选修3-4机械振动试题及答案
- 格式:doc
- 大小:393.50 KB
- 文档页数:8
物理人教版选修3-4第十一章机械振动单元检测(时间:60分钟 满分:100分)一、选择题(每小题5分,共计50分)1.关于做简谐运动的物体完成一次全振动的意义有以下几种说法,其中正确的是( )。
A .回复力第一次恢复原来的大小和方向所经历的过程B .速度第一次恢复原来的大小和方向所经历的过程C .动能或势能第一次恢复原来的大小和方向所经历的过程D .速度和加速度第一次同时恢复原来的大小和方向所经历的过程2.做简谐运动的物体,由最大位移处向平衡位置运动的过程中,速度越来越大,这是由于( )。
A .加速度越来越大B .物体的加速度和运动方向一致C .物体的势能转变为动能D .回复力对物体做正功3.一质点做简谐运动的图象如图所示,下列说法中正确的是( )。
A .质点振动频率是4 HzB .在10 s 内质点经过的路程是20 cmC .第4 s 末质点的速度为零D .在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相同4.一根弹簧原长为l 0,挂一质量为m 的物体时伸长x 。
当把这根弹簧与该物体套在一光滑水平的杆上组成弹簧振子,且其振幅为A 时,物体振动的最大加速度为( )。
A.0Ag lB.Ag xC.0xgl D.0l g A 5.在水平方向上做简谐运动的质点其振动图象如图所示,假设向右为正方向,则物体加速度向右且速度向右的时间是( )。
A .0~1 s 内B .1~2 s 内C .2~3 s 内D .3~4 s 内 6.设人自然步行时的跨步频率与手臂自然摆动的频率一致(人手臂自然摆动的频率与臂长的关系,类似于单摆固有频率与摆长的关系),人的臂长正比于身高,且人的步幅与身高成正比,由此估测人的步行速度v 与身高h 的关系为( )。
A .v ∝h 2B .v ∝hC .vD .v7.一个弹簧振子在A 、B 间做简谐运动,O 为平衡位置,如图甲所示,以某一时刻作为计时起点(t 为0),经14T ,振子具有正方向最大的加速度,那么在图乙所示的几个振动图象中,正确反映振子振动情况(以向右为正方向)的是( )。
物理沪科版选修3—4第1章机械振动单元检测(时间:45分钟满分:100分)一、选择题(每小题6分,共48分,每题至少有一个选项符合题意,多选、错选者不得分,选对但是选不全者得3分)1.有一弹簧振子做简谐运动,则()。
A.加速度最大时,速度为零B.速度最大时,位移最大C.位移最大时,回复力最大D.回复力最大时,加速度最大2.单摆做简谐运动时,下列说法正确的是()。
A.摆球质量越大、振幅越大,则单摆振动的能量越大B.单摆振动能量与摆球质量无关,与振幅有关C.摆球到达最高点时势能最大,摆线弹力最大D.摆球通过平衡位置时动能最大,摆线弹力最大3.关于做简谐运动的物体的位移、加速度和速度间的关系,下列说法中正确的是()。
A.位移减小时,加速度减小,速度也减小B.位移的方向总跟加速度的方向相反,跟速度的方向相同C.物体的运动方向指向平衡位置时,速度方向跟位移方向相反D.物体的运动到平衡位置时,加速度为零4.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛。
不开电动机让这个筛子自由振动时,完成20次全振动用15 s;在某电压下,电动偏心轮的转速是88 r/min。
已知增大电动偏心轮的电压可以使其转速提高,而增加筛子的总质量可以增大筛子的固有周期。
为使共振筛的振幅增大,以下做法正确的是()。
A.降低输入电压 B.提高输入电压C.增加筛子质量 D.减小筛子质量5.一弹簧振子的振动周期是0.025 s,当振子从平衡位置开始向右运动,经过0.17 s 时,振子的运动情况是()。
A.向右做减速运动 B.向右做加速运动C.向左做减速运动 D.向左做加速运动6.下列说法正确的是()。
A.质点做简谐运动,每二分之一周期内回复力做的功都等于零B.质点做平抛运动,每秒内重力所做的功都相同C.质点做匀速圆周运动,每秒内速度的变化都相同D.质点做自由落体运动,每秒内动能的增加量都相同7.甲、乙两弹簧振子,振动图像如图所示,则可知()。
