运动控制
- 格式:doc
- 大小:297.50 KB
- 文档页数:10
运动控制知识
运动控制是指尝试控制和管理运动及其表现的过程。
运动控制是运动学的重要部分,从简单的运动到复杂的运动,都是需要控制的。
运动控制的基本概念包括认知控制、知觉控制和运动控制。
认知控制是指运动员需要在练习的过程中,以有限的资源来理解部分信息,并且运用它们来实现运动技巧的特定组合。
知觉控制是指通过运动员对外部环境的感知,来控制自己身体的运动,实现运动动作的平衡、精准和协调。
最后,运动控制是指通过运动员的动态调整,来调整肌肉力量和运动技巧,来完成自己的动作。
为了更好地控制运动,运动员必须具备足够的体能,因为体能是控制运动的基础,体能越强,运动员可以控制的力量越大,而且运动员可以使用更多样化的动作来实现特定的运动目标。
其次,运动员也需要充分的动态调整能力,这是控制运动的核心,通过不断调整力量、速度和运动技巧,运动员可以实现更好的运动效果。
此外,运动员还必须具备足够的认知能力,这是控制运动的重要组成部分。
认知能力是指运动员能够通过理解自己的运动特点,以及通过实践来学习运动技巧和改善自己的运动技能,来达到提高运动控制能力的目的。
最后,为了获得更好的运动控制效果,运动员需要经过持续的训练,以提高自己的动态调整能力,提高体能,提升认知能力,提高运动灵活性,以及提高运动的精准度。
运动控制有时也可以通过缓慢的冥想运动,来帮助运动员集中注意力,提高内在的稳定性,从而提高
运动的控制水平。
以上就是关于运动控制知识的介绍。
只有通过不断的练习,运动员才能够掌握运动控制的技巧,突破自己的技术障碍,从而获得更好的运动成绩。
运动控制名词解释
运动控制:
运动控制是指通过运动学模型、机械控制系统、控制算法和现有系统的综合应用,以实现对各种机器人运动状态的有效控制。
它是联合机械系统运动过程中的重要部分,是机械综合技术的核心技术。
它利用电子控制和机械控制技术,实现机器人按照预定的路径和速度运行,达到其预定的目标。
机械控制:
机械控制是一种利用分动、比例、积分和微分等基本机械控制原理,对机械结构的动力学特性和传动性能进行精确控制的控制手段。
机械控制利用控制系统把机器人系统的电源转换为机器人可操作的
控制输出,并以此调节机器人的活动,使机器人按照预定的路径、位置和速度运行,达到预定的目标。
运动学模型:
运动学模型又称运动学描述,是描述某种机械系统所有运动参数的数学模型,是机械运动分析和控制的基础。
它可以解决运动学问题和控制系统问题,以及用于优化机器人的运动参数设计、路径规划和运动控制的研究。
控制算法:
控制算法是指将运动学模型和机械控制系统的特性抽象化成一
系列数学函数,并结合实际机械系统的要求,经过分析和计算得到的控制策略,用来控制机器人的运动和运行的程序或算法。
它以机械结
构特性为基础,以机械模型为框架,以控制算法为核心,将机械系统中各部件结合在一起,实现机械运动的分析、设计和控制。
一、教学目标1. 让学生了解运动控制的基本概念、原理和方法。
2. 培养学生运用运动控制理论分析和解决实际问题的能力。
3. 提高学生的体育素养,增强体质,培养良好的运动习惯。
二、教学内容1. 运动控制的基本概念、原理和方法2. 运动控制的应用领域3. 运动控制技术在实际运动中的运用三、教学过程1. 导入新课教师简要介绍运动控制的概念,引导学生思考运动控制的重要性,激发学生的学习兴趣。
2. 讲解运动控制的基本原理教师详细讲解运动控制的基本原理,包括运动控制系统的组成、运动控制过程、运动控制规律等。
3. 运动控制技术的讲解与示范教师选取具有代表性的运动控制技术,如跑步、跳跃、投掷等,进行详细讲解和示范,使学生掌握运动控制技术的要领。
4. 学生练习与指导教师组织学生进行运动控制技术的练习,巡回指导,纠正错误动作,确保学生掌握正确的运动控制方法。
5. 运动控制技术应用案例分析教师选取具有代表性的运动控制技术应用案例,如运动康复、运动训练等,分析案例中运动控制技术的运用,提高学生的实际应用能力。
