. 求证:四边形ABCD 是等腰梯形.ADBCA DB C三、精讲点拨,巩固提升:1、如图,在梯形ABCD 中,AD ∥BC ,若∠A +∠C =180°,则梯形ABCD 是等腰梯形吗? 请说明理由.结论: .2、如图,AD 是∠BAC 的平分线,DE ∥AB ,DE =AC ,AD ≠EC . 求证:四边形ADCE 是等腰梯形.四、达标检测,当堂过关:如图,在梯形ABCD 中,AD ∥BC ,CA 平分∠BCD , DM ∥A C ,∠B =2∠M . 求证:梯形ABCD 是等腰梯形.五、拓展延伸,智力闯关:如图,在梯形ABCD 中,AD ∥BC ,AD <BC ,E 、F 分别是AD 、BC 的中点,且EF ⊥BC . 求证:梯形ABCD 是等腰梯形.六、作业:教材P 122习题20.5:1,2,3;A D BCADBCMADBCEFABE OC D第二十章平行四边形的判定复习学案(1)学习目标:小结本章知识,巩固平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用.学习过程:一、知识回顾,自主学习:平行四边形、矩形、菱形、正方形、等腰梯形有哪些性质和判定方法?图形性质判定方法平行四边形矩形菱形正方形等腰梯形二、边学边导,基础过关:1、下列说法不正确...的是()A、一组邻边相等的矩形是正方形B、对角线相等的菱形是正方形C、对角线互相垂直的矩形是正方形D、有一个角是直角的平行四边形是正方形2、如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A、BA=BCB、AC、BD互相平分C、AC=BDD、AB∥CD3、如图,在□ABCD中,E是BC的中点,且∠AEC=∠DCE,下列结论不正确的是()A、四边形AECD是等腰梯形B、BF=12 DFC、S△AFD=2S△EFBD、∠AEB=∠ADCABCD BACEDF4、如图,E 、F 是 ABCD 对角线AC 上的两点,且BE ∥DF . 求证: (1)△ABE ≌△CDF ; (2)∠1=∠2.三、精讲点拨,巩固提升:1、如图,在等腰梯形ABCD 中,AB ∥DC ,AD =BC =CD ,点E 为AB 上一点,连结CE ,请添加一个你认为合适的条件 ,使四边形AECD 为菱形,并说明理由.2、如图,在A B C △中,点D 、E 、F 分别在边AB 、B C 、C A 上,且D E C A ∥,DF BA ∥.下列四种说法:①四边形AEDF 是平行四边形; ②如果90BAC ∠= ,那么四边形AEDF 是矩形; ③如果AD 平分B A C ∠,那么四边形AEDF 是菱形; ④如果AD BC ⊥且AB AC =,那么四边形AEDF 是菱形. 其中正确的有 .(只填写序号) 四、达标检测,当堂过关:1、如图,已知□ABCD ,下列条件:①AC =BD ,②AB =AD ,③∠1=∠2,④AB ⊥BC 中,能说明□ABCD 是矩形的有 .(只填写序号) 2、如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE =AF. (1)求证:BE =DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM =OA , 连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.五、作业:教材P 125复习题B 组:10,11,12.DCABEA FCDBE BA CD1 2AD BE FOCM第二十章 平行四边形的判定复习学案(2)学习目标:巩固熟练平行四边形、矩形、菱形、正方形、等腰梯形的判定方法. 学习重点:平行四边形、矩形、菱形、正方形、等腰梯形的判定方法及综合运用. 学习过程:一、自主学习,基础过关:1、如图,梯形ABCD 中,AD ∥BC ,点M 是BC 的中点,且MA =MD .求证:四边形ABCD是等腰梯形.2、如图,在等边△ABC 中,点D 是BC 边的中点,以AD 为边作等边△ADE . (1)求∠CAE 的度数;(2)取AB 边的中点F ,连结CF 、CE ,试证明四边形AFCE 是矩形.3、如图,四边形ABCD 是矩形,∠EDC =∠CAB ,∠DEC =90°. (1)求证:AC ∥DE ;(2)过点B 作BF ⊥AC 于点F ,连结EF ,试判断四边形BCEF的形状,并说明理由.二、精讲点拨,巩固提升:在平行四边形ABCD 中,AC 、BD 交于点O ,过点O 作直线EF 、GH ,分别交平行四边形的四条边于E 、G 、F 、H 四点,连结EG 、GF 、FH 、HE . (1)如图①,试判断四边形EGFH 的形状,并说明理由;(2)如图②,当EF ⊥GH 时,四边形EGFH 的形状是 ;(3)如图③,在(2)的条件下,若AC =BD ,四边形EGFH 的形状是 ; (4)如图④,在(3)的条件下,若AC ⊥BD ,试判断四边形EGFH 的形状,并说明理由.EFDA B CHG F E O D C BA图①H G F E O D CBA图②A BCDO E F GH 图③ABCDO EF G H 图④A D CBM三、达标检测,当堂过关:1、如图(1),在△ABC 和△EDC 中,AC =CE =CB =CD ,∠ACB =∠ECD =90°,AB 与CE 交于F ,ED 与A B 、BC 分别交于M 、H . (1)求证:CF =CH ; (2)如图(2),△ABC 不动,将△EDC 绕点C 旋转到∠BCE =45° 时,判断四边形ACDM 是什么四边形?