CMG三元复合驱数值模拟技术_王建国 简版
- 格式:pptx
- 大小:795.25 KB
- 文档页数:15
CMG数值模拟软件简介CMG数值模拟软件简介CMG开发的油藏数值模拟软件在市场上处于领先地位,作为提高采收率模拟的行业标准,得到了全球的认可CMG先进的模拟技术,不断开拓新领域-模拟简单到复杂的提高采收率过程。
通过结合简易的模型创建工作流程,最先进的性能增强技术以及跨学科多重机理(例如,热效应、地球化学、地质力学、流体相态、井筒、水力压裂以及完井等)精确模拟提高采收率过程。
CMOST AI强大的敏感性分析、历史拟合、方案优化以及不确定性分析工具,最大限度地提高各类油藏的采收率和净现值GEM组分模拟器世界领先的状态方程模拟器,适用于组分、化学驱以及非常规油气藏模拟IMEX黑油模拟器模拟常规和非常规油气藏模型的衰竭和二次开采过程,使用快速和简单的工作流程进行准确的预测STARS热采及化学驱模拟器准确模拟矿场提高采收率机理-热采、化学驱以及其他EOR技术-使得生产和效益最大化。
Builder前处理模块交互式、直观和易于使用的操作界面,为CMG模拟器快速和高效的准备模型Results后处理模块为更加深入的理解油藏特征、提高采收率过程以及油藏性能等提供了先进的可视化和分析工具WinProp相态模拟软件包为CMG模拟器创建流体模型,并为第三方油藏模拟软件提供黑油模型CMOST AI 提升油田开发研究能力和潜力,改善业务决策流程。
将统计分析、机器学习和无偏数据解释等人工智能技术与人类的工程专业知识相结合,确定油藏开发最佳方案。
认知油气储层在同一个模型中同时自动考虑所有不确定性参数,运行数百个模拟作业,分析数据并做出更好的业务决策。
图形展示对开发效果影响最大的参数从有限的模拟运算结果中获取信息,并通过它来认识每个参数如何影响模拟结果“假定推测”功能,快速得出属性变化对产量的影响结果,并实时更新生产曲线在更改一个或所有变量时,CMOST AI的内部引擎能自动预测变量之间的交互作用优化改进业务决策利用人工智能(AI)技术,用最少的计算找到最佳解。
第 55 卷第 1 期2024 年 1 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.55 No.1Jan. 2024基于覆盖率和喷丸强度的喷丸工艺数值模拟曹云泰1,牛天昊1,盖鹏涛2,徐戊矫1(1. 重庆大学 材料科学与工程学院,重庆,400044;2. 中国航空制造技术研究院,北京,100024)摘要:覆盖率和喷丸强度是喷丸工艺实现标准化的重要参数,但这2个喷丸执行参数既不能在生产中由喷丸设备直接设置,又不能在喷丸数值模拟模型中作为参数直接输入。
为了在喷丸数值模拟中实现对覆盖率和喷丸强度的计算和控制,建立包含多弹丸模型和阿尔门试片模型的数值模拟仿真体系;基于Avrami 方程和开发的Python 程序,提出在特定覆盖率目标下生成多弹丸的随机初始位置的算法,在Abaqus 平台下快速建立考虑覆盖率的多弹丸模型;采用DEM-FEM 耦合方法,基于粒子生成器建立考虑喷丸强度的简化阿尔门试片模型;开展喷丸实验,通过对比喷丸强度、受喷工件的残余应力和表面粗糙度,验证所建立的喷丸数值模拟仿真体系的有效性;基于建立的喷丸数值模拟仿真体系,进一步探究影响喷丸效果的因素。
研究结果表明:在相同的覆盖率下,喷丸强度越高,靶材的残余压应力场对应的深度越大,而靶材的表面粗糙度也会增大。
当覆盖率和喷丸强度都相同时,小尺寸和高速的弹丸在获得更高的峰值残余压应力的同时,表面糙化现象也会越严重。
仅控制喷丸执行参数并不能保证一致的喷丸强化效果,要实现对喷丸强化效果的精准控制,需要在考虑覆盖率和喷丸强度这类执行参数的同时,考虑弹丸尺寸、弹丸速度和弹丸类型等过程参数。
关键词:喷丸;覆盖率;喷丸强度;阿尔门试片;数值模拟中图分类号:V261;TG668;TG146.21 文献标志码:A 文章编号:1672-7207(2024)01-0069-11Numerical simulation of shot peening based on surface coverageand shot peening intensityCAO Yuntai 1, NIU Tianhao 1, GAI Pengtao 2, XU Wujiao 1(1. College of Material Science and Engineering, Chongqing University, Chongqing 400044, China;2. A VIC Manufacturing Technology Institute, Beijing 100024, China)Abstract: