beckhoff模块功能简介
- 格式:pdf
- 大小:1.39 MB
- 文档页数:17
Beckhoff 的自动化技术适用于各种信号和现场总线,可为所有常用的 I/O 信号、模拟量信号和现场总线系统提供全系列的现场总线组件。
EtherCAT 是用于实现工业自动化的以太网解决方案,具有性能优异和操作简单的特点。
本书详述了 Beckhoff 现场总线模块中的测量模块、高精度模块、XFC 模块和宽温模块。
目录现场总线端子模块简介测量模块的的应用• 只有 12mm 宽的测量仪器——基于现场总线的测量模块• 称重模块介绍• 三相电力模块介绍• 万用表介绍• 振动测量模块介绍• 温度测量模块介绍• 高精度模块• XFC 模块• 宽温模块SCOPE VIEW 2 软件介绍只有 12 mm 宽的测量仪器——基于现场总线的测量模块称重模块介绍三相电力测量模块介绍EL3356 和 EL3356-0010 称重测量端子模块可以直接连接一个电阻桥或者 1 个 6 线制的称重传感器,最终的重量值作为一个过程数据在模块内部计算,不需要在 PLC 上面进行额外的计算。
为了满足各种需求,这系列模块有以下特点:• 测量误差 <0.01%• 高分辨率:16 位(EL3356)或者 24 位(EL3356-0010)• 采样时间:10 ms(EL3356)或者 100 μs(EL3356-0010)• 电路自整定——消除温漂和时漂• 分布式时钟模式——可以获取采样数据的具体时间(仅 EL3356-0010)• 手动输入传感器的铭牌参数(如 KG 和 mV/V)以及通过整定程序来整定传感器的参数(如零平衡点)• 预制皮重功能,可以在测量值中去掉产品外包装的重量• 针对高速动态称重的特殊功能可以使用 EL3356 来实现高精度慢速称重测量任务,而 EL3356-0010 特别适合用于快速、准确监测扭矩或张力的传感器。
此类传感器的应用范围包括:• 称重任务:慢速料仓测量或快速装袋• 运动部件的张力测量• 静载荷下的变形测量和变形报警• 通过传感器变形进行压力测量EL3403、EL3413 和 EL3773 EtherCAT 电力测量端子模块可以直接通过现场总线对相连工厂或建筑物电网进行能耗分析,也可以对各个用电设备进行具体的能耗数据分析。
ENApplicationIntegration of MGB2 Modular in Beckhoff TwinCAT 3From V1.5.8Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 32(Application) AP000236-01-02/21Contents1.About this document (4)1.1. Version ..........................................................................................................................................41.2. Scope ............................................................................................................................................41.3. Target group ..................................................................................................................................41.4.Supplementary documents (4)1.5. Notice (4)2. Components/modules used (5)2.1. EUCHNER (5)2.1.1. Items included in the MGB2 Modular set (5)2.2. Others ...........................................................................................................................................52.3. Software . (6)3. Functional description ...........................................................................................64.Overview of the communication data (7)4.1. Input ..............................................................................................................................................74.2. Output . (7)5. Installing the GSD file ............................................................................................86. Setting the control system parameters ..................................................................87.TwinSAFE and PROFIsafe hardware addressing (9)7.1. TwinSAFE .......................................................................................................................................97.2. PROFIsafe .. (9)8. Configuration of the MBM and the I/O peripherals (10)8.1. Adding the I/O devices in the project ..............................................................................................108.2.Setting the MGB2 Modular parameters .........................................................................................148.2.1. PROFINET .....................................................................................................................148.2.2. PROFIsafe ....................................................................................................................168.3.Assigning