pid控制方法
- 格式:doc
- 大小:30.50 KB
- 文档页数:3
PID控制器的原理与调节方法PID控制器是一种常见的控制算法,广泛应用于工业自动化系统中。
它是通过对反馈信号进行比例、积分和微分处理,来实现对被控对象的控制。
本文将介绍PID控制器的原理和调节方法,并探讨其在实际应用中的一些注意事项。
一、PID控制器原理PID控制器的原理基于三个基本元素:比例、积分和微分。
这三个元素分别对应控制误差的当前值、累积值和变化值。
PID控制器根据这三个元素的加权和来生成控制信号,以实现对被控对象的稳定控制。
1. 比例元素(P)比例元素是根据当前的控制误差进行调节的。
它直接乘以一个比例系数,将误差放大或缩小,生成相应的控制信号。
比例元素的作用是快速响应控制误差,但可能引起超调和震荡。
2. 积分元素(I)积分元素是对控制误差的累积值进行调节的。
它将误差进行积分,得到一个累积值,并乘以一个积分系数,生成相应的控制信号。
积分元素的作用是消除稳态误差,但可能导致系统响应过慢或产生超调。
3. 微分元素(D)微分元素是对控制误差的变化率进行调节的。
它将误差进行微分,得到一个变化率,并乘以一个微分系数,生成相应的控制信号。
微分元素的作用是预测误差的变化趋势,以提前调整控制信号,但可能引起过度调节和噪声放大。
通过调节比例、积分和微分元素的系数权重,可以优化PID控制器的响应速度、控制精度和抗干扰能力。
二、PID控制器调节方法PID控制器的调节方法通常包括经验法和自整定法两种。
1. 经验法经验法是基于经验和试错的方法,通过手动调节PID控制器的系数来实现对被控对象的控制。
具体步骤如下:步骤一:将积分和微分元素的系数设为零,只调节比例元素的系数。
步骤二:逐渐增大比例系数,观察系统的响应,并调整至系统稳定且响应时间较短。
步骤三:增加积分系数,减小系统的稳态误差,但要注意避免系统过调和震荡。
步骤四:增加微分系数,提高系统对突变的响应速度,但要避免过度调节和噪声放大。
2. 自整定法自整定法是基于系统辨识和参数整定理论的方法,通过对系统的频域或时域特性进行分析,自动计算得到PID控制器的系数。
PID控制器的参数整定PID控制器是一种常用的闭环控制器,可以根据系统的输入和输出之间的误差来调整控制器的参数,从而实现对系统的稳定控制。
PID控制器的参数整定是指确定控制器的比例系数Kp、积分时间Ti和微分时间Td的过程。
下面将详细介绍PID控制器的参数整定方法和相关的考虑因素。
一、参数整定方法:1.经验整定法:根据经验将控制器的参数进行初步设定。
经验整定法通常通过试验或先验知识来确定参数,根据具体的应用场景不断调整,以达到较好的控制效果。
该方法常用与简单的控制系统或者无法获得系统数学模型的情况下。
2. Ziegler-Nichols整定法:Ziegler-Nichols整定法是一种基于试验的整定方法。
该方法首先暂时关闭积分和微分控制,只调整比例控制系数Kp,使系统达到临界稳定状态。
然后测量临界增益Ku和临界周期Pu,根据不同类型的控制系统(比例型、积分型和微分型),采用不同的参数整定公式确定Kp、Ti和Td的初始值,再根据系统的实际响应实时调整。
3. Ziegler-Nichols改进整定法(Chien-Hrones-Reswich法):该方法是对Ziegler-Nichols整定法的改进,可以更精确地测定控制器参数。
该方法同样通过测量系统的临界增益Ku和临界周期Pu,但是对参数的计算公式进行了修正,提高了参数整定的准确性。
4. 极点配置法(Pole Placement):极点配置法是一种基于系统数学模型的整定方法。
通过分析系统的传递函数,确定控制器的极点位置,从而使系统的闭环响应满足所需的性能指标。
该方法需要对系统的数学模型有较详细的了解,适用于相对复杂的控制系统。
5.自整定法:自整定法是一种自动寻优的整定方法,常用于智能控制器中。
该方法通过观察系统的动态性能,通过迭代寻找最优的参数组合。
自整定法通常采用优化算法(如遗传算法、粒子群算法等)来最优参数,在一定的性能和收敛速度之间进行权衡。
二、参数整定的考虑因素:1.系统的稳定性:控制器的参数整定应确保系统的闭环响应稳定。
pid控制器参数整定方法及应用PID控制器是工业自动化中常用的一种控制器,其参数整定方法及应用对于控制系统的稳定性和性能有着至关重要的作用。
