生物质热解及生物质与褐煤共热解的研究
- 格式:pdf
- 大小:161.99 KB
- 文档页数:4
生物质与煤共热解特性研究摘要:选取一种典型生物质样品(棉秆),并将生物质样品与煤分别以1:9、3:7、5:5的质量比混合。
采用热重分析法,在相同升温速率下,对各样品进行热解实验,探讨了生物质与煤热解特性的差异以及它们共热解时生物质对煤热解过程的影响。
研究表明,生物质与煤的热解特性差异很大:生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高;在生物质与煤混合热解时,总体热解特性分阶段呈现生物质和煤的热解特征;随混煤中生物质比例的增加,热解温度降低,热解速度变快。
关键词:热重分析生物质煤热解共热解随着人们越来越关注化石能源的使用对生态环境的不利影响,生物质能源的利用份额逐年上升[1]。
但是,由于生物质分布分散、能量密度低、收集运输和预处理费用高、热值低、水分大、转化利用需要外热源等缺点[2],使得单独利用生物质燃料的设备容量较小、投资费用较高、系统独立性差和效率低。
为了使生物质在较短期内实现大规模有效利用,并具有商业竞争力,生物质与煤混合燃烧和转化技术在现阶段是一种低成本、大规模利用生物质能源的可选方案。
1 生物质能的转化生物质的利用转化方式主要有直接燃烧、热化学转化和生物转化[3]。
热化学转化是指高温下将生物质转化为其它形式能量的转化技术,包括气化(在气体介质氧气、空气或蒸汽参与的情况下对生物质进行部分氧化而转化成气体燃料的过程)、热解(在没有气体介质氧气、空气或蒸汽参与的情况下,单纯利用热使生物质中的有机物质等发生热分解从而脱除挥发性物质,常温下为液态或气态,并形成固态的半焦或焦炭的过程)和直接液化(在高温高压和催化剂作用下从生物质中提取液化石油等);生物转化法是指生物质在微生物的发酵作用下产生沼气、酒精等能源产品。
固体生物质的热解及其进一步转化是开发利用生物质能的有效途径之一。
在生物质热化学转化过程中,热解是一个重要的环节。
生物质形态各异,组成多为木质素、纤维素等难降解有机物,与矿物燃料不同,因此生物质热解过程是一个复杂的过程,影响生物质热解的运行参数有终端温度、加热速率、压力和滞留时间等[4]。
煤与生物质共热解工艺的研究进展摘要:热解是将固态原料转化为液体燃料、可燃气和焦的重要途径,是实现生物质资源清洁、高效利用的重要技术。
将生物质与煤混合共热解是生物质资源利用的重要方法,两者混合热解不仅有助于降低CO2的排放量,还能有效地解决能源短缺和环境污染带来的问题。
文章综述了煤与生物质共热解技术的研究进展,系统地介绍了共热解过程中煤与生物质的相互作用以及热解温度、混合比例、滞留时间、升温速率、矿物质成分、物料粒径和热解反应器类型等因素对热解过程的影响,并对煤与生物质共热解技术的发展前景进行了展望。
前言工业革命以来,化石资源的过度开发带来了资源短缺、环境污染、温室效应和全球气候变化等一系列问题[1]。
我们必须要加快能源结构体系的调整,加快可再生能源的开发、利用,以及实现资源的分级转化与梯级利用。
生物质是一种重要的可再生资源,具有与化石燃料相似的一些特性,能够部分替代化石能源,维持环境碳平衡,并具有较低的硫含量[2]。
生物质的利用不仅可以充分发挥农林废弃物等资源的价值、降低化石燃料的消耗,还可以降低燃料燃烧过程中污染物的排放量[3]。
与燃烧相比,热解能够实现生物质资源的高效、清洁利用,煤炭与生物质都可以通过热解的方式得到焦炭、热解气和焦油,并进一步合成化工原料,提取化工中间体[4]。
目前,对于煤和生物质单独热解气化方面的研究比较多。
Frau Caterina利用Sotacarrrbo型小规模气化炉对褐煤和木屑分别进行气化实验,当气化原料的进料速率同为24kwh时,获得的两种粗合成气的产率分别为79.67kg/h和23.32kg/h,热值分别为5.14MJ/kg和7.49MJ/kg[5]。
Li利用新型热解反应器对废木屑进行热解试验,在填料速率为300kg/h,热解温度为500℃的工况下产物中焦油、合成气和焦炭的含量(质量分数)分别为52.5%,27%和20.5%[6]。