PROFINET device name to the bus module MBM (17)9. PLC program creation (19)9.1. Structure of the connection for PROFINET I/O configuration .............................................................199.2. Structure for readability of the inputs/outputs .................................................................................209.3.Function block FB_EUCHNER_MGB2modular ........................................................................229.3.1. Copying the CPU input structure to the MGB2 Modular structure .....................................229.3.2. Copying the MGB2 Modular output structure to the CPU structure ...................................239.4. PROFINET program .......................................................................................................................239.5. EtherCAT program ........................................................................................................................249.6. Main program MAIN ............................................................................................................249.7.Linking the program variables (24)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 39.8. Transferring program to the PLC (27)9.9. Observing the non-safe variables (27)10. Configuration of TwinSAFE – ProfiSAFE (28)11. Creating the safety program (35)11.1. Example of a safety program (35)11.2. Transferring safety program (37)12. Important note – please observe carefully! (38)3 AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 34(Application) AP000236-01-02/211. About this document1.1.Version1.2. Scope This document is used for integration and configuration of MGB2 Modular using BECKHOFF TwinCAT 3.1.3.Target groupDesign engineers and installation planners for safety systems on machines, as well as setup and servicing staff possessing special expertise in handling safety components as well as expertise in the installation, setup, programming and diagnostics of programmable logic controllers (PLCs) and bus systems.1.4. Supplementary documentsThe overall documentation for this application consists of the following documents:1.5. NoticeThis application is based on the MGB2 Modular operating instructions. Please refer to the operating instructions for technical details and other information.5AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN2. Components/modules used2.1.EUCHNER2.1.1. Items included in the MGB2 Modular setTip: More information and downloads about the aforementioned EUCHNER products can be found at . Simply enter the order number in the search box.2.2. OthersApplication MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 36(Application) AP000236-01-02/212.3.Software3. Functional descriptionThe MGB2-L1HB-PN-.. is a guard locking device in accordance with EN ISO 14119 according to the closed-circuit current principle, the MGB2-L2HB-PN-.. is a guard locking device in accordance with EN ISO 14119 according to the open-circuit current principle. In this example, all safety functions are processed via the PROFIsafe protocol. The MGB2 Modular is con-nected to a CX9020-0110-M930 from BECKHOFF.7AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN4. Overview of the communication