本文将详细介绍PID控制器参数整定方法及应用。
一、PID控制器概述PID控制器是由比例控制器、积分控制器和微分控制器三部分组成的,利用反馈信号进行控制。
其中比例控制器通过测量误差的大小,对被控制对象进行控制,积分控制器通过测量误差的积分,对被控制对象进行控制,微分控制器通过测量误差的微分,对被控制对象进行控制。
PID控制器通过组合三个控制方式,可以对被控制对象进行更加精确的控制。
二、PID控制器参数整定方法1. 经验法PID控制器参数整定的第一步是通过经验法确定参数初值。
经验法是根据实际经验和实验数据得出的整定参数,是参数初值的基础。
经验法的参数初值如下:比例系数Kp取值为被控对象动态响应曲线的最大斜率处的斜率倒数;积分时间Ti取值为被控对象动态响应曲线从起点到终点的时间长度;微分时间Td取值为被控对象动态响应曲线的最大曲率处的时间。
2. Ziegler-Nichols法Ziegler-Nichols法是广泛应用的PID控制器参数整定方法之一,其步骤如下:a.将比例系数Kp调至临界增益Kcr处,此时系统开始振荡;b.测量振荡周期Tu;c.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5Kcr ——PI型系统 0.45Kcr Tu/1.2 —PD型系统 0.8Kcr — Tu/8PID型系统 0.6Kcr 0.5Tu Tu/83. Chien-Hrones-Reswick法Chien-Hrones-Reswick法是另一种常用的PID控制器参数整定方法,其步骤如下:a.测量被控对象的动态响应曲线,并计算出其惯性时间常数L、时延时间T和时间常数K;b.根据系统类型选择合适的参数整定公式,计算出参数初值:系统类型 Kp Ti TdP型系统 0.5K ——PI型系统 0.45K L —PD型系统 0.8K — TPID型系统 0.6K 0.5L 0.125T三、PID控制器应用PID控制器广泛应用于工业自动化中,例如温度控制、压力控制、流量控制等。
pid参数设置方法PID参数设置是控制系统中的一项重要工作,它决定了系统对外界干扰和参考信号的响应速度和稳定性。
PID(比例-积分-微分)控制是一种基本的控制方法,通过调节比例、积分和微分三个参数,可以优化控制系统的性能。
本文将介绍三种常用的PID参数设置方法:经验法、试探法和自整定法。
一、经验法:经验法是一种基于经验和实际运行经验的参数设置方法。
它通常适用于对系统了解较多和试验数据比较丰富的情况下。
经验法的优点是简单易懂,但需要有一定的经验基础。
具体步骤如下:1.比例参数的设置:将比例参数设为一个较小的值,然后通过试验观察系统的响应情况。
如果系统的响应过冲很大,说明比例参数太大;如果响应过于迟缓,则说明比例参数太小。
根据这些观察结果,逐步调整比例参数的大小,直到系统的响应达到理想状态。
2.积分参数的设置:将积分参数设为一个较小的值,通过试验观察系统的响应情况。
如果系统存在静差,说明积分参数太小;如果系统过冲或振荡,说明积分参数太大。
根据这些观察结果,逐步调整积分参数的大小,直到系统的响应达到理想状态。
3.微分参数的设置:将微分参数设为0,通过试验观察系统的响应情况。
如果系统过冲或振荡,说明需要增加微分参数;如果系统响应过缓或不稳定,说明需要减小微分参数。
根据这些观察结果,逐步调整微分参数的大小,直到系统的响应达到理想状态。
二、试探法:试探法是一种通过试验获取系统频率响应曲线,然后根据曲线特点设置PID参数的方法。
具体步骤如下:1.首先进行一系列的试验,改变输入信号(如阶跃信号、正弦信号等)的幅值和频率,记录系统的输出响应。
2.根据试验数据,绘制系统的频率响应曲线。
根据曲线特点,选择合适的PID参数。
-比例参数:根据曲线的峰值响应,选择一个合适的比例参数。
如果曲线的峰值响应较小,比例参数可以增大;如果曲线的峰值响应较大,比例参数可以减小。
-积分参数:根据曲线的静态误差,选择一个合适的积分参数。
如果曲线存在静差,积分参数可以增大;如果曲线没有静差,积分参数可以减小。
PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。