并证明你的结论.2、如图 ,△ABC 是等腰直角三角形,∠A =90o,点P 、Q 分别是AB 、AC 上的动点,且满足BP =AQ ,D 是BC 的中点. (1)求证:△PDQ 是等腰直角三角形;(2)当点P 运动到什么位置时,四边形APDQ 是正方形,说明理由.四、拓展延伸,智力闯关: 若一次函数y =2x 和反比例函数y =2x的图象都经过点A 、B ,已知点A 在第三象限.(1)求点A 、B 两点的坐标;(2)根据函数图像,求不等式2x>2x 的解集;(3)若点C 的坐标为(3,0),且以点A 、B 、C 、D 为顶点的四边形是平行四边形,请你求出点D 的坐标; (4)若点C 的坐标为(t ,0),t >0,四边形ABCD 是平行四边形,当t 为何值时点D 在y 轴上.五、作业:教材P 126复习题C 组:13,14,15.。
平行四边形及特殊的平行四边形复习导学案(八年级)一、平行四边形:(一)知识点总结:1.平行四边形的定义:_____________________的四边形叫做平行四边形。
2.平行四边形的性质(1)边:(2)角:(3)对角线:(4)对称性:补充;平行四边形的两条对角线所分得的四个三角形____________相等。
典例解析:①如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46②如图,点E是▱ABCD的边CD的中点,AD,BE的延长线相交于点F,DF=3,DE=2,则▱ABCD 的周长为()规律总结:当平行线夹着等分线段时,可寻找全等三角形,作为解题的突破口。
③如图,在□ABCD中,已知AD=8㎝, AB=6㎝, DE平分∠ADC交BC边于点E,则BE等于()A.4 B.3 C.5/2 D.2规律总结:当平行线夹着角平分线时,可寻找___________三角形作为解题的突破口。
举一反三:④如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为___________ ABCDE3.平行四边形的判定:从边考虑:(1)(2)(3)从角考虑:(4)____________的四边形是平行四边形。
从对角线考虑:(5)___________________的四边形是平行四边形。
补充:(6)一组对边平行,一组对角相等的四边形是平行四边形。
注意:①一组对边相等,一组对边平行的四边形不是平行四边形。
如:__________②一组对边相等,一组对角相等的四边形不是平行四边形。
如:___________(画图)(二)典型例题:①在四边形ABCD中,将下列条件中的哪两个条件组合,可以判定它是平行四边形?(1)AB∥CD(2)BC∥AD(3)AB=CD(4)BC=AD(5)∠A=∠C(6)∠B=∠D②如图,E F,是四边形ABCD的对角线AC上两点,AF CE DF BE DF BE==,,∥.求证:(1)AFD CEB△≌△.(2)四边形ABCD是平行四边形.二、矩形:(一)知识点总结:1.矩形的定义:____________________的平行四边形是矩形.2.矩形的性质:(1)一般性质:具有__________________形的一切性质(2)特殊性质①矩形的四个角.②矩形的对角线.补充:③矩形的两条对角线所分得的四个三角形都是___________三角形4.直角三角形斜边中线的性质:___________________________________________________ 典例解析:①已知:矩形ABCD的两条对角线AC、BD相交于点0, ∠AOD=120°, AB = 4cm,(1)判断△AOB的形状;(2)矩形对角线的长A BDEFC②直角三角形斜边上的高和斜边上的中线分别是5cm和6cm,则它的面积是()3.矩形判定:①定义:_________________的平行四边形是矩形.②_______________________的四边形是矩形.③_______________________的平行四边形是矩形.典例解析如图所示,△ABC中,点O是AC边上一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于E,交∠BCA的外角平分线于点F.(1)求证:EO=FO(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.规律总结:①当平行线夹着角平分线时,可寻找_______________作为解题的突破口。
②邻补角的角平分线_________________________三、菱形:(一)知识点总结:1、菱形的定义:____________________的平行四边形是菱形.2、菱形的性质:(1)一般性质:具有__________________形的一切性质。
(2)特殊性质①菱形的四条边.②菱形的对角线,并且每一条对角线________补充:菱形的两条对角线所分得的四个三角形都是______三角形,并且都是_________的.典例解析:.①如图,在菱形ABCD中,AB=3,∠ABC=60°,则AC= ___cm.规律总结:当菱形中有一个内角为60°时,可连接较短对角线,从而得到_________三角形。