6. 总结与反思教师总结本节课所学内容,引导学生反思运动控制技术在体育领域的应用,激发学生对运动控制知识的深入探索。
四、教学评价1. 学生对运动控制基本概念、原理和方法的掌握程度。
2. 学生在运动控制技术练习中的表现,包括动作的正确性、协调性、灵活性等。
3. 学生在案例分析中的思考深度和实际应用能力。
五、教学资源1. 教材:《运动控制学》2. 教学课件:运动控制基本原理、技术应用案例等3. 实物教具:运动器材、运动场地等4. 网络资源:相关教学视频、文献资料等六、教学反思在教学过程中,教师应关注学生的个体差异,因材施教。
针对不同层次的学生,调整教学策略,提高教学质量。
同时,教师应不断更新教学内容,紧跟体育领域的发展趋势,为学生提供丰富的学习资源。
通过本课程的学习,使学生掌握运动控制知识,提高自身运动能力,为今后的学习和生活奠定坚实基础。
运动控制技术及应用设计运动控制技术是一种能够控制运动参数、速度、角度、轨迹等的技术,广泛应用于工业、机械、航空、医疗、电子以及体育等领域。
运动控制系统主要包括传感器、控制器、执行器和运动控制算法等四个部分。
下面将结合工业机械应用设计实例,具体介绍运动控制技术及其应用设计。
一、运动控制技术详解1. 传感器传感器是运动控制系统中的输入信号设备,能够将机械设备的各种运动参数、状态等转换成电信号输出。
传感器种类繁多,常见的有位移传感器、角度传感器、加速度传感器、力传感器等。
通过传感器的采集,可以实时获取机械设备的运动参数,并将这些数据传输给控制器进行控制。
2. 控制器控制器是运动控制系统中的中央处理设备,负责接收并处理来自传感器的数据,根据预设的运动参数控制机械设备的运动状态。
控制器常见的类型有PLC(可编程逻辑控制器)、DSP(数字信号处理器)、FPGA(现场可编程门阵列)等。
控制器通过内部运动控制算法处理输入信号,输出控制指令,控制机械设备的运动。
3. 执行器执行器是运动控制系统中的输出信号设备,负责将控制器输出的控制指令转换成机械设备的运动状态。
执行器种类多样,常见的有电机、伺服电机、步进电机、液压/气动执行器等。
通过执行器的输出,可以精确控制机械设备的运动。
4. 运动控制算法运动控制算法是运动控制系统中的核心部分,负责控制机械设备运动的各种参数,如位置、速度、角度等,实现控制目标。
常见的运动控制算法包括比例积分微分(PID)控制算法、位置伺服控制算法、多轴插补控制算法等。
不同的运动控制算法适用于不同的机械设备及其运行状态,需要根据具体需求进行选择和优化。
二、工业机械应用设计实例以钣金切割机器人为例介绍运动控制技术及应用设计。
钣金切割机器人是一种能够自动完成钣金切割加工的工业机器人,通常需要通过运动控制技术进行控制。
具体实现过程如下:1. 采集数据借助位移传感器、角度传感器等传感器,采集切割机器人的各种运动参数,包括位置、速度、角度等。
运动控制案例在工业自动化领域中,运动控制是一个核心的技术,它在机械设备中起着至关重要的作用。
下面将介绍三个运动控制案例,展示运动控制技术的应用和优势。
案例一:汽车生产线上的运动控制在汽车生产线上,运动控制技术被广泛应用。
通过运动控制系统,汽车工厂能够实现对机器人臂的精确控制,完成装配、焊接、涂装等工序。
运动控制系统能够精确控制每一个动作的速度、力度和位置,保证汽车生产的高质量和高效率。
同时,运动控制系统还可以实现多轴的同步运动,提高生产线的生产能力和自动化程度。
案例二:数控机床上的运动控制数控机床是当今机械加工行业的重要设备。
运动控制系统在数控机床中发挥着关键作用。
通过运动控制系统,数控机床可以实现对工作台、刀架、主轴等运动部件的精确控制,从而实现精密加工和高效生产。
运动控制系统还可以实时监测工件和刀具的位置、速度等参数,提供实时反馈,保证加工质量和安全性。
案例三:物流机器人上的运动控制随着电子商务的迅猛发展,物流行业变得日益重要。