1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。
控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。
微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。
由于计算机的决策直接作⽤于过程,故称为直接数字控制。
DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。
(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。
a、PID调节器的微分⽅程式中b、PID调节器的传输函数a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。
b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。
积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。
c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。
PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID控制算法(PID控制原理与程序流程)⼀、PID控制原理与程序流程(⼀)过程控制的基本概念过程控制――对⽣产过程的某⼀或某些物理参数进⾏的⾃动控制。
1、模拟控制系统图5-1-1 基本模拟反馈控制回路被控量的值由传感器或变送器来检测,这个值与给定值进⾏⽐较,得到偏差,模拟调节器依⼀定控制规律使操作变量变化,以使偏差趋近于零,其输出通过执⾏器作⽤于过程。
控制规律⽤对应的模拟硬件来实现,控制规律的修改需要更换模拟硬件。
2、微机过程控制系统图5-1-2 微机过程控制系统基本框图以微型计算机作为控制器。
控制规律的实现,是通过软件来完成的。
改变控制规律,只要改变相应的程序即可。
3、数字控制系统DDC图5-1-3 DDC系统构成框图DDC(Direct Digital Congtrol)系统是计算机⽤于过程控制的最典型的⼀种系统。
微型计算机通过过程输⼊通道对⼀个或多个物理量进⾏检测,并根据确定的控制规律(算法)进⾏计算,通过输出通道直接去控制执⾏机构,使各被控量达到预定的要求。
由于计算机的决策直接作⽤于过程,故称为直接数字控制。
DDC系统也是计算机在⼯业应⽤中最普遍的⼀种形式。
(⼆)模拟PID调节器1、模拟PID控制系统组成图5-1-4 模拟PID控制系统原理框图2、模拟PID调节器的微分⽅程和传输函数PID调节器是⼀种线性调节器,它将给定值r(t)与实际输出值c(t)的偏差的⽐例(P)、积分(I)、微分(D)通过线性组合构成控制量,对控制对象进⾏控制。
a、PID调节器的微分⽅程式中b、PID调节器的传输函数3、PID调节器各校正环节的作⽤a、⽐例环节:即时成⽐例地反应控制系统的偏差信号e(t),偏差⼀旦产⽣,调节器⽴即产⽣控制作⽤以减⼩偏差。
b、积分环节:主要⽤于消除静差,提⾼系统的⽆差度。
积分作⽤的强弱取决于积分时间常数TI,TI越⼤,积分作⽤越弱,反之则越强。
c、微分环节:能反应偏差信号的变化趋势(变化速率),并能在偏差信号的值变得太⼤之前,在系统中引⼊⼀个有效的早期修正信号,从⽽加快系统的动作速度,减⼩调节时间。
PID控制原理与参数的整定方法PID控制(Proportional, Integral, Derivative)是一种常用的控制算法,广泛应用于工业控制中。
PID控制的原理在于根据系统的偏差来调整控制器的输出,通过比例、积分和微分三个部分的组合来实现稳定控制。
PID控制具有简单、易于实现以及对多种控制系统都适用的优点。
1. 比例部分(Proportional):控制器的输出与系统偏差成比例关系。
比例参数Kp越大,控制器对于系统偏差的响应越强烈。
2. 积分部分(Integral):控制器的输出与系统偏差的积分成比例关系,用于消除偏差的累积效应。
积分参数Ki越大,积分作用越明显,能够更快地消除较大的稳态偏差。
3. 微分部分(Derivative):控制器的输出与系统偏差的导数成比例关系,用于预测系统响应趋势。