举一反三:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()②如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H,连接OH,求证:∠DHO=∠DCO.菱形的判定:①定义:__________________的平行四边形是菱形.②________________________的四边形是菱形③________________________的平行四边形是菱形.补充:④一条对角线平分一个内角的平行四边形是菱形。
4、面积公式:________________典例解析:①在□ABCD中,添加下列条件后,不能判定□ABCD是菱形的是()A. AB=BCB. AC⊥BDC. BD平分∠ABCD. AC=BD②如图.矩形ABCD的对角线相交于点0.DE∥AC,CE∥BD.求证:四边形OCED是菱形;③如图,AD平分∠BAC,DE∥AC 交AB于E,DF∥AB交AC于F求证:四边形AEDF是菱形.321AB CE F四、正方形:(一)知识点总结:1、定义:___________________2、性质:(1)一般性质:具有________________形的一切性质。
特殊性质:①边__________________②角___________________③对角线___________________补充:④正方形的两条对角线所分得的四个三角形是_______的________________三角形.3、判定:①______的四边形是正方形。
②_____________________________________的平行四边形是正方形。
②的矩形是正方形。
③的菱形是正方形。
(二)典型例题;①已知正方形ABCD,ME⊥AC,MF⊥BD,垂足分别为E、F(1)M是AB上的点,若对角线AC=12cm,求ME+MF的长。
(2)当M点运动到何处时,四边形MFOE的面积最大?②如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.③如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.三角形的中位线1.定义:_____________________________________________________________________2.性质:______________________________________________________________________补充:利用三角形的中位线可推得以下结论:顺次连接四边形的各边中点可得__________________________顺次连接平行四边形的各边中点可得__________________________顺次连接矩形的各边中点可得__________________________顺次连接菱形的各边中点可得__________________________顺次连接正方形的各边中点可得__________________________顺次连接等腰梯形的各边中点可得__________________________.规律:顺次连接四边形的各边中点所得四边形的形状与_____________有关。
典例解析:1.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点.若AB=5,AD=12,则四边形ABOM 的周长为.2.如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是()A.矩形B.菱形C.正方形D.梯形3.如图所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分别为边AB、BC、CD、DA的中点,求证:四边形EFGH为菱形.图形的折叠1.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD 的边长为2cm,∠A=120°,则EF=cm.2.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A.78°B.75°C.60°D.45°3.如图,矩形纸片ABCD中,AB=3厘米,BC=4厘米,现将A、C重合,使纸片折叠压平,设折痕为EF。
试确定重叠部分△AEF的面积。
4..如图,已知正方形纸片ABCD,M,N分别是AD,BC的中点,把BC向上翻折,使点C恰好落在MN上的P点处,BQ为折痕,则∠PBQ=________度。
综合应用:1.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.2. 如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.3.已知:如图,在矩形ABCD中,M,N分别是边AD、BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB=时,四边形MENF是正方形(只写结论,不需证明)①如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.④在□ABCD中,AE平分∠BAD,EF∥AB,交AD于点F. 求证:四边形ABEF是菱形。
B ACEDF。