相比于单独热解.煤与生物质的共热解不仅可以减少CO2,SOx和NOx的排放,减少因厌氧发酵而产生的NH3,H2S、氨基化合物和挥发性有机酸等化学成分的释放.而且可以改善生物质资源自身水分含量高、热值低和密度低等不利于单独热解的问题。
煤与生物质(稻秸秆)共热解反应及动力学分析摘要:本文利用综合热分析仪,对煤(褐煤、无烟煤)与稻秸秆按不同比例混合及各自单独热解反应进行了热解实验。
结果表明,生物质与煤的热解过程可简化看作是在较低温度段(400℃以下)热解以生物质为主;在高温段(600℃~850℃)热解以煤为主。
生物质对煤的热解过程有促进作用,随着生物质参混比例的上升,使煤的热解高峰区的温度向低温区移动。
但是促进程度是随着生物质的量的增加而减小的,并且对褐煤的促进作用要比对无烟煤的作用明显。
在动力学分析中,发现褐煤和生物质单独热解过程在整个热解温度范围内可用coats-Redfern法按反应级数n=1的过程来计算出热力学参数;但是两者混合后的热解过程,由于反应机理及过程发生了变化,并不能用简单的热解动力学模型来描述;最后,对无烟煤与稻秸秆(质量比例3:2)的混合物按升温速率分别为10℃/min和20℃/min的热解过程作了对比试验,总结出升温速率对热解反应的影响。
关键词:煤与生物质稻秸秆热重分析动力学参数一引言生物质是人类利用最早、最多、最直接的能源,同时也是低碳燃料和唯一可运输及储存的可再生能源,可实现CO2的零排放。
我国生物质储量丰富,因此生物质能的开放和利用有着重大意义[1]。
同时我国煤炭资源丰富,在今后很长一段时间内对煤炭的依赖性还很大。
生物质与煤混合燃烧发电和热解转化技术是高效洁净合理利用我国两大优势能源的有效途径之一,不但可降低CO2、NOX 、SOX的排放量,而且可以有效解决生物质单独使用时的焦油问题。
对于煤与生物质共热解的问题,国内外的学者作了不同结论的实验研究。
对于其协同性问题,存在两个对立的观点。
Chatphol.M[2]、Collot.A.G[3]等人,各自在实验中得到无协同作用的结论;而Nikkhah.K[4]、McGee.B[5]等人则在共热解试验中得出有协同性的结论。
阎维平[6]用生物质混合物与褐煤的共热解试验证明生物质粉末对煤的热解有一定的促进和抑制的作用,两者间有协同性存在;而李文[7]、李世光[8]等人则通过试验说明两者无明显的协同作用。
生物质与煤混燃研究分析摘要:通过对生物质与煤混燃的研究方法、优势、燃烧特性以及研究结论的介绍,阐明充分开发生物质资源,进行生物质与煤共燃的研究对解决我国能源问题具有现实意义。
关键词:生物质;煤;混燃作为清洁的可再生能源,生物质能的利用已成为全世界的共识。
我国生物质资源丰富,生物质占一次能源总量的33% ,是仅次于煤的第二大能源。
同时,我国又是一个由于烧煤而引起的污染排放很严重的发展中国家,生物质被喻为即时利用的绿色煤炭,具有挥发分和炭活性高,N和S含量低,灰分低,与煤共燃可以降低其硫氧化物、氮氧化烟尘的含量.同时生物质燃烧过程具有CO2零排放的特点。
这对于缓解日益严重的“温室效应”有着特殊的意义。
因此发展生物质与煤混合燃烧这种既能脱除污染,又能利用再生能源的廉价技术是非常适合中国国情的。
一、共燃的主要方式:(1)直接共燃:即直接将生物质混入煤中进行燃烧或生物质与煤使用不同的预处理装置与燃烧器。
(2)生物质焦炭与煤共燃:通过将生物质在300~400℃下热解,可以将生物质转化为高产率(60%~80%)的生物质焦炭,然后将生物质焦炭与煤共燃。
生物质与煤共燃燃烧性质的研究主要是利用热分析技术所得的TG-DTG曲线进行。
利用TG-DTG曲线可以方便的获取着火温度Th,最大燃烧速(dw/dt)max平均燃烧速度dw/dt)mean,燃尽温度Th等参数。
可以对一种煤和几种生物质以及它们以不同的比例所得的混合试样进行燃烧特性分析。
比如在STA409C型热综合分析仪上对各试样进行燃烧特性试验,工作气氛为N2和O2,流量分别为80ml/min、20ml/min ,升温速率为30℃/min ,温度变化范围为20~1200℃。
