光学经典理论傅里叶变换
- 格式:docx
- 大小:127.71 KB
- 文档页数:8
傅里叶光学知识点总结
傅里叶光学的发展历史可以追溯到19世纪,法国科学家傅里叶首先提出了傅里叶变换的理论,他认为任意函数可以用一组正弦和余弦函数的叠加来表示,这一理论为后来的光学研究提供了重要的理论基础。
在傅里叶的理论指导下,光学研究者开始研究光波的频谱分析,揭示了光波在传播中的各种特性。
傅里叶光学的主要研究内容包括傅里叶变换、频谱分析、光的衍射、光的干涉、光的传播等。
傅里叶变换是傅里叶光学中的重要方法,它将一个函数分解为一组正弦和余弦函数的叠加,可以有效地描述光波的传播和衍射现象。
频谱分析则是通过傅里叶变换将光波分解成不同频率的成分,揭示了光波的复杂振动特性。
光的衍射和干涉是傅里叶光学中的重要现象,它们描述了光波在传播过程中受到的各种干扰和相互作用,为光学器件的设计和优化提供了重要信息。
傅里叶光学在实际光学技术中有着广泛的应用,其中包括光学成像、光学通信、光学信息处理等领域。
在光学成像中,傅里叶光学可以用于解析成像系统的分辨率和光学畸变,提高成像质量。
在光学通信中,傅里叶光学可以用于信号的调制和解调,提高光信号传输的速度和精度。
在光学信息处理中,傅里叶光学可以用于光学信号的滤波和去噪,提高信息处理的效率和质量。
总之,傅里叶光学是光学中的重要分支,它以傅里叶变换和频谱分析为基础,研究光波在传播过程中的各种特性和现象,并在实际的光学技术中发挥着重要的作用。
随着光学技术的不断发展,傅里叶光学将继续为光学研究和应用提供重要的理论和方法。
傅里叶变换光学系统傅里叶变换光学系统,简称FT光学系统,是一种通过光学方法对物体进行分析的技术。
其基本原理是利用傅里叶变换的思想,将物体在空间域的信息转换为频域的信息,然后通过相同的方式将频域信息还原为空间域信息。
一、傅里叶变换的基本原理傅里叶变换是一种将函数从时域转换到频域的技术。
其基本原理是将一个函数按照不同频率分解成一系列正弦波的和。
具体来说,傅里叶变换可以分为以下几个步骤:1. 对原函数在时间域上进行分段,使其转化为一系列长度为Δt 的小区间。
2. 对每一个小区间的函数值进行离散化处理,生成离散的数据序列。
3. 对离散的数据序列进行傅里叶变换,求出在频域上的频率分量。
4. 通过反傅里叶变换,将在频率域的信息还原为在时间域上的信息。
二、傅里叶变换在光学系统中的应用在光学系统中,傅里叶变换可以将一个物体的透射率函数转换为空间域和频域的关系。
通过加入透镜、像差校正等光学器件,可以实现将频域信息转换为对应的光学信号,进而生成一个光学图像。
这种光学图像可以对物体进行解析,便于对物体形状、大小、结构等信息进行研究。
FT光学系统广泛应用于生物医药、材料科学、光学工程等领域中。
三、傅里叶变换光学系统的优点与不足优点:1. 精度高:通过光学技术,可以获取高精度的物体信息,尤其是对于那些复杂的结构物体。
2. 兼容性好:FT光学系统可以与其他光学测量仪器、成像系统等进行互相配合,丰富了光学分析工具的功能。
3. 速度快:由于光子的速度极快,FT光学系统的成像速度也可以达到很高的水平。
不足:1. 设备成本高:由于FT光学系统需要使用高质量、高精度的光学仪器,因而设备成本较高。
2. 实验难度大:FT光学系统需要经过实验测试,对于初学者来说,实验难度比较大。
3. 约束条件多:FT光学系统对光源、光路、光学器件等条件的约束较多,安装过程比较繁琐。
总之,傅里叶变换光学系统在解析复杂物体、研究物体结构等方面有很大优势,并得到了广泛应用。