微分参数Kd越大,控制器对于系统变化率的响应越快,从而减小超调和加快系统的响应速度。
1.经验整定法:通过试验和经验来估计PID参数。
该方法适用于绝大多数工控场合,但需要经验丰富的工程师进行调试。
2. Ziegler-Nichols整定法:由Ziegler和Nichols提出的一种经典的整定方法。
通过增大比例参数Kp,逐步增大积分参数Ki和微分参数Kd,直到系统出现震荡,然后通过震荡周期和幅值来计算PID参数。
3. Chien-Hrones-Reswick整定法:由Chien、Hrones和Reswick提出的整定方法。
通过对系统的动态响应进行数学分析,求解PID参数的合理取值。
4. Lambda调整法:通过修正Ziegler-Nichols整定法的参数,通过对系统的响应特性进行校正来得到优化的PID参数。
5.自适应整定法:通过分析系统的响应特性,利用数学模型和自适应算法来实时调整PID参数,以使系统保持最佳的控制性能。
需要指出的是,PID控制器参数的整定是一个复杂的问题,依赖于具体的控制对象和控制要求。
PID调节参数及方法PID(比例-积分-微分)调节是一种常用的自动控制器设计方法,广泛应用于各种控制系统中。
其基本原理是根据控制对象的反馈信号来计算出输出信号,从而使控制对象的输出尽可能接近设定值。
PID控制器的参数包括比例系数Kp、积分时间Ti和微分时间Td。
下面将分别介绍这些参数的调节方法以及应用案例。
1.比例系数Kp的调节方法:比例系数Kp用于调节控制器对误差的响应速度。
Kp越大,控制器对误差的响应越快,但也容易导致系统的超调和震荡。
调节Kp时可以采用试控制法,逐渐增大Kp并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Kp的值。
2.积分时间Ti的调节方法:积分时间Ti用于调节控制器对系统稳态误差的补偿能力。
增大Ti可以减小系统的稳态误差,但也容易导致系统的超调和震荡。
调节Ti时可以采用试控制法,逐渐增大Ti并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Ti的值。
3.微分时间Td的调节方法:微分时间Td用于调节控制器对系统的动态响应速度。
增大Td可以提高系统的快速响应能力,但也容易导致系统的超调和震荡。
调节Td时可以采用试控制法,逐渐增大Td并观察系统的响应情况,直到系统出现超调或不稳定为止,然后适当减小Td的值。
同时,还有一些常用的PID调节方法:- Ziegler-Nichols 法:通过实验步骤进行参数调节,包括确定比例放大倍数Ku、临界周期Tu和临界增益Kc,然后根据不同的控制对象类型选择合适的参数调整方法。
- Chien-Hrones-Reswick(CHR)法:通过建立传递函数模型,根据系统的特性分析参数调节方法,适用于非线性和时变系统。
-直接数值调整法:根据经验公式直接对参数进行调整,例如根据系统的响应时间、超调量等指标进行调整。
下面是一个PID调节的应用案例:假设有一个温度控制系统,通过调节加热器的功率来控制目标温度。
系统的传递函数为:G(s)=K/(Ts+1)根据实验数据,目标温度为100°C,实际温度为87°C,采样时间为0.1秒。
控制系统中PID控制算法的详解在控制系统中,PID控制算法是最常见和经典的控制算法之一。
PID控制算法可以通过对反馈信号进行处理,使得控制系统能够实现稳定、精确的控制输出。
本文将详细介绍PID控制算法的原理、参数调节方法和优化方式。
一、PID控制算法的原理PID控制算法是由三个基本部分组成的:比例控制器、积分控制器和微分控制器。
这三个部分的输入都是反馈信号,并根据不同的算法进行处理,最终输出控制信号,使得系统的输出能够与期望的控制量保持一致。
A. 比例控制器比例控制器是PID控制算法的第一部分,其输入是反馈信号和期望控制量之间的差值,也就是误差信号e。
比例控制器将误差信号与一个比例系数Kp相乘,得到一个控制信号u1,公式如下:u1=Kp*e其中,Kp是比例系数,通过调节Kp的大小,可以改变反馈信号对控制输出的影响程度。
当Kp增大时,控制输出也会随之增大,反之亦然。
B. 积分控制器积分控制器是PID控制算法的第二部分,其输入是误差信号的累积量,也就是控制系统过去一定时间内的误差总和。
