工程热力学 水和水蒸气的性质
- 格式:ppt
- 大小:3.80 MB
- 文档页数:69
高中化学书上说的,大约是1700倍。
算法:水的密度是1*10^3千克每立方米水蒸气密度是0.6千克每立方米等质量的水体积是m/10^3,水蒸气体积是m/0.6所以(m/10^3)/(m/0.6)==1667,大约是1700倍在《工程热力学》(第三版 曾丹苓主编)中可以查到。
100℃,一个标准大气压,水的比体积为:0.00104344m3/kg(液体)、1.6736m3/kg(蒸汽)。
书中没有105°的数据,不过有110℃的数据,与100℃的相差不大。
3立方米水——>3 X 10^3kg质量——>3 X 10^3 X 1.6736 = 5020.8立方米 水蒸气体积。
作者:nono20091标准大气压下,3立方米的水的温度是多少?常压下水的密度只是温度的函数。
作者:nzj87PV=nRT这样可以计算吧!!作者:nono20091标准大气压下,105摄氏度下的水蒸气密度是0.59kg/m^3 (from NIST)作者:nono2009It's for ideal gas.QUOTE:Originally posted by nzj87 at 2009-9-12 10:12:PV=nRT这样可以计算吧!!作者:nono2009Check it out./bbs/viewthread.php?tid=573039&view=old作者:chendy6822表是:饱和水与饱和蒸汽热力性质(以温度为序),数据比较详细。
一般的《工程热力学》书上都有这个表。
作者:nono20091标准大气压下水蒸气密度:温度(C) 密度 (kg/m^3)105 0.5897110 0.5816115 0.5737120 0.5660125 0.5585130 0.5512135 0.5441140 0.5372145 0.5304150 0.5238Need more?作者:nono2009对于饱和蒸汽压表,同温度下压力不是1标准大气压, 对应饱和蒸气密度是0.7049 (close to the value you gave)。
第十章水蒸气热力工程中使用的气体工质包括:气体和蒸汽两类。
蒸汽:是指刚刚脱离液态,或比较接近液态的气体工质,在被冷却或压缩时很容易回到液态。
特点:蒸汽分子之间的作用力和分子本身的体积不能忽略,不能作为理想气体处理。
工业上常用的蒸汽:水蒸气、制冷剂蒸汽等。
水蒸气的特点:①具有良好的热力性质;如比热容大、传热性好。
②价格低廉,对环境无污染。
③适用范围广。
制冷剂蒸汽主要有低沸点的氨和氟利昂,它们的性质与水蒸气类似。
本章以水蒸气为例,分析蒸汽的产生过程和性质,研究对其进行热工计算的方法,同时了解其它物质蒸汽的共性。
第一节基本概念一、汽化物质的液态与气态在一定条件是可以相互转换的。
汽化:物质由液态变为气态的过程称为汽化。
汽化有两种方式:蒸发与沸腾。
蒸发:在液体的自由表面上进行气化过程称为蒸发。
如杯中的水敞口放置一段时间后减少了;湿衣服晾干了等。
蒸发过程:液面附近动能较大的分子克服液体的表面张力,离开页面,并上升到空气中。
由于能量较大的分子的离开,会使液体内分子的平均动能减少,表现为液体温度降低,只有不断加热,才能维持液体的温度不变。
温度越高,蒸发越剧烈。
二、饱和温度、饱和压力在蒸发过程中,液面上方空间里的蒸汽分子总有可能碰液面而返回液体中,即凝结过程与蒸发过程是同时存在的。
一般的蒸发都是在自由空间中进行的,液面上除蒸汽分子外还有大量空气等其他气体,因而蒸汽分子的浓度很小,分压较低,其凝结速度小于蒸发速度,总的来看表现为蒸发过程。
若蒸发发生在封闭的容器中,随着蒸发的进行,液面上方的蒸汽分子越来越多,碰撞液面的机会也越来越多,使凝结速度加快。
当蒸发和凝结的速度相等时,气液两相将达到平衡,这时空间的蒸汽分子浓度不再改变,这种处于两相平的状态称为饱和状态。
饱和温度(t s):饱和状态时所对应的温度称为饱和温度。
饱和压力(p s):饱和状态时液体表面上方蒸汽产生的压力称为饱和压力。
对应于某一饱和温度,必有一个饱和压力与之对应,饱和温度越高,对应的饱和压力就越大。
第七章水蒸汽水蒸汽是人类在热力发动机中最早应用的工质,虽然后来也应用其他的工质,但是由于水蒸汽易于获得,价格低廉、无污染等优点,至今仍然是工业上广泛使用的工质。
水蒸汽在某些条件下可以当做理想气体来处理,例如空气中的水蒸汽,内燃机燃气中的水蒸汽等,由于水蒸气的分压力比较低或者温度较高,当做理想气体来处理不会有太大的偏差,但是大多数情况下我们使用的水蒸汽离液态不远,分子间的作用力和分子本身的体积不可忽略,因此不能当做理想气体来处理。
水蒸汽的热力性质比理想气体复杂的多,不能用简单的公式来计算,在工程计算中,不能单纯的利用数学方法计算,而是采用查取图表的方式来解决,这些图表是理论分析与实验相结合的方法,得出水蒸汽热力性质的复杂公式,由计算结果经过实验验证编制而成的。
本章主要介绍水蒸汽产生的一般原理,水蒸汽参数的确定,水蒸汽图表的结构和应用,计算水蒸汽在热力过程中传递的功和热量。
7.1 水的相变及相图一、饱和温度和饱和压力液体分子和气体分子一样处于紊乱的热运动中,当液体分子处于一个能够承受一定压力的容器中时,随时有液体表面附近的动能较大的分子克服表面张力扩散到上部空间,同时,上部空间的蒸汽分子也会与液面碰撞而回到液面,凝成液体。
这就是气化(蒸发)与液化(凝结)的过程。
气化时,分子带走了液体的能量,液体内分子的平均动能减小,气化速度降低,要维持气化的持续进行,就需要加热来提供热量。
可见,气化速度取决于液体的温度。
液化过程取决于上部蒸汽分子的压力,蒸汽分子越多,蒸汽压力也就越大,与液面碰撞的几率越大。
气化与液化到一定程度时会达到动态平衡,此时的状态称为饱和状态。
上部的蒸汽称为饱和蒸汽,饱和蒸汽的压力称为饱和压力,下部液体称为饱和液体,温度叫做饱和温度。
饱和温度和饱和压力一一对应。
若温度变化,气化速度会发生变化,会达到新的平衡状态。
饱和蒸汽的特点是,在一定容积下,不能再含有更多的蒸汽,如果再有蒸汽加入,就必定有一部分蒸汽凝结,饱和蒸汽致命由此而来。