傅里叶变换光学LT22012111(,)()()2D x y D x y R R =-+-(4)其中1R 、2R 是构成透镜的两个球面的曲率半径。
公式(4)对双凹、双凸、或凹凸透镜都成立。
引入焦距f ,其定义为:12111(1)()n f R R=-- (5)代入(3)得: 220(,)exp()exp[()]2k t x y jknD j xy f =-+(6)式(6)即是透镜位相调制的表达式,它表明复振幅(,)LU x y 通过透镜时,透镜各点都发生位相延迟。
从式(6)容易看出第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。
第二项22exp[()]2k j xy f -+是具有调制作用的因子,它表明光波通过透镜的位相延迟与该点到透镜中心的距离的平方成正比。
而且与透镜的焦距有关。
当考虑透镜孔径后,有:22(,)exp[()](,)2kt x y jx y p x y f=-+(7)其中的(,)p x y 为透镜的光瞳函数,表达式为: 1(,)0p x y ⎧=⎨⎩ 孔径内其 它(8)2、透镜的傅里叶变换性质在单色平面波垂直照射下,夫琅和斐衍射光场的复振幅分布正比于衍射屏透射系数的傅里叶变换。
衍射图像的强度分布正比于衍射屏的功率谱分布。
一般情况下,我们是将夫朗和斐衍射图像成像到透镜的像方焦平面出,这就是说,作为成像元件的透镜,就相当于傅里叶变换器。
如图2所示,设单位振幅的单色平面光垂直照射一透射系数为(,)t x y 的衍射屏,与衍射屏相距Z 处放置一焦距为f 的薄透镜L ,先观察其像方平面L 的光场分布。
为了讨论方便,这里我们忽略透镜材料的吸收、散射、透镜表面的反射以及透镜孔径大小等因素的影响。
图2 透镜的傅里叶变换性质设(,)E x y 、11E(,)x y 、11E (,)x y '、(,)ffE x y 分别表示衍射屏后、透镜输入平面、输出平面以及像方平面出光波场的复振幅分布。
光学4f系统的傅里叶变换原理
光学4f系统是一种常见的光学传递系统,由两个透镜组成,分别称为前透镜和后透镜,它们之间的距离为f。
该系统可以实现对输入光场的傅里叶变换。
傅里叶变换原理是指输入光场通过光学4f系统后,可以得到输出光场的傅里叶变换。
傅里叶变换是一种将时域信号转换为频域信号的数学变换方法,可以将一个信号分解成一系列的频率成分。
在光学4f系统中,输入光场首先经过前透镜,前透镜将输入光场进行傅里叶变换,将其分解成一系列的平面波。
这些平面波经过后透镜后,再次叠加在一起,形成输出光场。
输出光场可以通过适当选择前透镜和后透镜的焦距以及它们之间的距离f,来实现对输入光场的傅里叶变换。
具体来说,如果前透镜的焦距为f1,后透镜的焦距为f2,则前透镜和后透镜之间的距离为f=f1+f2。
根据傅里叶变换的性质,输入光场经过前透镜后,可以表示为前透镜的传递函数H1与输入光场的乘积。
同样地,输出光场可以表示为后透镜的传递函数H2与前透镜的传递函数H1与输入光场的乘积。
因此,输出光场可以表示为H2H1与输入光场的乘积。
通过选择合适的传递函数H1和H2,可以实现对输入光场的傅里叶变换。
常见
的选择是使H1和H2为透镜的传递函数,即H1和H2都为复振幅调制函数。
这样,输出光场可以表示为输入光场的傅里叶变换。
总之,光学4f系统的傅里叶变换原理是通过选择适当的透镜传递函数,使得输入光场经过前透镜和后透镜后,可以得到输出光场的傅里叶变换。