每个试样重量约5.0mg。
其数值根据自己的实验需要进行修改。
2 生物质与煤共燃的优势2.1 CO2等温室气体的减排由于生物质在燃烧过程中排放出的CO2与其生长过程中所吸收的一样多,所以生物质燃烧对空气CO2的净排放为零。
生物质热解与煤热解气化比较与现状关键词:生物质煤热解研究表明[1],生物质与煤的热解特性差异很大;生物质热解温度低,热解速度快,而煤相对热解速度慢,热解温度高。
现今单一煤种的热解在各方面都已经得到广泛的研究,而生物热解方面也正在取得巨大的研究成果。
煤热解的气体产物以一氧化碳、甲烷和氢气为主,其中固体产物为固体焦和焦油。
生物质热解气化产物主要是不饱和烃类气体和大量的氢气,还有不饱和烃类液体例如苯等。
但是相比之下,由于大量水分的存在,生物质热解气化失重率比较大,而由于硫的掺杂,煤气化热解的产物中含有大量含硫氮化合物,使之燃烧会造成严重的环境污染。
为了提高脱硫脱氮的效率和改善煤单独热解产物不饱和度较高的问题,科学各界开始对生物质同煤共热解进行了研究和探索。
研究结果[2]表明,生物质可阻止强粘结性煤热解过程中颗粒之间的粘结,得到粒状焦炭;生物质热解生成较多的H2,有利于煤中硫和氮的脱除;同时随着温度的升高、煤粒度的减小和煤变质程度的降低,热解脱硫和脱氮率增大。
根据研究[2]可知,生物质热解的最大热解峰(低于400摄氏度)和煤的最大热解峰(高于400摄氏度)不重合,而且差值有的在100摄氏度以上。
由此可知,生物质与煤共同热解没有明显的协同作用。
为了解决不同步热解的问题,科学界提出了两步法煤与生物热解、利用煤的黑度比生物质高的特点以辐射的加热方式进行同步加热、两段管式炉分步控温进行热解等。
这些方法的核心都在于利用生物质的富氢产物为煤脱硫脱氮提供天然低廉的氢来源,同时也提高了煤的轻质液相产率,气体中的不饱和烃含量降低,将富裕的生物氢转移到了缺氢的煤焦中。
鉴于生物质与聚合物及生物质与煤的共热解或两步法热解具有很大的优势,加强生物质与聚合物的共热解和生物质与煤的共热解及两步法热解的研究显得很有必要。
深入研究生物质与聚合物共热解的协同作用的机理,加强研究生物质与煤共热解中脱硫、脱氮及固体焦具有较强吸附能力的机理,同时,进一步研究改进生物质与煤两步法热解的工艺,为实现生物质中富裕的氢向煤的转移提供可能。
生物质气化及生物质与煤共气化技术的研发与应用摘要:总结了生物质原料的特点及生物质单独气化的缺点;介绍了国内外生物质气化技术及生物质与煤共气化技术的研发与应用现状;分析了在此领域国内外的发展趋势与前景;概括了开展生物质与煤共气化技术研发的意义。
生物质包括植物、动物及其排泄物、垃圾及有机废水等几大类。
与煤炭相比,生物质原料具有如下特点:①挥发分高而固定碳含量低。
煤炭的固定碳一般为60%左右;而生物质原料特别是秸秆类原料的固定碳在20%以下,挥发分却高达70%左右,是适合热解和气化的原料。
②原料中氧含量高,灰分含量低。
③热值明显低于煤炭,一般只相当于煤炭的1/2~2/3。
④低污染性。
一般生物质硫含量、氮含量低,燃烧过程中产生的SO2、NOx较低。
⑤可再生性。
因生物质生长过程中可吸收大气中的CO2,其CO2净排放量近似于零,可有效减少温室气体的排放。
⑥广泛的分布性。
生物质气化是生物质利用的重要途径之一。
生物质气化技术已有一百多年的发展历史,特别是近年来,对生物质气化技术的研究日趋活跃。
但生物质单独气化存在一些缺点。
首先,生物质的产生存在季节性,不能稳定供给;其次,由于生物质处理后形成的颗粒具有不规则性,在流化床气化炉内不易形成稳定的料层,需要添加一定量的惰性重组分床料如河砂、石英砂等;第三,生物质单独气化时生成较多的焦油,不仅降低了生物质的气化效率,而且对气化过程的稳定运行造成不利影响。
生物质与煤共气化不仅可以很好地弥补生物质单独气化的上述缺陷,同时在碳反应性、焦油形成和减少污染物排放等方面可能会发生协同作用。
1国外的研究与应用情况(1)生物质气化发电生物质气化及发电技术在发达国家已受到广泛重视,如美国、奥地利、丹麦、芬兰、法国、挪威和瑞典等国家生物质能在总能源消耗中所占的比例增加相当迅速。