积分控制器将误差信号的累积量与一个积分系数Ki相乘,得到一个控制信号u2,公式如下:u2=Ki*∫e dt其中,Ki是积分系数,通过调节Ki的大小,可以改变误差信号积分对控制输出的影响程度。
当Ki增大时,误差信号积分的影响也会增强,控制输出也会随之增大,反之亦然。
C. 微分控制器微分控制器是PID控制算法的第三部分,其输入是误差信号的变化率,也就是控制系统当前误差与上一个采样时间的误差之差,用微分运算符表示为de/dt。
微分控制器将de/dt与一个微分系数Kd相乘,得到一个控制信号u3,公式如下:u3=Kd*de/dt其中,Kd是微分系数,通过调节Kd的大小,可以改变误差信号变化率对控制输出的影响程度。
当Kd增大时,误差信号的变化率的影响也会增强,控制输出也会随之增大,反之亦然。
综合上述三个控制部分可以得到一个PID控制输出信号u,公式如下:u=u1+u2+u3二、PID控制算法的参数调节PID控制算法的实际应用中,需要对其参数进行调节,以达到控制系统稳定、精确的控制输出。
什么是PID控制?目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。
同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。
智能控制的典型实例是模糊全自动洗衣机等。
自动控制系统可分为开环控制系统和闭环控制系统。
一个控控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。
控制器的输出经过输出接口、执行机构,加到被控系统上;控制系统的被控量,经过传感器,变送器,通过输入接口送到控制器。
不同的控制系统,其传感器、变送器、执行机构是不一样的。
比如压力控制系统要采用压力传感器。
电加热控制系统的传感器是温度传感器。
目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。
利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。
可编程控制器(PLC)是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。
还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。
1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。
在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。
2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。
PID控制原理及编程方法PID控制是一种常见的控制算法,用于调节系统输出与期望输入之间的偏差。
PID控制的原理是根据当前的误差、误差变化率和误差累积值来调整系统输出,从而使系统输出逐渐接近期望输入。
PID控制具有简单易实现、调节性能良好的特点,被广泛应用于各种自动控制系统中。
比例项是根据当前误差的大小来调整系统输出,比例增益参数Kp决定了比例项的权重。
当误差较大时,比例项的影响较大,系统输出会迅速调整;当误差较小时,比例项的影响较小。
积分项是根据误差累积值来调整系统输出,积分增益参数Ki决定了积分项的权重。
积分项可以弥补比例项无法完全消除的稳态误差,使系统更加准确地跟踪期望输入。
微分项是根据误差变化率来调整系统输出,微分增益参数Kd决定了微分项的权重。
微分项可以抑制系统的震荡和超调,使系统响应更加平滑。
u(t) = Kp * e(t) + Ki * ∫e(t)dt + Kd * de(t)/dt其中,u(t)为系统输出,e(t)为当前误差,de(t)/dt为误差变化率。
离散PID控制适用于基于采样的离散系统,通常在嵌入式系统中应用较多。
离散PID控制的基本步骤如下:1.初始化PID参数:设置比例增益Kp、积分增益Ki和微分增益Kd的初值,以及误差累积值和上一次误差的初值。
2.读取当前输入和期望输入。
3.计算当前误差:e(t)=期望输入-当前输入。
4. 计算比例项:Proportional = Kp * e(t)。