而在物流领域,运动控制技术为机器人的智能运动提供了重要支持。
物流机器人通过运动控制系统,可以实现对自身的定位、导航和运动控制。
通过精准的轨迹规划和位置控制,物流机器人可以高效地完成货物的搬运和分拣任务,提高物流效率和准确性。
总结起来,运动控制技术在工业自动化领域的应用非常广泛。
通过运动控制,各种机械设备能够实现精确、高效的运动控制,提高生产效率、加工质量和工业安全性。
从汽车生产线到数控机床,再到物流机器人,运动控制系统在不同的领域都发挥着重要作用。
相信在未来的发展中,运动控制技术将继续创新,为各行各业提供更加先进、高效的解决方案。
第1篇一、实验背景随着科技的不断发展,运动控制技术已成为现代工业、军事、医疗等领域的关键技术之一。
运动控制系统通过对运动物体的位置、速度、加速度等参数进行精确控制,实现各种复杂运动任务。
本实验旨在通过对运动控制系统的设计与实现,掌握运动控制的基本原理和方法。
二、实验目的1. 理解运动控制系统的基本原理和组成;2. 掌握运动控制系统的设计方法;3. 学习运动控制系统的实现技术;4. 培养实际操作能力和创新能力。
三、实验内容本实验主要分为以下几个部分:1. 运动控制系统概述:介绍运动控制系统的基本概念、组成、分类和特点。
2. 运动控制器:学习运动控制器的种类、原理、功能和性能指标。
3. 运动控制算法:研究常用的运动控制算法,如PID控制、模糊控制、自适应控制等。
4. 运动控制系统设计:根据实际需求,设计运动控制系统,包括系统结构、参数选择和算法实现。
5. 运动控制系统实现:利用运动控制器和实验平台,实现运动控制系统,并进行实验验证。
四、实验步骤1. 运动控制系统概述:- 学习运动控制系统的基本概念和组成;- 了解运动控制系统的分类和特点;- 分析运动控制系统的应用领域。
2. 运动控制器:- 学习运动控制器的种类、原理和功能;- 分析运动控制器的性能指标和选择方法;- 熟悉常见运动控制器的操作方法和编程接口。
3. 运动控制算法:- 学习PID控制、模糊控制、自适应控制等运动控制算法;- 分析各种算法的优缺点和适用范围;- 熟悉各种算法的编程实现。
4. 运动控制系统设计:- 根据实际需求,确定运动控制系统的性能指标;- 设计运动控制系统的结构,包括控制器、执行器、传感器等;- 选择合适的运动控制算法,并进行参数优化。
5. 运动控制系统实现:- 利用运动控制器和实验平台,搭建运动控制系统;- 编写运动控制程序,实现运动控制算法;- 进行实验验证,分析实验结果,调整系统参数。
五、实验结果与分析1. 实验结果:- 实验过程中,成功搭建了运动控制系统,实现了预定的运动控制任务; - 通过实验验证,运动控制系统具有良好的稳定性和准确性。
运动控制方案CATALOGUE 目录•运动控制概述•运动控制系统的组成•运动控制方案的设计与实现•运动控制技术的应用场景•运动控制方案的优势与挑战•未来运动控制技术的发展趋势01CATALOGUE运动控制概述定义运动控制是指在自动化系统中对机械或设备的运动进行控制的过程,通过调节输入的能量,使设备按照预设轨迹或模式进行运动。
特点运动控制具有高精度、高速度、高稳定性等特点,能够实现复杂的运动轨迹和精确的位置控制,广泛应用于机械制造、电子制造、包装、印刷等领域。
定义与特点运动控制的重要性提高生产效率通过运动控制技术,可以精确控制设备的运动轨迹和速度,提高生产效率,降低生产成本。
提高产品质量运动控制的精确性和稳定性能够保证产品加工的精度和质量,提高产品的合格率和品质。
实现自动化生产运动控制是实现自动化生产的关键技术之一,能够提高生产线的自动化程度,减少人工干预,降低劳动强度。
运动控制系统的历史与发展历史回顾早期的运动控制系统主要采用模拟电路和硬件控制器,随着计算机技术的发展,数字控制逐渐取代了模拟控制。
近年来,随着嵌入式系统、微控制器和伺服电机技术的发展,运动控制系统得到了进一步的完善和优化。