美国在利用生物质能发电方面处于世界领先地位,美国建立的Battelle生物质气化发电示范工程代表生物质能利用的世界先进水平。
生物质与煤热解特性及动力学研究朱孔远;谌伦建;马爱玲;黄光许【摘要】利用热重分析技术对4种常见天然生物质(核桃壳、木屑、玉米秸秆、小麦秸秆)和两种烟煤在高纯N2条件下的热解过程进行了分析,研究不同粒度级和不同升温速率对热解过程的影响,并用Coats-Redfern积分法对热解过程进行了动力学分析.结果表明,生物质热解失重主要温度段为200~450℃,烟煤为300~600℃,反应符合一级反应动力学模型,生物质活化能为50~80kJ/mol,煤为30~115kJ/mol;升温速率对热解特性的影响较大,提高升温速率,TG及DTG曲线向高温方向移动.【期刊名称】《农机化研究》【年(卷),期】2010(032)003【总页数】5页(P202-206)【关键词】生物质;煤;热解特性;动力学【作者】朱孔远;谌伦建;马爱玲;黄光许【作者单位】河南理工大学,材料科学与工程学院,河南,焦作,454000;河南理工大学,材料科学与工程学院,河南,焦作,454000;河南理工大学,材料科学与工程学院,河南,焦作,454000;河南理工大学,材料科学与工程学院,河南,焦作,454000【正文语种】中文【中图分类】TK60 引言煤炭是主要的化石燃料,我国一次能源消费构成中煤炭比例超过2/3,在现有能源中占有重要的地位[1]。
随着经济的发展,煤炭的消耗量还在不断的增长。
另一方面,煤炭是不可再生的化石能源,煤炭燃烧可造成大气环境严重污染,因此研究洁净煤技术,开发利用生物质能等可再生能源意义重大,深受世界各国关注。
生物质是绿色植物经光合作用将太阳能转化为化学能储存于生物质内的能量,是仅次于煤、石油和天然气的第4大能源。
每年生物质能源产量约1 400~1 800亿t(干重),相当于目前总能耗的10倍[2]。
生物质的硫和氮含量低、燃烧过程中生成的SOX,NOX较少,且燃烧时生产的二氧化碳相当于它在生长时需要的二氧化碳量,使燃烧时二氧化碳近似于零排放[3-5]。
煤和生物质共热解研究现状近几年,以煤炭和生物质为燃料的共热解(Co-pyrolysis)技术受到了越来越多的关注,它是一种通过煤炭和生物质共同热解来获得高品质石油和可再生能源的技术。
共热解技术可以实现煤炭和生物质之间的转化,从而极大地提高热解反应效率,减少能源消耗和污染环境。
自20世纪90年代以来,在全球范围内,许多研究者都在研究煤炭和生物质共热解的技术。
许多研究发现,将煤炭与生物质结合在一起可以产生更多的液体燃料,增加收益,并降低燃烧产生的污染物。
此外,研究者们还发现,生物质中的木素元素可以替换煤炭中的木素元素,使煤炭热解时产生的黑烟减少,降低烟气污染。
然而,尽管此类技术优势众多,但许多技术问题仍未得到解决,比如生物质和煤炭之间的气化不均衡性问题、热解反应中木素元素的替换和补充问题以及高温反应中烟气中有毒物质的抑制问题等。
为了解决这些技术难题,发达国家不断投入大量的资金和人力物力,在宏观层面对共热解技术进行研究开发,以及在微观尺度上对共热解反应机理进行深入研究。
同时,研究者们也就如何改善共热解技术的可控性和稳定性展开研究。
借助计算机模拟和实验技术,研究者们发现可以通过修改热解反应的温度、压力和物质比例等参数来改善共热解反应,并调节不同特定条件下热解时的反应性能、产物组成和热力学性质。
此外,在加工技术方面,研究者们设计了多种共热解装置来现复杂的反应,例如自动控制、循环流化床反应器、多元复合反应器、微细粉末研磨和超声波催化等。
其中,多元复合反应器技术最为成熟,它既可以用于实验室小规模研究,也可以应用于工业生产。
最后,由于共热解技术涉及到热物理和热化学反应,在综合运用控制理论和过程优化等技术的基础上,研究者们利用计算机确定了各种参数的最优值,有效地提高了共热解装置的效率。
综上所述,煤炭和生物质共热解技术是一门极具挑战性的学科,涉及到化学、物理、热力学等多方面的知识。
尽管仍有诸多技术难题未解决,但发达国家仍在投入大量资源探索此技术,未来共热解技术将成为一种替代燃料,成为节能环保的新热门。