Coverage and shot peening intensity are essential parameters for standardizing the shot peening process, which cannot be set directly by the shot peening equipment in production or directly input as parameters in the收稿日期: 2023 −05 −23; 修回日期: 2023 −08 −26基金项目(Foundation item):国家自然科学基金资助项目(51975072) (Project(51975072) supported by the National Natural ScienceFoundation of China)通信作者:徐戊矫,博士,教授,从事金属塑性成形与控制研究;E-mail :*******************DOI: 10.11817/j.issn.1672-7207.2024.01.006引用格式: 曹云泰, 牛天昊, 盖鹏涛, 等. 基于覆盖率和喷丸强度的喷丸工艺数值模拟[J]. 中南大学学报(自然科学版), 2024, 55(1): 69−79.Citation: CAO Yuntai, NIU Tianhao, GAI Pengtao, et al. Numerical simulation of shot peening based on surface coverage and shot peening intensity[J]. Journal of Central South University(Science and Technology), 2024, 55(1): 69−79.第 55 卷中南大学学报(自然科学版)shot peening numerical simulation model. To realize the calculation and control of coverage and shot peening intensity in numerical simulations, a numerical simulation system containing a multi-shot model and an Almen strip model was established. An algorithm, developed based on the Avrami equation and a Python program, was employed to generate random initial positions of multiple shots with specific coverage. Furthermore, the multiple shots model was rapidly established on Abaqus. Employing the DEM-FEM coupling method, a simplified Almen strip model considering shot peening intensity was constructed based on particle generator. Shot peening experiments were conducted to validate the effectiveness of the developed shot peening numerical simulation system by comparing shot peening intensity, residual stresses and surface roughness. The results show that at the same coverage level, higher shot peening intensity leads to deeper residual stress field in the target and increased surface roughness. Additionally, when coverage and shot peening intensity are the same, smaller-sized and higher-speed shots result in higher peak residual stress levels but also more severe