发展趋势未来的运动控制系统将朝着更加智能化、网络化、模块化和集成化的方向发展,同时将更加注重节能和环保,以满足不断变化的市场需求。
02CATALOGUE运动控制系统的组成控制器是运动控制系统的核心,负责接收输入的指令,经过处理后输出控制信号。
控制器的性能直接影响运动控制系统的精度、响应速度和稳定性。
常见的控制器有PLC、运动控制卡、工业控制计算机等。
根据执行器的类型,驱动器可分为直流电机驱动器、交流电机驱动器、步进电机驱动器等。
驱动器的性能直接影响执行器的运动性能,如速度、加速度、精度等。
驱动器是将控制器的控制信号转换为能够驱动执行器的动力。
01执行器是运动控制系统中的最终执行元件,根据控制信号驱动机械系统实现运动。
运动控制知识运动控制是一种由信息传递、决策计算与执行组成的技术,它是机器人或其他自动控制系统实施任务的一个重要基础。
此外,运动控制的广泛用途将其涉及的领域拓展到了各种应用领域,其中包括机械、农业、医疗、电力、航空、机器视觉、楼宇自动化系统、自动驾驶和工业机器人。
运动控制是一项复杂的学术研究,集机械工程、电子工程、自动控制、信息技术、机器人学和计算机等学科知识于一体,主要的研究内容包括机械制造、运动控制、传动原理、节能减速机、电机控制、伺服系统、传感器技术、智能控制及模拟、数字信号控制、机器人视觉技术、车辆控制系统及仿真技术等。
由于其多重性能特征,运动控制在机器人与其他自动控制系统中发挥着重要作用,它可以进行运动路径规划,控制机器人运动,以及实现机械设备的精确控制。
针对机器人的运动控制,需要解决的技术问题主要有:运动控制系统的建立,用于运动控制的传感器技术,机器人运动控制的数字信号处理,运动控制系统的参数设置,运动控制系统的实时调节,机器人的运动学、动力学和逆向等等。
除机器人运动以外,运动控制在其他自动控制系统中也发挥着重要作用。
例如,在工业机器人领域,运动控制可以用于实现机器人的插补控制以及其他任务控制;在数控系统中,运动控制可以用于实现各种类型的坐标运动控制,以及各种坐标系联动控制;在机械制造领域,运动控制可以用于实现机械加工过程的控制;在楼宇自动化系统中,运动控制可以用于实现楼宇装置的自动控制;在机器视觉领域,运动控制可以用于实现目标物体的实时跟踪;在质量检测领域,运动控制可以用于实现产品质量自动检测。
为了实现运动控制,采用了一系列新型技术,其中包括了运动控制芯片,传感器技术、控制系统软件设计、数字电路与模拟电路混合技术、精密机械制造技术等等。
首先,运动控制芯片的发展为运动控制的实施奠定了基础。
例如,通过PLC型号的控制芯片,可以执行简单的运动控制指令,从而实现对设备的运动控制。
其次,传感器技术的发展,为运动控制的实现提供了可靠的数据支持。
运动控制系统的概念
运动控制(Motion Control)是自动化技术中的部分内容,是指让系统中的可动部分以可控制的方式移动的系统或子系统。
运动控制系统包括运动控制器(Motion Controller)、驱动器(Driver)、电机(Motor),可以是没有反馈信号的开环控制,也可以带有反馈信号的闭环控制,闭环控制也分为全闭环和半闭环控制。
控制器是可以产生控制目标(理想的输出或运动曲线),或是闭环控制系统中需要根据反馈信号运算调整执行速度和位置的器件。
驱动器是可以将控制器的控制信号转换为提供给电机能量的器件。
电机是实际使物体移动的装置,是运动控制的执行端。
执行端还包含编码器、减速机、导轨丝杆等机械装置。
分类
1、开环控制系统
控制器传输信号给驱动器,驱动器驱动电机运动,驱动器和控制器都无法知道电机是否达到预期的动作,典型的步进电机和风扇控制系统,是属于开环控制。
2、半闭环控制系统
对控制要求更准确的系统,在电机侧增加测量器件(如旋转编码器),反馈信号进入驱动器和控制器中,让驱动器或控制器根据反馈调整电机的动作,使实际与命令的误差降到最小,如普通伺服电机控制系统。
3、全闭环控制系统
需要比半闭环更精准的运动系统,在执行端增加直线编码器,直接测量运动的实际位置,使执行更加准确,如直线电机控制系统。