《机械振动》单元检测题一、单选题1.下列运动中可以看作机械振动的是( )A.声带发声B.音叉被移动C.火车沿斜坡行驶D.秋风中树叶落下2.关于单摆,下列说法中正确的是( )A.单摆摆球所受的合外力指向平衡位置B.摆球经过平衡位置时加速度为零C.摆球运动到平衡位置时,所受回复力等于零D.摆角很小时,摆球所受合力的大小跟摆球相对平衡位置的位移大小成正比3.在做“用单摆测定重力加速度”的实验中,有人提出以下几点建议,可行的是( ) A.适当加长摆线B.质量相同,体积不同的摆球,应选用体积较大的C.单摆偏离平衡位置的角度要适当大一些D.当单摆经过平衡位置时开始计时,经过一次全振动后停止计时,用此时间间隔作为单摆振动的周期4.弹簧振子做简谐振动,若某一过程中振子的加速度在增加,则此过程中,振子的( )A.速度一定在减小B.位移一定在减小C.速度与位移方向相反D.加速度与速度方向相同5.如图所示,质量分别为mA =2 kg和mB=3 kg的A、B两物块,用劲度系数为k的轻弹簧相连后竖直放在水平面上,今用大小为F=45 N的力把物块A向下压使之处于静止状态,然后突然撤去压力,则(g取10 m/s2) ( )A.物块B有可能离开水平面B.物块B不可能离开水平面C.只要k足够小,物块B就可能离开水平面D.只要k足够大,物块B就可能离开水面6.做简谐运动的物体,它所受到的回复力F、振动时的位移x、速度v、加速度a,那么在F、x、v、a中,方向有可能相同的是( )A.F、x、a B.F、v、a C.x、v、a D.F、x、v7.曾因高速运行时刹不住车而引发的“丰田安全危机”风暴席卷全球,有资料分析认为这是由于当发动机达到一定转速时,其振动的频率和车身上一些零部件的固有频率接近,使得这些零部件就跟着振动起来,当振幅达到一定时就出现“卡壳”现象.有同学通过查阅资料又发现丰田召回后的某一维修方案,就是在加速脚踏板上加一个“小铁片”.试分析该铁片的作用最有可能的是( )A.通过增加质量使整车惯性增大B.通过增加质量使得汽车脚踏板不发生振动C.通过增加质量改变汽车脚踏板的固有频率D.通过增加质量改变汽车发动机的固有频率8.做简谐运动的物体,当其位移为负时,以下说法正确的是( )A.速度一定为正值,加速度一定为负值B.速度一定为负值,加速度一定为正值C.速度不一定为负值,加速度不一定为正值D.速度不一定为负值,加速度一定为正值9.一个弹簧振子,第一次用力把弹簧压缩x后开始振动,第二次把弹簧压缩2x后开始振动,则两次振动的周期之比和最大加速度的大小之比分别为( )A.1∶21∶2 B.1∶11∶1 C.1∶11∶2 D.1∶21∶1 10.关于机械振动,下列说法正确的是( ) A.往复运动就是机械振动B.机械振动是靠惯性运动的,不需要有力的作用C.机械振动是受回复力作用D.回复力是物体所受的合力11.甲、乙两个单摆的摆长相等,将两单摆的摆球由平衡位置拉起,使摆角θ甲<θ乙<5°,由静止开始释放,则( )A.甲先摆到平衡位置B.乙先摆到平衡位置C.甲、乙两摆同时到达平衡位置D.无法判断二、多选题12. 如图所示,乙图图象记录了甲图单摆摆球的动能、势能和机械能随摆球位置变化的关系,下列关于图象的说法正确的是 ( )A.a图线表示势能随位置的变化关系B.b图线表示动能随位置的变化关系C.c图线表示机械能随位置的变化关系D.图象表明摆球在势能和动能的相互转化过程中机械能不变13. 振动着的单摆,经过平衡位置时( )A.回复力指向悬点 B.合力为0C.合力指向悬点 D.回复力为014. 两个简谐振动的曲线如图所示.下列关于两个图象的说法正确的是( )A.两个振动周期相同 B.两个振动振幅相同C.两个振动初相相同 D.两个振动的表达式相同15. 下列运动中属于机械振动的是( )A.小鸟飞走后树枝的运动B.爆炸声引起窗子上玻璃的运动C.匀速圆周运动D.竖直向上抛出物体的运动三、实验题16.在利用单摆测定重力加速度的实验中:(1)实验中,应选用的器材为______.(填序号)①1米长细线②1 米长粗线③10厘米细线④泡沫塑料小球⑤小铁球⑥秒刻度停表⑦时钟⑧厘米刻度米尺⑨毫米刻度米尺(2)实验中,测出不同摆长对应的周期值T,作出T2-L图象,如图所示,T2与L的关系式是T2=____________,利用图线上任两点A、B的坐标(x1,y1)、(x2,y2)可求出图线斜率k,再由k可求出g=____________.(3)在实验中,若测得的g值偏小,可能是下列原因中的______.A.计算摆长时,只考虑悬线长度,而未加小球半径B.测量周期时,将n次全振动误记为n+1次全振动C.计算摆长时,将悬线长加小球直径D.单摆振动时,振幅偏小四、计算题17.光滑水平面上的弹簧振子的质量m=50 g,若在弹簧振子处于偏离平衡位置的最大位移处开始计时(t=0),在t=1.8 s时,振子恰好第五次通过平衡位置,此时振子的速度大小v=4 m/s.求:(1)弹簧振子的振动周期T;(2)在t=2 s时,弹簧的弹性势能E p.18.如图所示,质量为M=0.5 kg的框架B放在水平地面上.