data4.1.Input4.2.OutputTip: The individual abbreviations are explained in the operating instructionsApplication MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 38(Application) AP000236-01-02/215. Installing the GSD fileYou will require the corresponding GSD file in GSDML format to integrate the MGB2 Modular into the TwinCAT 3 hardware configuration:ÌGSDML-V2.33-EUCHNER-MBM_2512512_T14-YYYYMMDD.xmlYou will find the GSD files in the download area at . Always use the latest GSD file.Unzip the content of the GSDML file into the following directory: ÌC:/TwinCAT/3.1/Config/Io/ProfinetFigure 1:Content of the ZIP fileFigure 2: GSDML file path for TwinCAT 36. Setting the control system parametersSpecify the cycle time for the PlcTask. The value 2 must be set for a PROFINET application.Figure 3: PlcTask parameters9AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN7. TwinSAFE and PROFIsafe hardware addressing7.1.TwinSAFEThe TwinSAFE address must be set for the TwinSAFE logic module EL6910 and the fail-safe output module EL2904. It isset using the DIP switches on the left side of the TwinSAFE terminals.7.2. PROFIsafeThe PROFIsafe address (F_Dest_Add) is set on the bus module MBM using the DIP switches. The PROFIsafe address must be set to the value configured.The DIP switch setting is as follows from the F_Dest_Add 12 as configured in the hardware configurator:Table 1: DIP switch settingsApplication MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 310(Application) AP000236-01-02/218. Configuration of the MBM and the I/O peripherals8.1.Adding the I/O devices in the projectAdd the devices as follows:1. Open Solution Explorer , click I/O , then right-click Devices and select Scan from the context-sensitive menu.2.Select the PROFINET and EtherCAT controllers.Figure 4: Solution Explorer Figure 5: Selecting the controllers3. Activate the search for PROFINET devices in the following pop-up window, Scan for BoxesEN4. Compare the MAC address on the type label with the MAC address of the devices available in the network, and add theMBM to PROFINET with Add Devices.Figure 6: Adding MBM5. Then scan the real configuration. After completion of the scanning process, the hardware configuration appears asshown in Figure 7.Figure 7: Structure of the modules usedEN6. Complete the configuration of the MGB2 Modular with the modules used in the example. Begin by right-clicking on Term 2(EmptySlot), and use Insert New Item... to insert the module PROFIsafe 2 Bytes , PROFIsafe 4 Bytes orPROFIsafe 8 Bytes.Figure 8: Adding PROFIsafe modules Figure 9: Adding additional submodules7. Add modules and submodules to MGB2 Modularcorresponding to your layout.Figure 10: Hardware layout, MGB2 Modularset8.2. Setting the MGB2 Modular parameters8.2.1. PROFINETThe following PROFINET parameters must be set:ÌDevice name/station name (factory setting from GSD file): [euchner-mbm].ÌIP address: fixedFigure 11: PROFINET parametersFigure 12: PROFINET real time settingsÌIO cycle real time settingsUpdate time: Calculate update time automatically (recommended)Watchdog time: accepted update cycles without IO data: 3 (recommended)EN8.2.2. PROFIsafeThe following PROFIsafe parameters must be set:ÌF_Dest_Add (PROFIsafe address): 12 (TwinCAT 3 sets the default PROFIsafe address; addressing can be changed manu-ally).