运动控制的原理
运动控制是通过对特定运动系统的操作和监控实现对物体运动状态的控制和调整。
其原理一般包括以下几个方面:
1. 传感器检测:运动控制系统通常会配备多种传感器,如编码器、位置传感器、倾斜传感器等,用于获取被控对象的位置、速度、力等信息。
传感器的监测数据可以反映运动系统的实时状态。
2. 控制算法设计:根据传感器采集的数据,控制算法负责对运动系统进行分析和计算,目的是根据预设的目标状态来生成相应的控制指令。
控制算法可以根据具体应用需求使用不同的数学模型和算法进行设计和优化。
3. 执行机构控制:通过控制指令,执行机构(如电机、液压缸等)将对应的动力或力学作用施加于被控对象,从而实现运动调整。
执行机构的选型和控制方式会根据系统要求和应用场景的不同而有所差异。
4. 反馈控制:运动控制系统通常会采用闭环控制策略,即通过反馈环路将执行机构的输出与传感器的监测数据进行比较,以实现控制目标的精确调节。
反馈控制能够实时纠正系统误差,提高运动精度和稳定性。
5. 参数调优:在运动控制系统的实际应用中,为了进一步提高性能,还需要对控制算法和执行机构参数进行调优。
这可以通过试验和优化算法等方式来实现,以获取更加满意的运动性能。
通过以上原理和技术手段的运用,运动控制系统可以实现对各类物体的精确控制,广泛应用于工业生产、机器人、自动化设备等领域。
运动控制技术与应用摘要:运动控制技术是一种重要的技术方法,可以用于各种领域,如机械工程、制造业和自动化技术等。
本文将介绍运动控制技术的基本原理、分类和应用,以及其在工业和日常生活中的具体应用情况。
1. 引言运动控制技术是现代工业和制造业中的一种重要技术方法。
它可以帮助实现自动化生产,提高生产效率和质量,减少人力成本。
随着科技的进步和技术的发展,运动控制技术已经取得了很大的进展,并在各个领域得到广泛应用。
本文将对运动控制技术进行详细介绍。
2. 运动控制技术的基本原理运动控制技术的基本原理是通过对物体的位置、速度和加速度进行控制,实现对物体运动的精确控制。
主要涉及到运动传感器、执行器、控制器和算法等方面的内容。
运动传感器用于测量物体的位置、速度和加速度,将这些数据传输给控制器。
控制器通过计算和比较传感器数据,并根据设定的条件和参数控制执行器,使物体按照预定的运动轨迹和速度运动。
3. 运动控制技术的分类运动控制技术可以根据不同的控制对象进行分类。
主要分为位置控制、速度控制和力控制三种。
位置控制是指通过精确的位置控制实现对物体运动的控制。
速度控制是指通过对物体速度的控制实现对物体运动的控制。
力控制是指通过对物体施加力的大小和方向的控制来实现对物体的运动控制。
这三种控制方式在不同的应用领域中都有各自的优势和适用范围。
4. 运动控制技术的应用运动控制技术在工业自动化领域有着广泛的应用。
它可以用于各种机械设备和生产线的控制,如机床、机器人、自动化生产线等。
运动控制技术可以实现对机械设备和生产线的自动化控制,提高生产效率和质量,减少人力成本。
此外,运动控制技术还可以应用于各种领域,如飞机、汽车、船舶等交通工具的控制,医疗设备的运动控制,甚至于家用电器的控制。
运动控制技术在现代社会中起着重要的作用。
5. 运动控制技术的发展趋势随着科技的进步和技术的发展,运动控制技术也在不断发展和进步。
未来,运动控制技术将会更加精确、高效和智能化。
什么是运动控制
运动控制是指在机械、电子、计算机等多种技术的协调下,对机械装置的位置、速度、加速度、力和扭矩等参数进行测量、监控、控制和反馈的一项技术。
运动控制系统是现代工业自动化中应用最为广泛的一种
控制系统。
其主要目的是通过运动控制系统,实现对物体的精确位置控制,精度控制以及控制速度的变化等操作。
运动控制技术主要应用于各种自动化机械设备以及工业
生产现场,如机床、印刷机械、纺织机械、机器人、物流输送设备、汽车、电梯、工业自动化生产线等领域。
运动控制技术的主要特点是高精度、高速度、高实时性