surface roughening. Consequently, controlling shot peening operational parameters alone does not guarantee consistent shot peening enhancement effects. Process parameters such as shot size, shot velocity and shot type need to be considered along with execution parameters such as coverage and shot intensity to achieve precise control of shot peening results.Key words: shot peening; coverage; shot peening intensity; Almen strip; numerical simulation喷丸是应用最广泛的表面处理工艺之一,其利用大量高速运动的弹丸撞击材料表面,使材料表面发生塑性变形、表层晶粒细化和表面硬度提升,从而抑制裂纹萌生和发展,提高受喷工件的耐磨性和疲劳寿命。
第80期:使用CMG-GEM模拟二氧化碳驱操作流程Builder/GEM/Results 2017.10编写人:吴晓云很多人了解并开始使用CMG,是从STARS开始的,说到IMEX和GEM便无从下手了,GEM 模型要如何创建?CO2混相驱机理要如何设置?需要输出哪些结果?这些是初次接触GEM常常遇到的,我们先来聊一聊这些问题。
大家都有这样的共识—不同的数值模拟软件具有普遍的相似性,事实上,这种普遍的相似性在不同的模拟器之间也存在,其中80~90%的设置是相似的,区别主要集中于流体模型即Components部分。
CO2混相驱过程中,可能发生溶解、膨胀、混相或非混相、沥青质沉积、相渗滞后、润湿反转、扩散和弥散、水溶气、液态CO2冷伤害、离子交换、矿物质盐析和溶解等现象。
面对这么多的机理表征,大家显得无所适从,所以,把握主次才最为关键!首先,从最基础的模拟出发,溶解、膨胀,混相或非混相模拟是最重要的了,而这些机理的表征EoS已经为我们全权代劳了,做CO2驱的小伙伴们可以轻松上阵了。
其次,如果通过室内实验或者现场以及流体分析,还存在沥青质沉积、相渗滞后、润湿反转等现象,我们可以在基础模型上通过一系列的关键字定义即可表征。
做CO2驱或天然气驱过程中,最小混相压力是大家关注的首要参数,也是比较纠结的一个参数,巴不得直接把它丢给模型,达到“超过该压力,驱油百分百”的效果。
但是,在实际的驱替过程中可不是如此简单,模拟器也不是根据这个最小混相压力去触发100%驱油效率,而是以一种更加聪明的方式来模拟的。
混相是什么?简单来说,消除界面,那就是界面张力降为0。
GEM中计算界面张力的参数是等张比容(PCHOR)。
而关联界面张力和驱油效率,可以借助IFT(界面张力)效应来实现。
那么,MMP就不用关注了吗?也不是,MMP有各种经验公式和测定方法,业内比较认可和比较常用的细管实验法,虽然测定的方法也会受到细管长度、孔、渗等各种因素的影响,但是如果我们认可最小混相压力,在2017版WinProp 新增了对其的拟合功能,可以微调ΩA和ΩB以及注入气与重组分的二元交互作用系数,同时需监测其他实验数据的拟合精度。
摘要:介绍了三元复合驱技术的驱油机理,综述了三元复合驱油体系存在的不足,以及在改进方面的研究现状。
关键词:三元复合驱油;采收率;表面活性剂;表面张力常见的化学驱油剂主要有聚合物、表面活性剂和碱。
asp三元( 碱、表面活性剂和聚合物)复合驱是在综合了单一化学驱优点的基础上建立起来的一种新型的化学驱油体系[1],具有驱油效率高的显著特点,近年来得到了迅速发展。
大庆油田矿场试验[2]表明,聚合物驱比水驱提高原油采收率10%以上,而三元复合驱可比水驱提高原油采收率20%以上。
可见对三元复合驱油体系的深入研究具有重要意义。
1、三元复合驱的驱油机理[3]asp三元复合驱油体系既具有较高的粘度又能与原油形成超低界面张力, 在扩大波及范围、提高驱替效率的同时, 也提高洗油效率, 能改善水驱的“指进”、“突进”和油的“圈捕”,从而增加原油产量和提高采收率。
该体系驱油效果之所以明显优于单一化学剂驱。
是因为多种化学剂具有各自的作用与优势,且相互之间能发挥协同效应。
(1)聚合物的作用是增稠和流度控制。
目前最廉价,应用最成熟的产品是聚丙烯酰胺(hpam)。
hpam已被普遍用来提高注人水粘度和油层波及系数。
hpam的选择着重要与油藏渗透率、孔喉尺寸、注液速度等相匹配, 分子量越大增粘能力越强,浓度越大水解液粘度越大, 驱油能力越大。