5. 计算积分项:Integral = Ki * ∑e(t)dt。
其中,∑e(t)dt是误差累积值,可以通过将当前误差加到上一次误差累积值上来计算。
6. 计算微分项:Derivative = Kd * (e(t) - 上一次误差)。
7. 计算PID输出:u(t) = Proportional + Integral + Derivative。
8.将PID输出作为系统控制信号。
9.更新上一次误差和误差累积值。
pid控制面板的使用方法【原创实用版4篇】《pid控制面板的使用方法》篇1PID 控制面板是一种用于调节控制系统的设备,通常包括比例、积分和微分三个控制器。
在使用PID 控制面板时,需要按照以下步骤进行操作:1. 连接传感器和执行器:将传感器和执行器连接到PID 控制面板的相应端口,以获取系统实时的反馈信息和控制执行器的输出。
2. 设置PID 参数:根据系统的特性和实际需求,设置比例、积分和微分三个控制器的参数。
比例控制器的参数决定了控制器输出的变化量与偏差之间的比例关系,积分控制器的参数决定了控制器输出的变化量与偏差积分值之间的比例关系,微分控制器的参数决定了控制器输出的变化量与偏差变化率之间的比例关系。
3. 启动控制系统:打开PID 控制面板的电源,启动控制系统。
此时,PID 控制器会根据设置的参数自动计算并输出控制信号,控制执行器的动作。
4. 调试系统:在系统运行过程中,根据实际需求和系统反馈信息,逐步调整PID 参数,以达到所需的控制效果。
需要注意的是,在调整参数时,应该缓慢、渐进地调整,以避免系统出现剧烈波动或不稳定的情况。
5. 维护系统:在系统运行过程中,定期检查传感器、执行器和PID 控制面板的工作状态,确保系统的稳定性和可靠性。
如果出现异常情况,应及时进行维护和修理。
《pid控制面板的使用方法》篇2PID 控制面板是一种用于调节控制系统的工具,通常用于工业自动化领域。
PID 控制器使用比例、积分和微分三种控制算法来调整控制系统的输出,以达到所需的输出或目标。
使用PID 控制面板时,需要先将面板连接到控制系统的输入和输出设备上。
然后,根据控制系统的需要,设置PID 控制器的参数,包括比例增益、积分时间和微分时间等。
在设置参数时,需要根据控制系统的具体情况进行调整。
一般来说,初调时参数应该设置得较小,然后慢慢调大,直到系统波动足够小,再调节积分或微分系数。
过大的参数值会导致系统不稳定,持续振荡;过小的参数值又会使系统反应迟钝。
PID控制算法在空调系统中的应用非常广泛,它是一种闭环控制策略,用于调节空调系统的出风温度、湿度等参数,以保持室内环境的舒适度。
PID代表比例(Proportional)、积分(Integral)和微分(Differential)三个控制环节。
在空调系统中,PID控制器接收到设定的目标温度(如15℃)和实际测量的出风温度(如13℃),计算出两者之间的偏差(2℃)。
然后,PID控制器根据这个偏差值,通过比例(P)、积分(I)和微分(D)三个环节来计算控制信号。
比例控制(P):根据当前偏差值的大小,控制器输出一个与偏差成正比的信号,以调整空调系统的输出,如调节制冷或制热的功率。
比例控制可以快速响应偏差,但可能导致系统存在稳态误差。
积分控制(I):积分环节对偏差值进行累积,以消除稳态误差。
当系统存在持续的偏差时,积分控制会逐渐增加或减少控制信号,直到偏差消除。
微分控制(D):微分环节对偏差值的变化率进行测量,有助于预测系统的未来行为,从而提前调整控制信号,减少超调和振荡,提高系统的动态响应。
在实际应用中,PID控制器的参数(Kp、Ki、Kd)需要根据空调系统的特定特性进行调整。
通常,调整过程从比例控制开始,然后加入积分控制,最后根据需要加入微分控制。
通过适当的参数调整,PID控制器可以实现对空调系统的精确控制,确保室内温度稳定在设定值附近,同时避免过度反应和系统振荡。
pid控制原理及编程方法PID控制是一种常用的控制算法,可以根据给定的目标值和实际值,通过不断调整输出值,使得实际值尽可能接近目标值。
PID控制的原理可以通过以下几个步骤来理解和实现。
1. 比例控制(P控制):根据目标值和实际值的偏差,乘以一个比例增益系数Kp得到控制量的变化量,作为输出。
控制量的变化量 = Kp * (目标值 - 实际值)2. 积分控制(I控制):将偏差的累积值乘以一个积分增益系数Ki得到控制量的变化量,作为输出。