这一原理在光学信号处理和图像处理中有广泛的应用。
§8.2 傅里叶(Fourier)变换光学系统光学信息处理的任务是研究以二维图像作为媒介来进行图像的识别、图像的增强与恢复、图像的传输与变换、功率谱分析和全息术中的傅里叶全息存储等。
而担任上述任务的数学运算是傅里叶变换,光学成像透镜就具备这种二维图像的傅里叶变换特性。
当然傅里叶变换运算可通过电子计算机来实现,但由于二维图像的信息容量大,需使用复杂而昂贵的电子计算机,且需一定的计算时间,由光学透镜组成的相干光学处理系统,可简单而迅速地完成二维图像的傅里叶变换运算,因此讨论光学透镜的傅里叶变换特性及其设计问题是非常必要的。
一、光学透镜的傅里叶变换特性由标量衍射理论可知,振幅分布为f(x,y)的物体,其夫琅和费衍射场的振幅分布为式中, (x,y)为物面坐标,(xf,yf)为衍射场坐标。
令因此夫琅和费衍射过程实际上就是一个傅里叶变换过程,衍射场即为频谱面。
若把频谱面再进行一次傅里叶变换,可得令x'=-x,y'=-y,则有f(x',y')=f(x,y)。
因此物函数f(x,y)经二次傅里叶变换后,仍可得到原函数f(x',y'),只不过函数的坐标发生了倒置。
若在第一次变换后的频谱面上插入各种不同用途的空间滤波器或掩膜板来改变输入物体的频谱状态,就可以达到各种光学图像的处理目的。
当傅里叶变换物镜满足某些特定的成像要求时,上述4f系统可获得严格的傅里叶变换关系,这是因为当平行光垂直照射输入物面(x,y)时,在输入面上要发生衍射,不同角度的衍射光经透镜L1后,在后焦面(频谱面)上形成夫琅和费衍射图像。
为了获得清晰而位置正确的夫琅和费衍射图像,也就是说为了获得严格的物面傅里叶频谱,傅里叶变换物镜应满足以下成像要求,即具有相同衍射角的光线经透镜变换后,应聚焦于焦平面上的一点,而不同衍射角的光线经透镜变换后,应聚焦于焦面上的不同点处,形成各级频谱。
对傅里叶变换物镜L来说,其成像关系为,若把其像方焦面作为像面,其物面应位于物方无限远,孔径光阑应位于透镜L的前焦面上,构成像方远心光路。
光学经典理论|傅里叶光学基础
2018-02-24 17:00
今天的光学经典理论为大家带来的是傅里叶光学基础,傅里叶光学是现代光学的一个分支,将电信理论中使用的傅里叶分析方法移植到光学领域而形成的新学科。
光学人们可以看看!
在电信理论中,要研究线性网络怎样收集和传输电信号,一般采用线性理论和傅里叶频谱分析方法。
在光学领域里,光学系统是一个线性系统,也可采用线性理论和傅里叶变换理论,研究光怎样在光学系统中的传播。
两者的区别在于,电信理论处理的是电信号,是时间的一维函数,频率是时间频率,只涉及时间的一维函数的傅里叶变换;在光学领域,处理的是光信号,它是空间的三维函数,不同方向传播的光用空间频率来表征,需用空间的三维函数的傅里叶变换。
包含内容
60年代发明了激光器,使人们获得了新的相干光源后,傅里叶光学无论在理论和应用领域均得到了迅速发展。
傅里叶光学运用傅里叶频谱分析方法和线性系统理论对广泛的光学现象作了新的诠释。
其主要内容包括标量衍射理论、透镜成像规律以及用频谱分析方法分析光学系统性质等。
推导演示
一个光学信息系统和一个电学信息系统有许多相同之处,它们都是收集信息和传递信息,它们都有共同的数学工具──线性系统理论和傅里叶分析。
从信息论角
度,关心的是信息在系统中传递过程;同样,对一个光学系统来讲,物和像的关系,也可以根据标量衍射理论由系统中光场的传播来确定,因此光学系统可以看成一个通信信道。