(2)表面活性剂的作用是降低油水界面张力和提高洗油效率, 因温度、矿化度、原油组分等油藏条件的不同, 所使用的表面活性剂结构与性能也不相同。
石油羧酸盐、石油磺酸盐是现在普遍采用的驱油表面活性剂, 但石油磺酸盐耐温、耐盐性能比石油羧酸盐好。
(3)碱的作用是与原油中的酸性组分反应就地生成表面活性剂, 与外加表面括性剂协同效应更大幅度地降低油水界面张力并作为牺牲剂改变岩石表面的电性, 以降低地层对表面活性剂的吸附量。
应用的主产品为naoh和na2co3或二者混用。
2、三元复合驱目前存在的不足室内和矿场研究表明[2], 三元复合驱采收率可在水驱基础上再提高20%以上,具有较好的增油降水效果。
CMG数值模拟软件简介CMG开发的油藏数值模拟软件在市场上处于领先地位,作为提高采收率模拟的行业标准,得到了全球的认可CMG先进的模拟技术,不断开拓新领域-模拟简单到复杂的提高采收率过程。
通过结合简易的模型创建工作流程,最先进的性能增强技术以及跨学科多重机理(例如,热效应、地球化学、地质力学、流体相态、井筒、水力压裂以及完井等)精确模拟提高采收率过程。
CMOST AI强大的敏感性分析、历史拟合、方案优化以及不确定性分析工具,最大限度地提高各类油藏的采收率和净现值GEM组分模拟器世界领先的状态方程模拟器,适用于组分、化学驱以及非常规油气藏模拟IMEX黑油模拟器模拟常规和非常规油气藏模型的衰竭和二次开采过程,使用快速和简单的工作流程进行准确的预测STARS热采及化学驱模拟器准确模拟矿场提高采收率机理-热采、化学驱以及其他EOR技术-使得生产和效益最大化。
Builder前处理模块交互式、直观和易于使用的操作界面,为CMG模拟器快速和高效的准备模型Results后处理模块为更加深入的理解油藏特征、提高采收率过程以及油藏性能等提供了先进的可视化和分析工具WinProp相态模拟软件包为CMG模拟器创建流体模型,并为第三方油藏模拟软件提供黑油模型CMOST AI 提升油田开发研究能力和潜力,改善业务决策流程。
将统计分析、机器学习和无偏数据解释等人工智能技术与人类的工程专业知识相结合,确定油藏开发最佳方案。
认知油气储层在同一个模型中同时自动考虑所有不确定性参数,运行数百个模拟作业,分析数据并做出更好的业务决策。
•图形展示对开发效果影响最大的参数•从有限的模拟运算结果中获取信息,并通过它来认识每个参数如何影响模拟结果•“假定推测”功能,快速得出属性变化对产量的影响结果,并实时更新生产曲线•在更改一个或所有变量时,CMOST AI的内部引擎能自动预测变量之间的交互作用优化改进业务决策利用人工智能(AI)技术,用最少的计算找到最佳解。
三元复合驱采油技术应用及发展趋势发布时间:2021-09-07T10:45:38.767Z 来源:《探索科学》2021年7月下14期作者:刘亮[导读] 石油是我国的一种重要资源,对很多行业的发展都会产生特别大的影响,想要在今后的石油开发技术上不断的努力,必须加深研究,要对既往的工作进行总结分析,而后在新技术的应用上,通过科学、合理的方法来完成。
三元复合驱采油技术作为当代的先进技术体系,应用效果突出,未来的发展空间较大。
文章针对三元复合驱采油技术展开讨论,并提出合理化建议。
新疆准东石油技术股份有限公司刘亮新疆克拉玛依 831511摘要:石油是我国的一种重要资源,对很多行业的发展都会产生特别大的影响,想要在今后的石油开发技术上不断的努力,必须加深研究,要对既往的工作进行总结分析,而后在新技术的应用上,通过科学、合理的方法来完成。
三元复合驱采油技术作为当代的先进技术体系,应用效果突出,未来的发展空间较大。
文章针对三元复合驱采油技术展开讨论,并提出合理化建议。
关键词:三元复合驱;采油技术;应用;发展趋势引言从客观的角度来分析,石油开采在实施的过程中,自身所具备的难度是比较高的,必须从多元化的角度出发,既要对外部环境的影响因素充分应对,又必须在客观工作的处理上,尽量按照合理化的模式来完成,如果在技术的操作上出现偏差,或者是在工作的实施当中,没有达到预期效果,肯定会造成一定的损失,届时对于石油行业的发展,将会造成很大的不良影响。
所以,在三元复合驱采油技术的应用过程中,要积极考虑到当下、将来的双重工作。
1石油开采简述石油开采通常分为三次开采方式。
第一次开采的目标是未开发的油田。
对于未开发的油田,只能通过自然界中的天然能量进行简单的加工和开采,因此石油的采收率极低,并且非常容易带来损耗。
第二次开采是对已经进行过一次开采的石油进行开采,通常,利用注入气体或水以增加油层中的压力,实现石油开采。
这种开采方式比第一次开采方式的采收率率高很多,可以达到30%。