这个步骤主要是为了解决系统存在的偏差问题。
控制量的变化量 += Ki * (目标值 - 实际值)* Δt3. 微分控制(D控制):根据偏差的变化率乘以一个微分增益系数Kd得到控制量的变化量,作为输出。
这个步骤主要是为了解决系统存在的过渡问题。
控制量的变化量 += Kd * (目标值变化率 - 实际值变化率) / Δt以上三个步骤得到的控制量的变化量之和即为最终的输出。
在编程实现PID控制时,可以按照以下步骤进行:1. 定义并初始化相关变量,包括比例增益系数Kp、积分增益系数Ki、微分增益系数Kd、目标值、实际值、偏差、偏差的累积值、上次偏差等。
2. 循环执行以下操作:a. 更新实际值。
b. 计算偏差(目标值 - 实际值)。
c. 计算控制量的变化量,包括比例控制量、积分控制量和微分控制量。
d. 更新偏差的累积值。
e. 计算最终输出值。
f. 控制执行相应操作(根据最终输出值控制系统)。
g. 等待一定时间间隔。
3. 重复步骤2直至达到控制目标。
需要注意的是,PID控制算法需要根据具体的应用场景,仔细选择合适的增益系数,以达到良好的控制效果。
尽管不同类型的控制器,其结构、原理各不相同,但是基本控制规律只有三个:比例(P)控制、积分(I)控制和微分(D)控制。
这几种控制规律可以单独使用,但是更多场合是组合使用。
如比例(P)控制、比例-积分(PI)控制、比例-积分-微分(PID)控制等。
比例(P)控制
单独的比例控制也称“有差控制”,输出的变化与输入控制器的偏差成比例关系,偏差越大输出越大。
实际应用中,比例度的大小应视具体情况而定,比例度太小,控制作用太弱,不利于系统克服扰动,余差太大,控制质量差,也没有什么控制作用;比例度太大,控制作用太强,容易导致系统的稳定性变差,引发振荡。
对于反应灵敏、放大能力强的被控对象,为提高系统的稳定性,应当使比例度稍小些;而对于反应迟钝,放大能力又较弱的被控对象,比例度可选大一些,以提高整个系统的灵敏度,也可以相应减小余差。
单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定余差存在的场合。
工业生产中比例控制规律使用较为普遍。
比例积分(PI)控制
比例控制规律是基本控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。
只要有偏差产生,控制器立即产生控制作用。
但是,不能最终消除余差的缺点限制了它的单独使用。
克服余差的办法是在比例控制的基础上加上积分控制作用。
积分控制器的输出与输入偏差对时间的积分成正比。
这里的“积分”指的是“积累”的意思。
积分控制器的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。
只要偏差存在,输出就会不断累积(输出值越来越大或越来越小),一直到偏差为零,累积才会停止。
所以,积分控制可以消除余差。
积分控制规律又称无差控制规律。
积分时间的大小表征了积分控制作用的强弱。
积分时间越小,控制作用越强;反之,控制作用越弱。
积分控制虽然能消除余差,但它存在着控制不及时的缺点。
因为积分输出的累积是渐进的,其产生的控制作用总是落后于偏差的变化,不能及时有效地克服干扰的影响,难以使控制系统稳定下来。
所以,实用中一般不单独使用积分控制,而是和比例控制作用结合起来,构成比例积分控制。
这样取二者之长,互相弥补,既有比例控制作用的迅速及时,又有积分控制作用消除余差的能力。
因此,比例积分控制可以实现较为理想的过程控制。
比例积分控制器是目前应用最为广泛的一种控制器,多用于工业生产中液位、压力、流量等控制系统。
由于引入积分作用能消除余差,弥补了纯比例控制的缺陷,获得较好的控制质量。
但是积分作用的引入,会使系统稳定性变差。
对于有较大惯性滞后的控制系统,要尽量避免使用。
比例微分(PD)控制
比例积分控制对于时间滞后的被控对象使用不够理想。
所谓“时间滞后”指的是:当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟,比如容量滞后,此时比例积分控制显得迟钝、不及时。
