i 1
i
Y ) nN 具有无偏估计:
v( y )
n
(y
i 1
i
y ) 2 n(n 1)
n
y
i 1
i
n 是 Y 的无偏估计。其方差 V ( y )
2.放回的PPS抽样
假设按放回的 PPS 抽样方式抽取一个样本量为 n 的样本,第 j 个单元每次入样的概率
为 Z j ,则总体总和 Y 的估计及其方差为:
ത
就不独立了。令መ = 由于其为线性形式,故总体均值
ത
的刀切法估计量即
መ
为其本身:
1
መ
ҧ = መ = ത
=1
መҧ
的方差估计为:
1
መҧ =
=1
=1
1
−1
መ
2
(መ − )ҧ =
[ത − ]
ത2
( − 1)
4.用于比率估计
假定要估计比值 = /,其中Y与X是总体总和。通常的估计量 =
1
ҧ 2
( − )
( − 1)
=1
随机组的划分和组数的确定
独立随机组不存在随机组的划分问题
非独立随机组情形,需要考虑如何进行随机组
的划分
随机组的划分的一个基本原则:
每个随机组本质上具有与原始样本相同的抽
样设计
在各种抽样方法下,如何进行随机组的划分?
1.
2.
3.
不放回简单随机抽样或抽样:将原始样本进行随
将1 放回总体,按相同的方式抽取样本2
重复上述过程,直至获得k个样本
令为目标参数, ( = 1, … , )表示第j个