和高可靠性。
从技术上讲,运动控制技术是以传感器、控制器、执行器和相关的软件为基本结构的系统。
通过传感器可以获取物体的位置、速度、加速度等参数,控制器则根据这些参数进行自动调节控制。
运动控制技术的不断发展和进步,为各个行业提供了更
加广泛的应用场景。
比如在医疗领域中,运动控制技术可应用于病人的床位控制、手术器械的定位控制、机器人协作手术等方面;在仪器设备领域,运动控制技术的应用可提高设备的测量精度和稳定性;在航空航天领域,运动控制技术则能够提高飞行器的控制精度和飞行速度。
总的来说,运动控制技术的应用一直在不断的扩大和深化,尤其是在工业自动化领域,其应用更是无处不在。
在未来
的发展中,运动控制技术还将继续不断创新和发展,为各个领域带来更多的机遇和发展空间。
运动控制及其应用教案一、引言运动控制是现代科学技术领域中的一个重要分支,广泛应用于工业自动化、航空航天、机器人等领域。
本文将介绍运动控制的基本概念、分类以及在不同领域的应用。
二、运动控制的基本概念运动控制是指通过对运动物体的速度、方向、位置等参数进行精确控制,实现期望的运动状态。
在运动控制系统中,通常包括传感器、执行器、控制器以及反馈系统等组成部分。
传感器用于实时采集与运动相关的参数,例如位置、速度、加速度等,为后续控制提供准确的输入信号。
执行器则根据控制信号调整运动物体的状态,如电动机通过控制电流或电压来实现转动。
控制器分析传感器采集到的数据,并根据预设的运动规划算法生成相应的控制信号。
反馈系统负责将实际运动状态与期望运动状态进行比较,从而实现闭环控制,提高控制系统的精度与稳定性。
三、运动控制的分类根据运动物体的特性和控制要求,运动控制可以分为位置控制、速度控制和力控制等不同类型。
位置控制是指通过控制运动物体的位置,使其达到预定的目标位置。
速度控制则是通过控制运动物体的速度,实现期望的运动速度。
力控制则着重于精确控制物体受到的力或压力,常用于机器人抓握物体等需要接触的场景。
运动控制还可以根据控制方式进行分类,常见的包括开环控制和闭环控制。
开环控制是指在运动开始前,根据预先设定的参数直接控制运动物体,无法对实际运动状态进行反馈调整。
闭环控制则是在运动过程中通过反馈系统实时调整控制信号,以保证实际运动状态与期望状态一致。
闭环控制通常更加稳定和精确,但也会增加系统的复杂度与成本。
四、运动控制在工业自动化中的应用运动控制在工业自动化领域中起到了至关重要的作用。
以机器人为例,通过精确的运动控制,可以实现复杂的操作任务,如物料搬运、焊接、装配等。
在自动化生产线中,运动控制系统可以有效地提高生产效率和质量,并减少人力成本。
另外,运动控制也广泛应用于机床、包装机械、注塑机等设备中。
通过控制运动参数,可实现高速、高精度的加工和生产过程。
运动控制(MC)是自动化的一个分支,运动控制起源于早期的伺服控制。
简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动。
早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术的发展而发展的。
它使用通称为伺服机构的一些设备如液压泵,线性执行机或者是电机来控制机器的位置和或速度。
运动控制在机器人和数控机床的领域内的应用要比在专用机器中的应用更复杂,因为后者运动形式更简单,通常被称为通用运动控制(GMC)。
现在运动控制被广泛应用在包装、印刷、纺织和装配工业中。
按照所完成的制造任务的不同,机器运动控制分为:点位控制和连续路径控制①点位控制:是在容许加速度和速度的条件下,尽可能快的由原坐标位置运动到目的坐标位置,而对于两点之间的轨迹没有精度要求的。
点位控制的功能是将工具或零件由源点运动到规定的目标点,以便在该点加工作业。
因为从源点到目标点的运动过程中不进行加工作业,所以对运动路径没有要求。
但是为了提高效率,点位运动控制系统应在容许的加速度条件下,尽可能以最大速度完成这种运动过程。