ÌF_WD_Time (time during which the control system expects a response from the PROFIsafe device): 600 ms. Factory setting from GSD file: [600 ms].Figure 13: PROFIsafe parameters8.3. Assigning PROFINET device name to the bus module MBM1. To assign the name to MGB2 Modular via TwinCAT, right-click the PROFINET controller and then select Scan.EN2. Select the MBM from the list. Enter the station name and assign it using Set Stationname. Additionally assign the IPaddress with Set IP configuration.Figure 15: Assigning device namesEN9. PLC program creationThe following program structure is used for PROFINET communication (non-safe communication):9.1.Structure of the connection for PROFINET I/O configurationThe input/output structure of the MGB2 Modular sets is mapped equivalently to the communication data in the ST_MGB-2modular_PN_IO structure.Figure 16:ST_MGB2modular_PN_IO9.2. Structure for readability of the inputs/outputsThe inputs and outputs of the MGB2 Modular are prepared for better readability in the ST_MGB2modular_IO structure. The data structure shown on the data sheet [chapter 4] is used as the template for this.Figure 17: Structure of inputsFigure 18: Structure of outputsEN9.3. Function block FB_EUCHNER_MGB2modularThe structure of the variables is copied to the structure of the inputs/outputs in the function block FB_EUCHNER_MGB2modular.9.3.1. Copying the CPU input structure to the MGB2 Modular structureFigure 19: Copying the CPU input structureEN9.3.2. Copying the MGB2 Modularoutput structure to the CPU structureFigure 20: Copying the MGB2 Modular output structures9.4. PROFINET programThe variable structure for PROFINET diagnostics is created in the PRG_ProfiNET program. Additionally, an instance of the function block FB_EUCHNER_MGB2modularis called.Figure 21: PRG_ProfiNET program9.5. EtherCAT programThe EtherCAT diagnosis can be read with the PRG_EtherCAT program.Figure 22: PRG_EtherCAT9.6. Main program MAINThe main program MAIN is used to call the subprograms PRG_ProfiNET and PRG_EtherCAT.Figure 23: MAIN program9.7. Linking the program variablesLinking establishes a connection between the MGB2 Modular input and output variables and the program structure. The CPU program must first be compiled for this purpose. The program can be compiled with Build Solution (Ctrl+Shift+B). You can then find the variables to be linked under the created CPU instance.1. Double-click the variable to be linkedEN2. Link the variables withLinked to...3. Select the input area to be linked, and complete with OKAll created variables must be linked as described in this example.Figure 24: Variables to be linked9.8. Transferring program to the PLCTransfer the program to the control system by clicking Activate configuration , and set the control system to Run mode.9.9. Observing the non-safe variablesThe inputs and outputs of the MGB2 Modular can be viewed using the block interface of the PRG_ProfiNET program. Go.online by clicking LoginEN10. Configuration of TwinSAFE – ProfiSAFEThe following chapter describes the configuration the TwinSAFE output and the ProfiSAFE connection of the MGB2 Modular.1. Set the PRG_TwinSAFE program as the PLC program.2. PRG_TwinSAFE variable declaration: The xTwinSAFE_Run and xTwinSAFE_Ack variables are required as transfer variablesto the safe control system.Figure 26: PRG_TwinSAFE variable declaration3. The submodule’s S3 button is used to implement acknowledgment of the safe control system in the event of an error.For this purpose, assign the variables as shown in Figure 27.Figure 27: Acknowledgment using the submodule’s button.4. Call PRG_TwinSAFE in the main programFigure 28: MAIN (PRG)EN5.Add the safety projectFigure 29:Adding safety project6. Create the target system: the Beckhoff terminal EL6910 must be selected as the target system. The terminal functionsas the PROFIsafe controller as well. The safe address is also entered. Map Serial Number and Map Project CRC can be activated for expanded diagnostics.Figure 30: Target system7. In the next step, the variables from PRG_TwinSAFE are assigned to the created Alias Devices ErrorAcknowledgementand Run. Open the properties by double-clicking the variable.Figure 31: Alias ErrorAcknowledgement Figure 32: Alias Run31AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN8.Add the PROFIsafe connection:Figure 33:Adding PROFIsafe connectionApplication MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 332(Application) AP000236-01-02/219. PROFIsafe settings of the MGB2 Modular : The assignment (mapping) to the slot PROFIsafe 2 Bytes , the safe address(physical DIP switch setting) and the F_WD_Time (600 ms from GSDML factory setting) must be set.Figure 34: PROFIsafe settings33AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN10.Add the TwinSAFE connection to terminal EL2904.Figure 35: Adding TwinSAFE connection11.Set terminal parameters: link to physical device and FSoE address (Fail Safe over EtherCAT; physical DIP switch setting).Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 334(Application) AP000236-01-02/21Figure 36: TwinSAFE settings EL290435AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3EN11. Creating the safety programThe safety engineering application is implemented in the sal (sal: Safety Application Language) worksheet belonging to theTwinSAFE group. It represents only an example of an application.11.1. Example of a safety programIn the following example, the safe output of terminal EL2904 (channel 1) is controlled by the bit LM_FI_UK. The conditionsfor the bit LM_FI_UK are met if the door is closed, the bolt tongue is in the locking module and guard locking is active.Figure 37: Example of a safety programApplication MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 336(Application) AP000236-01-02/21The variables are assigned for the TwinSAFE group (mapping) after addition of the blocks. Mapping must be performed for the variables xLM_FI_UK , xFO_1, Err Ack and Run/Stop.Figure 38: Mapping xLM_FI_UK Figure 39: Mapping xFO_137AP000236-01-02/21 (Application)Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3ENFigure 40: Mapping Err Ack Figure 41: Mapping Run11.2. Transferring safety programSave the overall project with Save Alland transfer the configuration with Activate Configuration. Subsequentlycheckand transfer the TwinSAFE program to the control system. The user name [default: Administrator], the password [default: TwinSAFE] and the serial number of the target system will be required for transfer.Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 338(Application) AP000236-01-02/2112. Important note – please observe carefully!This document is intended for a design engineer who possesses the requisite knowledge in safety engineering and knows the applicable standards, e.g. through training for qualification as a safety engineer. Only with the appropriate qualification is it possible to integrate the example provided into a complete safety chain.The example represents only part of a complete safety chain and does not fulfill any safety function on its own. In order to fulfill a safety function, the energy switch-off function for the danger zone and the software must also be considered in the safety evaluation, for example.The applications provided are only examples for solving certain safety tasks for protecting safety doors. The examples cannot be comprehensive due to the application-dependent and individual protection goals within a machine/installation.If questions concerning this example remain open, please contact us directly.According to the Machinery Directive 2006/42/EC, the design engineer of a machine or installation has the obligation to perform a risk assessment and take measures to reduce the risk. While doing this, the engineer must comply with the appli-cable national and international safety standards. Standards generally represent the current state-of-the-art. Therefore, the design engineer should continuously inform himself about changes in the standards and adapt his considerations to them. Relevant standards for functional safety include EN ISO 13849 and EN 62061. This application must be regarded only as assistance for the considerations about safety measures.The design engineer of a machine/installation has the obligation to assess the safety technology himself. The examples must not be used for an assessment, because only a small excerpt of a complete safety function was considered in terms of safety engineering here.In order to be able to use the safety switch applications correctly on safety doors, it is indispensable to observe the stan-dards EN ISO 13849-1, EN ISO 14119 and all relevant C-standards for the respective machine type. Under no circumstances does this document replace the engineer’s own risk assessment, and it cannot serve as the basis for a fault assessment.In particular in relation to a fault exclusion, it must be noted that a fault can be excluded only by the machine's or installation's design engineer and this action requires justification. A general fault exclusion is not possible. More information about fault exclusion can be found in EN ISO 13849-2.Changes to products or within assemblies from third-party suppliers used in this example can lead to the function no longer being ensured or the safety assessment having to be adapted. In any event, the information in the operating instructions on the part of EUCHNER, as well as on the part of third-party suppliers, must be used as the basis before this application is integrated into an overall safety function. If contradictions should arise between the operating instructions and this doc-ument, please contact us directly.Use of brand names and company namesAll brand names and company names stated are the property of the related manufacturer. They are used only for the clear identification of compatible peripheral devices and operating environments in relation to our products.Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 339 AP000236-01-02/21 (Application)EUCHNER GmbH + Co. KGKohlhammerstraße 1670771 Leinfelden-EchterdingenGermany***************Edition:AP000236-01-02/21Title:Application MGB2Integration of MGB2 Modular in Beckhoff TwinCAT 3Copyright:© EUCHNER GmbH + Co. KG, 02/2021Subject to technical modifications; no responsibility is accept-ed for the accuracy of this information.。
(1条消息)倍福beckhoff运动控制相关功能块,百晓生知识处理库发布由百晓生自创知识处理库整理清洗与发布,顶级知识整理加工生产python功能库。
转载请注明出处https:///gkbxs/article/details/116654106FB_MC_FeedTableMC_ GearInMultiMasterMC_Aborting 立即打断前动作,执行后动作MC_AxisParaMC_BlendingHigh 以较高的速度达到前动作的目标位置,然后执行后动作。
MC_BlendingLow 以较低的速度达到前动作的目标位置,然后执行后动作。
MC_BlendingNext 以后动作的速度达到前动作的目标位置,然后执行后动作。
MC_BlendingPrevious 以前动作的速度达到前动作的目标位置,然后执行后动作。
MC_BufferModeMC_Buffered 等前动作执行完成,停稳后再执行后动作。
MC_CAMACTIVATION_ASSOONASPOSSIBLE:考虑加速度和冲击在允许范围MC_CAMACTIVATION_ATMASTERAXISPOS:主轴绝对位置MC_CAMACTIVATION_ATMASTERCAMPOS:凸轮表的主轴位置,即主轴模态MC_CAMACTIVATION_INSTANTANEOUS :不考虑加速度是否在允许范围MC_CAMACTIVATION_NEXTCYCLE:下一凸轮表周期生效MC_CAM_RefMC_CamAddMC_CamExchange 添加、移除和更换凸轮表MC_CamExchange 添加、移除和更换凸轮表。
也可以使用MC_CamIn_VMC_CamIn 和 MC_CamIn_V 种电子凸轮耦合功能块:MC_CamIn 的接口和功能比较简单,就是固定个凸轮表MC_CamIn 耦合的,就不能切换凸轮表。
MC_CamInExtMC_CamIn_V 是MC_CamIn 的升级版,功能更强大,支持多个凸轮表的迭加和切换。
倍福模块的用途倍福模块是一种功能强大的模块化电子设备,可以广泛应用于不同的领域。
以下是该模块的主要用途及详细描述:1. 电子产品控制:倍福模块可以用于控制各种电子产品,例如智能手机、平板电脑、电视机、空调等。
通过与这些电子设备的连接,用户可以通过倍福模块控制这些设备的开关、音量调节、频道切换等功能。
2. 家居自动化:倍福模块可以与家居设备连接,实现智能家居自动化。
例如,可以通过倍福模块控制灯光的开关、调节亮度和颜色,控制窗帘的开合,调节空调的温度和风速等。
3. 安防控制:倍福模块可以与安防设备配合使用,提供全面的安防控制。
例如,可以通过倍福模块监控门窗的状态,当有异常情况时,自动触发警报或者推送消息给用户。
同时,倍福模块还可以与监控摄像头连接,实现远程监控和录像功能。
4. 物联网应用:倍福模块是物联网应用的核心组成部分。
通过与其他物联网设备的连接,倍福模块可以实现数据传输和控制。
例如,可以通过倍福模块和智能传感器连接,实现环境监测和数据采集;可以通过倍福模块和智能家电连接,实现智能控制和能源管理。
5. 工业自动化:倍福模块也可以广泛应用于工业自动化领域。
例如,可以通过倍福模块和PLC(可编程逻辑控制器)连接,实现工业流水线的自动化控制;可以通过倍福模块和传感器连接,实现工厂设备的状态监测和故障诊断。
6. 医疗设备:倍福模块还可以用于医疗设备中,实现远程监护和医疗设备的远程控制。
例如,可以通过倍福模块连接心率监测器、血压计等设备,将患者的数据传输到云端,并实时监测患者的健康状况。
7. 教育领域:倍福模块在教育领域也有广泛的应用。
例如,可以通过倍福模块和电子白板连接,实现互动教学;可以通过倍福模块和机器人连接,实现编程教育。
8. 农业领域:倍福模块在农业领域也可以发挥重要作用。
通过与传感器的连接,倍福模块可以监测土壤湿度、温度、光照等参数,实现精准农业管理。
同时,倍福模块还可以与灌溉系统和肥料供给系统连接,实现自动化的农业生产。
倍福模块配置方式1. 倍福模块简介倍福模块是一款基于AT指令集的模块,主要有以下特性:•全球频段•低功耗•自适应•多接口支持倍福模块可以用于很多物联网相关的场景,例如智能家居、车联网、智能健康等等。
2. 倍福模块连接方式倍福模块可以通过多种接口连接到不同的设备中,其中最常见的接口是UART接口。
在连接时,需要注意一些细节。
2.1 UART接口连接•设备电压倍福模块支持的电压范围是2.5V~4.8V,不能接到高于4.8V的电压上。
•波特率设置倍福模块默认的波特率为115200,如果需要更改,可以通过命令AT+IPR=xxxx来设置。
•数据位、停止位和校验位设置倍福模块的默认数据位为8,停止位为1,无校验位。
如果需要更改,可以通过命令AT+UART=xxxx,x,x,x来设置。
2.2 其他接口连接除了UART接口,倍福模块还支持其他接口连接,如SPI接口、I2C接口、USB接口等等。
在连接时,需要注意不同接口的电平、速率等参数设置。
3. 倍福模块配置在连接成功后,需要对倍福模块进行一些配置,以满足自己的需求。
以下是常用的配置命令:•设置模块名命令:AT+NAME=xxxx例如:AT+NAME=myModule•设置模块MAC地址命令:AT+MAC=xx-xx-xx-xx-xx-xx例如:AT+MAC=00-11-22-33-44-55•设置连接密码命令:AT+PASSWORD=xxxx例如:AT+PASSWORD=123456•设置服务器地址和端口命令:AT+IP=xxxxxx,xxxx例如:AT+IP=192.168.1.100,8080•设置心跳间隔命令:AT+HB=xxxx例如:AT+HB=604. 倍福模块的常用指令倍福模块支持的AT指令非常多,以下是一些常用的指令:•查询模块状态命令:AT返回:OK•查询模块版本命令:AT+VER返回:软件版本:Vxx.xx.xx,硬件版本:Vxx.xx.xx •查询当前连接状态命令:AT+CON返回:当前状态:已连接或当前状态:未连接•查询信号强度命令:AT+CSQ返回:+CSQ: xx,xx5. 倍福模块的应用实例倍福模块可以应用于很多场景中,以下是一个简单的应用实例。
beckhoffax5140说明书