为此,人们设想:能否根据偏差的变化趋势来做出相应的控制动作呢?犹如有经验的操作人员,即可根据偏差的大小来改变阀门的开度(比例作用),又可根据偏差变化的速度大小来预计将要出现的情况,提前进行过量控制,“防患于未然”。
这就是具有“超前”控制作用的微分控制规律。
微分控制器输出的大小取决于输入偏差变化
的速度。
微分输出只与偏差的变化速度有关,而与偏差的大小以及偏差是否存在与否无关。
如果偏差为一固定值,不管多大,只要不变化,则输出的变化一定为零,控制器没有任何控制作用。
微分时间越大,微分输出维持的时间就越长,因此微分作用越强;反之则越弱。
当微分时间为0时,就没有微分控制作用了。
同理,微分时间的选取,也是需要根据实际情况来确定的。
微分控制作用的特点是:动作迅速,具有超前调节功能,可有效改善被控对象有较大时间滞后的控制品质;但是它不能消除余差,尤其是对于恒定偏差输入时,根本就没有控制作用。
因此,不能单独使用微分控制规律。
比例和微分作用结合,比单纯的比例作用更快。
尤其是对容量滞后大的对象,可以减小动偏差的幅度,节省控制时间,显著改善控制质量。
比例积分微分(PID)控制
最为理想的控制当属比例-积分-微分控制规律。
它集三者之长:既有比例作用的及时迅速,又有积分作用的消除余差能力,还有微分作用的超前控制功能。
当偏差阶跃出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使偏差幅度减小,由于比例作用是持久和起主要作用的控制规律,因此可使系统比较稳定;而积分作用慢慢把余差克服掉。
只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。
编辑本段PID控制器调试方法
比例系数的调节
比例系数P的调节范围一般是:0.1--100.
如果增益值取0.1,PID 调节器输出变化为十分之一的偏差值。
如果增益值取100,PID 调节器输出变化为一百倍的偏差值。
可见该值越大,比例产生的增益作用越大。
初调时,选小一些,然后慢慢调大,直到系统波动足够小时,再该调节积分或微分系数。
过大的P值会导致系统不稳定,持续振荡;过小的P值又会使系统反应迟钝。
合适的值应该使系统由足够的灵敏度但又不会反应过于灵敏,一定时间的迟缓要靠积分时间来调节。
积分系数的调节
积分时间常数的定义是,偏差引起输出增长的时间。
积分时间设为1秒,则输出变化100%所需时间为 1 秒。
初调时要把积分时间设置长些,然后慢慢
调小直到系统稳定为止。
微分系数的调节
微分值是偏差值的变化率。
例如,如果输入偏差值线性变化,则在调节器输出侧叠加一个恒定的调节量。
大部分控制系统不需要调节微分时间。
因为只有时间滞后的系统才需要附加这个参数。
如果画蛇添足加上这个参数反而会使系统的控制受到影响。
如果通过比例、积分参数的调节还是收不到理想的控制要求,就可以调节微分时间。
初调时把这个系数设小,然后慢慢调大,直到系统稳定。
PID控制器的参数整定是控制系统设计的核心内容。
它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。
PID控制器参数整定的方法很多,概括起来有两大类:一是理论计算整定法。
它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。
但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。
现在一般采用的是临界比例法。
利用该方法进行PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。
在实际调试中,只能先大致设定一个经验值,然后根据调节效果修改。
对于温度系统:P(%)20--60,I(分)3--10,D(分)0.5--3
对于流量系统:P(%)40--100,I(分)0.1--1
对于压力系统:P(%)30--70,I(分)0.4--3
对于液位系统:P(%)20--80,I(分)1--5
参数整定找最佳,从小到大顺序查
先是比例后积分,最后再把微分加
曲线振荡很频繁,比例度盘要放大
曲线漂浮绕大湾,比例度盘往小扳
曲线偏离回复慢,积分时间往下降
曲线波动周期长,积分时间再加长
曲线振荡频率快,先把微分降下来
动差大来波动慢。
微分时间应加长
理想曲线两个波,前高后低4比1
一看二调多分析,调节质量不会低。