这样,通信理论中已经成熟的线性系统理论可以用来描述大部分光学系统。
当物体用非相干光照射时,在系统像平面上强度分布与物体上强度分布成线性(正比)关系。
而用来描述电学系统的脉冲响应h(t,τ)概念,即系统对一窄脉冲δ(t)(狄喇克δ函数)的响应,也可以用来描述光学系统,即用光学系统对点光源δ(x,y)的响应(点光源的像)h(x,y;ξ,η)来描述系统的性质,两者的区别仅仅在于电学系统的脉冲响应是时间一维函数,光学系统的脉冲函数是空间二维函数,另外两者都具有位移不变性,前者分布不随时间位移而变,后者分布不随空间位移而变(即等晕条件)。
光学系统的脉冲响应又称点扩展函数(见光学传递函数)。
一旦系统的点扩展函数已知,系统对任意物体f(x,y)所成的像g(ξ,η)可以从物体上每个点源产生的点扩展函数的线性叠加求得。
在空间位移不变情况下,叠加积分又可简化为卷积。
空间频率
在信息论中,还常用频率响应概念,即输入各种不同频率的信号,观察系统相应的输出,从频率响应曲线可以了解系统对各种频率的传递情况。
在光学系统中同样可以引入频率响应的概念,所不同的是瞬时频率响应由空间频率响应所代替。
与瞬时频率是时间函数acosωt周期的倒数一样,可以定义空间函数的周期d的倒数v=1/d(单位:线/毫米)为空间频率。
以最简单的物体──光栅──为例,可用函数1+Acos(2πvx)表示,其中v=1/d,d是光栅常数。
根据傅里叶分析,任意复杂物体f(x,y)可写成傅里叶变换关系式
,
式中F(vx,vy)是物体的空间频谱,。
其物理意义是把复杂f(x,y)分解成许多简单基元函数的线性组合, 而空间频谱F(vx,vy)只不过是一个权重因子,把它加到
各自基元函数上。
基元函数可更形象地看成是一些不同取向〔θ=tg-1(vy/vx)〕、不同空间周期L=
的光栅(图1),而每一个这种光栅在物函数中所占比重用权重因子──空间频谱F(vx,vy)所定。
这样,一个光学系统对f(x,y)的响应可分解为对各个基元函数的响应,再把每个响应叠加起来,便得到总的响应。
同样,可以写出逆变换。
对已知物体f(x,y)可以算出它的空间频谱分布。
透镜的傅里叶变换性质从标量衍射理论知道,考虑旁轴近似条件,在菲涅耳衍射(近场)区内,孔径平面(x,y)与观察平面(ξ,η)上光场之间的关系为
称为菲涅耳变换。
式中f(x,y) 是衍射孔径平面上光场振幅,g(ξ,η)是观察平面上的光场振幅,с是常数位相因子,u=2πξ/λz,υ=2πη/λz是空间角频率,z是平面之间距离。
由上式可见互为傅里叶变换关系,其中是二次相位因子。
当观察平面远离孔径平面时,即,上式变为夫琅和费衍射(远场)。
此时衍射图像g(ξ,η)为孔径平面中光场分布f(x,y)的傅里叶变换,或称为f(x,y)的空间频谱。
有趣的是一个薄凸透镜的透过率函数
(其中 f为透镜的焦距)正好与菲涅耳衍射中二次相位因子抵消,结果在透镜的后焦平面上光场分布g(ξ,η)就变为 f(x,y)的傅里叶变换或空间频谱。
这时空间角频率u=2πξ/λf,υ=2πη/λf,当入射光波波长λ和透镜焦距f不变时,空间频率vx=ξ/λf,vy=η/λf分别与后焦面上空间坐标ξ,η成比例。
由此可见,凸透镜的作用就是把远处的夫琅和费衍射图样拉近到后焦面上。
可以证明当孔径平面放在透镜的前焦面上时,常数相位因子消失,这时f(x,y)和g(ξ,η)之间有精确傅里叶变换关系(图2)。
利用透镜前后焦面上光场分布互为傅里叶变换的关系,可以分析各种图像的空间频谱,并对图像进行识别和分类,利用透镜的傅里叶变换性质经空间滤波,可以使一个光学系统具有数学模拟运算能力,被称为“光计算机”。