②连续路径控制:包括直线运动控制和曲线运动控制。
对于轨迹上的每一点坐标都具有一定的精度要求,不仅要求路径连续,而且要求速度连续。
为了控制工具沿任意直线或曲线运动,必须同时控制每一个轴上的位置和速度,使得它们同步协调到达目标点。
对于这类控制,机床必须同时控制两个或者两个以上的轴。
连续路径控制系统不仅控制目标点,而且控制工具到达这些目标点的整个路径,以保证在整个加工过程中,工具始终接触工件并制造出希望的形状。
控制系统按照控制原理的不同可以分为开环和闭环两种控制系统①开环控制系统:系统输出只受输入的控制,控制精度和抑制干扰的特性都比较差。
开环控制系统中,基于按时序进行逻辑控制的称为顺序控制系统;由顺序控制装置、检测元件、执行机构和被控工业对象所组成。
主要应用于机械、化工、物料装卸运输等过程的控制以及机械手和生产自动线。
运动控制系统课程设计
一、目的和意义
1.学会针对某个电机控制系统功能模块或整个控制系统进行设计与实现;
2.进一步加深对课堂教学内容的理解,了解典型的电机控制系统基本控制原理和结构;
3.掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践技能。
二、实验设备
计算机、MATLAB软件
三、实习任务
(1)学习交、直流伺服系统的一般设计方法,具备初步的独立设计能力;
(2)学会查阅技术资料和手册,合理选用设计方案;
(3)初步掌握伺服系统调试的基本技能;
(4)提高综合运用所学的理论知识独立分析和解决问题的工程应用能力;四.实习内容
1.位置闭环控制调节器的设计与调试
2.交流调速系统模型的搭建与仿真
3.直流调速系统模型的搭建与仿真
五、实验步骤
(一)位置闭环控制调节器的设计与调试
1.位置控制的基本原理
位置控制是以速度和转矩控制为基础的,典型的位置伺服系统式三重闭环的结构,即位置环、速度环和电流环。
位置控制系统以速度环、电流环作为内环,位置环为外环,这就说明位置控制系统与调速控制系统式密切相关的。
对于位置控制系统的性能指标,也可以分为动态和稳态两个方面。
可以认为,位置控制系统的动态性能基本上是由丙环来保证的,而稳态精度则主要靠外环来实现。
对于
丙环的要求是希望有足够的调速范围、快且平稳的起、制动性能,转速尽量不受负载变化、电源电压波动及环境温度等干扰因素的影响。
而对外环则要求有足够的位置控制精度、位置跟踪精度、足够快的跟踪速度、位置保持的能力等。
2.位置闭环控制调节器原理图
参数设置:Kaff=0,Kvff=0.9 ,Kpp=20,Kdp=0.5 ,Kip=0
3.仿真波形
(二)交流调速系统模型的搭建与仿真
1.交流调速系统原理
由异步电动机的机械特性方程可见,当异步电动机定子与转子回路的参数为恒定时,在一定的转差率下,电磁转矩Te与定子电压Us的平方成正比,因此改变电动机定子电压就可以改变电动机在一定输出转矩下的转速。
采用普通的异步电机的变压调速时,调速范围很小,采用高转子电阻的力矩电动机可以增大调速范围,但机械特性又很软,因而当负载变化时,静差率很大,开环控制很难解决这个矛盾,要求调速范围大于2时,往往采用带负反馈的闭环交流调速系统。
如图所示转速负反馈闭环调试系统交流调压系统由调节器、晶闸管调压装置、转速反馈装置和异步电机等部分组成。
改变给定信号Un的大小可以改变电机的转速n。
当由于某种原因引起的电机转速不稳定时,系统可自动调节电机的转速而维持稳定。
2.速度闭环的仿真图形如下图所示
0.05
0.1
0.15
0.20.25
0.3
0.35
0.4
00.10.20.30.40.50.6
0.70.80.9
1time/s
c u r r e n t /A
将模型左下角的manual switch6开关打到step1的信号上,出现如下图所示的波形
将模型左下角的manual switch 开关打到正弦信号上,将出现如下图所示的波形
3.位置速度双闭环的仿真图形如下图所示