beckhoff ax5140说明书
1、密码开锁(具有防泄功能,在输入正确密码前可按任意多个数字来防止密码泄露)。
输入设置好的开锁密码,按#号键,门锁发出开锁成功的提示音表示开锁成功。
2、感应卡开锁:将已授权的门卡靠近感应区,门锁发出开锁成功的提示音表示开锁成功。
3、指纹开锁:将已授权的指纹放在窗口上,发出开锁成功的提示音表示开锁成功。
4、遥控器开关锁:按遥控器开锁键,向下转手柄,开锁成功;当门处于关闭状态时,按遥控器关锁建,上提把手,关锁成功。
5、室内反锁:门关闭后,室内反锁后,室外所有方式均不能开锁。
6。
室外锁门:将门关闭后,按键上锁,上提把手,关锁成功。
kl2794beckhoff工作原理
Beckhoff KL2794是一款高精度、高可靠性的数据采集模块。
它的工作原理可以简单
地概括为,将传感器采集到的模拟信号转换为数字信号,并通过总线传输至主机让主机进
行处理。
具体而言,KL2794通过内置的ADC(模数转换器)将模拟量信号转换为数字量信号,
并根据其采样频率和分辨率进行滤波和处理,以保证采集数据的精度和稳定性。
此外,
KL2794还配备了独立的刻度模块,可以在不同量程下对信号进行线性校准,进一步提高采集数据的准确性。
KL2794的数据传输采用了高速总线技术,如Profibus、CANopen、Ethernet等,以确保数据的实时性和快速性。
具体而言,KL2794通过总线发送采集数据,并在主机端接收处理指令以及配置信息,以实现数据的自动化采集和处理。
总体来说,KL2794的工作原理是将传感器采集到的模拟信号进行数字化、滤波处理并通过总线传输至主机端进行处理和展示,以实现高精度、高可靠性的数据采集和处理任务。
它的应用范围广泛,涵盖了工业自动化、机器人控制、医疗设备、环境监测、能源管理等
众多领域,可以为用户提供高效、可靠、精确的数据采集和处理服务。
倍福模块工作原理倍福模块是一种高科技的技术,它的目的是为了帮助用户更有效的使用能量和提高节约能源的能力。
倍福模块可以有效的减少电能的消耗,进而节约成本。
它通过分式管理来实现,有效的控制电力的使用,减少能量损耗,并有效的增加技术的利用率。
倍福模块的工作原理是通过采用分布式技术,以便更有效地控制节能系统。
它由一系列的控制模块组成,每个模块都可以根据用户的需求来调整能源的消耗,从而有效的节省能源。
它还可以根据用户的实际情况和客观环境,自动调节节能系统,实现节能的目的。
倍福模块还可以通过硬件传感器和软件来实现实时能源监测。
通过数据采集和分析,可以准确掌握能源利用状况,从而更好地控制能源消耗。
此外,倍福模块也可以根据用户的需求,智能控制节能系统,实现更好的能源利用。
倍福模块,作为一种新型的技术,不仅能够控制能源的消耗,还可以提高节能的效果。
它的主要特点是,可以自动调节节能系统,从而实现有效的节能,而不需要用户手动操作。
它还可以通过硬件传感器和软件来实现实时能源监测,准确掌握能源利用状况,更好地控制能源消耗。
倍福模块的应用越来越多,它不仅能够更好地控制能源,还能提高节能系统的效率,提高节能效果,减少能源损耗,有助于保护环境,提高生活质量。
倍福模块能源管理系统的应用范围非常广泛,它可以被广泛应用于商用建筑、工业厂房、车辆电源、农业和林业、医疗机构、公共设施、能源管理系统等行业,它可以有效的控制电能的消耗,进而节约成本,及时发现能源的损耗,有助于提高能源综合利用效率,环保节能,保护环境,提高人们的生活质量。
综上所述,倍福模块是一种高科技的技术,它有助于节约能源,提高节能效果,有助于保护环境,提高生活质量。
在未来,倍福模块将继续改善能源管理,帮助人们更有效的使用能源,为人们带来更多的福利。
塔基模块
模块供电EL9210
安全模块EL6900
本组为输出4回路
ETHERCAT通讯模块EK1110
数字量输入
E1104
通过以太网通讯,
实现模块的拓展,
用于一组模块和另
一组模块串联
输入2的通道有信号
时指示绿灯亮
输入4的通道有信号
时指示绿灯亮
数字输入1、2、3、4通道
为信号的反馈接收点,采
集到的数字信息将由此通
道提交给PLC
数字量输出EL2004
输出2正常输出24V
时,指示绿灯亮
输入4回路
模拟量输入EL3122
ETERCAT 通讯模块EK1521
CANOPE 通讯模块EL6751
通讯正常
CPU
状态错误
机舱模块
数字量输入EL1104
数字量输出EL2004
系统端子模块EL9410
安全模块EL1904
模拟量输入EL3122
模拟量输入EL3204
模拟量输入EL3062
EL4002
系统端子模块EL9410
位置测量端子模块EL5001
位置测量模块EL5151
EL6731。
beckhoff模块说明beckhoff模块说明一、简介beckhoff模块是一种高性能的工业控制模块,广泛应用于各种自动化系统中。
它具有模块化的设计,可以根据实际需求进行灵活组合和配置,满足各种复杂控制任务的要求。
beckhoff模块采用先进的技术和可靠的质量,为工业生产提供了可靠的保障和高效的控制。
二、技术特点1. 高性能:beckhoff模块采用了先进的控制算法和高速通信技术,实现了高精度、高速度的控制。
它可以满足工业生产对精度和速度的要求,提高生产效率和产品质量。
2. 模块化设计:beckhoff模块的设计十分灵活,可以根据实际需求进行灵活组合和配置。
它提供了各种模块,包括数字输入/输出模块、模拟输入/输出模块、通信模块等,用户可以根据实际情况选择合适的模块,组成自己需要的控制系统。
3. 可编程性:beckhoff模块支持多种编程语言,包括C语言、ST语言等,用户可以根据自己的需求选择合适的编程语言进行编程。
它还提供了友好的开发环境和丰富的函数库,方便用户进行编程和调试。
4. 可靠性:beckhoff模块采用了可靠的硬件设计和工艺制造,经过严格的测试和验证,具有良好的稳定性和可靠性。
它能够在恶劣的工作环境中正常工作,并且具有长寿命和低故障率。
三、应用领域beckhoff模块广泛应用于各个领域的自动化系统中,包括工业生产、能源管理、物流运输、医疗设备等。
它可以用于控制各种设备和系统,如机床、输送系统、制造设备等。
同时,beckhoff模块还可以与其他系统进行集成,实现整个生产过程的有效管理和控制。
四、使用案例1. 机床控制:beckhoff模块可以应用于机床控制系统中,实现对机床的高精度、高速度的控制。
它可以控制机床的加工过程、运动轨迹等,并且可以进行数据采集和监控,提高生产效率和产品质量。
2. 物流运输:beckhoff模块可以应用于物流运输系统中,实现对物流运输过程的控制和管理。
它可以对货物进行追踪、定位和分拣,提高物流运输的效率和安全性。
塔基模块
模块供电EL9210
安全模块EL6900
本组为输出4回路
ETHERCAT通讯模块EK1110
数字量输入
E1104
通过以太网通讯,
实现模块的拓展,
用于一组模块和另
一组模块串联
输入2的通道有信号
时指示绿灯亮
输入4的通道有信号
时指示绿灯亮
数字输入1、2、3、4通道
为信号的反馈接收点,采
集到的数字信息将由此通
道提交给PLC
数字量输出EL2004
输出2正常输出24V
时,指示绿灯亮
输入4回路
模拟量输入EL3122
ETERCAT 通讯模块EK1521
CANOPE 通讯模块EL6751
通讯正常
CPU
状态错误
机舱模块
数字量输入EL1104
数字量输出EL2004
系统端子模块EL9410
安全模块EL1904
模拟量输入EL3122
模拟量输入EL3204
模拟量输入EL3062
EL4002
系统端子模块EL9410
位置测量端子模块EL5001
位置测量模块EL5151
EL6731。