空间滤波
光学信息处理、相干光处理、信号处理、图像处理以及图像(或模式)识别等名称都与相干光系统中空间频率滤波有关。
利用凸透镜后焦面上显示物的夫琅和费衍射图样的有趣事实,以及在透镜的前后焦面上光场振幅互为傅里叶变换的关系,可用纯光学方法十分方便地实现在数学上繁琐的二维傅里叶积分运算。
并把信息论中滤波概念引进到光学中,即不仅仅分析物的空间频谱,还可通过滤波达到综合的目的,与时间函数的频谱可按某种方式来改变一样,通过改变物函数的空间频谱的方法以改变物的信息含量。
这种傅里叶综合在近代光学中已取得重要进展的例子有泽尔尼克相衬显微镜、光学匹配滤波器、合成孔径雷达数据的光学处理、各种图像增强技术、模糊图像恢复等。
其实空间滤波这个概念不是新的,1873年E.阿贝在显微镜成像理论中已经提出了此概念。
1906年A.B.波特用来验证阿贝理论的实验就是最早空间滤波实验。
20世纪50年代法国P. -M.迪费欧致力于把傅里叶积分应用于光学,A.马雷夏尔通过振幅和相位滤波改善成像系统的传递函数,,使照片的质量得到了一定程度的改善(图3)。
他在这方面的成功引起了人们对光学信息处理的浓厚兴趣。
60年代,由于激光器的出现,使相干光处理系统有了理想相干光源,空间滤波的研究工作得到了突飞猛进的发展。
例如:扫描线和半色调网点的去除,反衬度增强、边缘锐化、在相加性噪声中提取周期信号、像差平衡、数据互相关、匹配滤波(图像识别)、逆滤波(模糊图像恢复)等。
相干光处理系统如图4所示。
激光器输出相干光经准直系统扩束后照明位于傅里叶透镜L1的前焦面上的物函数,在后焦面上的光场是物函数的傅里叶频谱,在此谱平面上放有振幅(光密度)或相位(光程)变化,或两者都变化的空间滤波器,以改变物函数的傅里叶频谱
成分,经空间滤波后的傅里叶频谱由第二透镜L2进行傅里叶逆变换,并在像面上形成一处理后的图像。
空间滤波器大致分为三类:振幅型、相位型和复数型。
最简单的振幅型空间滤波器是低通、高通、带通和方向滤波器等如图5所示。
在光密度上是二进制,即只有透明不透明两部分组成。
利用低通滤波器可以去掉图像中的周期结构扫描线,因为图像频谱一般集中在零频周围,而周期结构(扫描线)的频谱是对称于零频的周期结构谱,用低通滤波器让图像中零频成分通过,又阻挡了周期结构谱,最后在像平面上显示出消除了扫描线的图像。
类似地,方向滤波器可以提取某一方向间隔中的图像信息,因而在地质数据的处理中十分有效,图6为方向滤波加低通滤波去掉扫描线的例子。
图6
图7为去除印刷网点的例子。
除此之外,振幅滤波器还可以根据需要用照相胶片,严格控制光密度得到连续密度变化的滤波器,这种滤波器在反衬度增强、微分运算中有用。
图7
最著名的相位空间滤波器是泽尔尼克相衬显微镜中的移相板,一般相位滤波器用真空蒸发镀膜方法,或感光胶片经漂白处理制成。
复数型空间滤波器是指滤波器的振幅和相位两者都需要变化,可以分别制作振幅和相位滤波器,然后组成一个复型滤波器。
还可用全息术方法来做,即在频谱面上拍摄物函数的傅里叶全息图,它不仅记录了频谱的振幅,还记录了频谱的相位。
用全息术制作复型空间滤波器是对光学信息处理的极大促进,利用全息滤波器可以进行匹配滤波、图形相关、模糊图像处理、像差平衡等。
应用领域
其应用领域包括空间滤波、光学信息处理、光学系统质量的评估、全息术以及傅里叶光谱学的研究等。
以上就是跟大家带来的傅里叶光学基础,各位光学人还需要我们提供什么样的光学理论,可以在下面留言。