将模型左下角的manual switch开关打到位置速度双闭环的一侧,并调节参数Kpp1=0.1,Kpp2=5e-005,Kpp=0.005,Kpd=0.0002,Kpi=0将出现如下图所示的波形。
(三)直流调速系统模型的搭建与仿真
1.建立直流脉宽PWM调速系统仿真模型
建立转速反馈闭环PWM调速系统仿真模型(如图1)模型中直流电机的电源采用直流电源Us模块,经双极式H桥心PWM变换器输出给直流电机电枢。
电机用恒定的电源Uf它励,并拖动恒定负载。
模型检测了直流电机的转速n、电枢电流Ia与电磁转矩Te,并将n、Ia与Te输入到示波器显示。
另一示波器显示PWM 变换器的输出信号Ug,与电枢电压Ua,电机转速n信号经速度反馈系数0.972与给定的Ur相比较,其偏差经转速调节器ASR再去控制PWM发生器,生成幅值上正下负的等幅矩形脉冲序列PWM波。
2.仿真模型使用模块的提取路径与参数设置
1)选路器Selector1:设置“Input Port width”为4设置“elements(-1 for
all elements)”为[1 2 4 3]。
2)直流电压Us=220V,Uf=220V。
3)两组PWM发生器:genertor mode 工作模式为单桥臂(-1 bridge,2 pulse)、
Carrier frequency(Hz)载波频率为80Hz。
4)多功能桥臂Universal Bridge:number of bridge arms多功能整流桥模型
桥臂的相数选为2、Sunbber vresistance RS(Ohms)吸收电阻设置为1e5Ω,sunbber capacitance Cs(F)吸收电容设置为正无穷、Power Electronic device 电力电子器件种类选为MSFET/Diodes,Ron(Ohms)桥中电力电子器件内电阻设置为1e-3Ω
3.转速调节器ASR的传递函数Wasr=(0.3s+1)/88s
4.模型仿真及结果
在仿真模型中,首先在主菜单里【simulation】下【configuration parameters】设置模型图参数里,选择算法Ode23tb,其他设置为默认值,再用鼠标点击菜单【simulation】下的【Start】子菜单即可对原理图模型仿真,仿真波形如图所示。
5.仿真分析
上图波形分别为转速n、电枢电流Ia与电磁转矩Te,图5中波形为PWM变换器的输出信号Ug与电机电枢电压Ua,由图可看出在恒定电流控制电压Ur的作用下,拖动恒定负载,电机转速从0逐步上升超调,稍作震荡后逐渐稳定到与控制电压相对应的速度上。
根据自动控制系统原理,脉宽调速系统的电枢电流Ia 或电磁转矩Te都是脉动的,Ia与Te曲线的脉动性清晰可见,并在启动初期即为0.04s冲击到最大,然后逐渐衰减到与恒定值负载相对应的值。
由图可见,触发信号Ug是幅值为1的等幅矩形脉冲序列波,电机电枢电压Ua则为幅值为正负220V的等幅矩形脉冲序列PWM波。
五.实习心得
一周的课程设计结束了,经过这一周运功控制的课程设计的实习,我们学会了针对某个电机控制系统的功能模块或整个控制系统进行初步的设计与实现。
以使我们进一步加深对课堂教学内容的理解,更加的了解典型的电机控制系统基本控制原理和结构,掌握基本的调试方法,提高综合应用知识的能力、分析解决问题的能力和工程实践技能。
在实习的过程中,我们也是遇到了不少的问题,比如刚开始的时候,老师给出电路图,调试波形仿真,变换过几次参数,但最终依然没能出现正确的波形图来,没有正确的思路,而后,经过同组同学的讨论与协助,并在老师的帮助下最终发现了问题所在,虽然最后基本调出了波形,还学会了对电路的改进,得到更准确的波形。
我们算是基本完成了课程设计的任务,我们都感到十分的开心,这一个星期很充实。
一周的课程设计让我们得到的并不仅仅是系统的接线图或者仿真波形,更让我们深刻理解了所学的理论知识,提高了我们严谨的设计思路和动手操作能力,也让我们也深刻的体会到合作精神。