劲度系数为k=100 N/m的轻弹簧竖直放在框架B中,轻弹簧的上端和质量为m=0.2 kg的物体C连在一起.轻弹簧的下端连在框架B的底部.物体C在轻弹簧的上方静止不动.现将物体C竖直向下缓慢压下一段距离x=0.03 m后释放,物体C就在框架B中上下做简谐运动.在运动过程中,框架B始终不离开地面,物体C始终不碰撞框架B的顶部.已知重力加速度大小为g=10 m/s2.试求:当物体C运动到最低点时,物体C的加速度大小和此时物体B对地面的压力大小.19.如图所示有一下端固定的轻弹簧,原长时上端位于O0点,质量为m的小物块P(可视为质点)与轻弹簧上端相连,且只能在竖直方向上运动.当物体静止时,物体下降到O点,测得弹簧被压缩了x0.现用一外力将物体拉至O0点上方O2点,轻轻释放后,物1块将开始做简谐运动,已知O0、O2两点间距离x0,当地重力加速度为g.求:(1)物块过O1点时的速度v1是多大?(2)若物块达到O3点(图中没有标出)时,物块对弹簧的压力最大,则最大压力是重力的几倍?(3)从O2点到O3点过程中弹性势能变化了多少?答案解析1.【答案】A【解析】物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动;声带的振动发出声音是在其平衡位置附近的振动,故A正确;音叉被移动、火车沿斜坡行驶都是单方向的运动,不是在其平衡位置附近的振动,故B、C错误;秋风中树叶落下不是在其平衡位置附近作往复运动,故D错误.2.【答案】C【解析】单摆既是简谐运动也是竖直面内的圆周运动,沿圆心方向和切线方向均有合力,A项错误;在平衡位置时,单摆具有竖直向上的合力,加速度不为零,B项错误,但是此时回复力为零,C项正确;摆角很小时,摆球的回复力与摆球相对平衡位置的位移成正比,D项错误.3.【答案】A【解析】单摆的摆长越长,周期越大,适当加长摆长,便于测量周期,故A正确.要减小空气阻力的影响,应选体积较小的摆球,故B错误.单摆在摆角很小的情况下才做简谐运动,则单摆偏离平衡位置的角度不能太大,一般不超过5°,故C错误.单摆周期较小,把一次全振动的时间作为周期,测量误差较大,应采用累积法,测多个周期的时间取平均值作为单摆的周期,故D错误.4.【答案】A【解析】简谐运动中,根据a=-x可知振子的加速度增大时,则位移增大,振子从平衡位置正向最大位移处运动,所以速度逐渐减小,故A正确,B错误;振子从平衡位置正向最大位移处运动,速度与位移方向相同,故C错误;振子的速度在减小,做减速运动,则运动的加速度的方向一定与速度的方向相反,故D错误.5.【答案】B【解析】先假设物块B是固定的,A将做简谐运动,在释放点(最低点)F回=F=45 N,由对称性知,物块A在最高点的回复力大小F回′=F回=45 N,此时F回=GA+F弹,所以F弹=25 N<GB,故物块B不可能离开水平面,选项B正确.6.【答案】B【解析】回复力F=-kx,故回复力和x方向一定不同;但是位移和加速度,在向平衡位置运动过程中,方向相同,速度的方向也可能相同.故A、C、D错误,B正确.7.【答案】C【解析】惯性的大小与质量有关,加一个小铁片,对整车的惯性影响不大,A错误;振动是不可避免的,B错误;通过增加质量改变汽车脚踏板的固有频率,以免发生共振,C正确,D错误;故选:C.8.【答案】D【解析】若位移为负,由a=-可知加速度a一定为正,因为振子每次通过同一位置时,速度可能有两种不同的方向,所以速度可正可负,故D正确,A、B、C错误.9.【答案】C【解析】弹簧振子的周期由振动系统本身的特性决定,与振幅无关.所以两次振动的周期之比为1∶1;由简谐运动的特征:a=-得:最大加速度的大小之比a m1∶a m2=x∶2x=1∶2,故选C.10.【答案】C【解析】机械振动应该是以某一点为中心对称的运动,不是所有的往复运动都是机械振动,A错误;机械振动是需要力来维持的,B项错误、C项正确;回复力不一定是合力,也可能是合力的一部分,D项错误.11.【答案】C【解析】两个单摆的摆长相等,则两个单摆的周期相等,单摆从最大位移摆到平衡位置所用的时间相等,选项C正确.12.【答案】CD【解析】A点摆球的重力势能最大,动能最小,所以a是摆球重力势能随位置的变化关系,b是摆球动能随位置的变化关系,整个过程中摆球机械能保持不变,所以c是摆球机械能随位置变化的关系,故答案为C、D.13.【答案】CD【解析】单摆经过平衡位置时,位移为0,由F=-kx可知回复力为0,故A错误,D 正确;单摆经过平衡位置时,合力提供向心力,所以其合力指向圆心(即悬点),故B错误,C正确.14.【答案】AB【解析】从振动图象可以看出两个振动的周期相同,离开平衡位置的最大位移即振幅相同,A、B对.两个振动的零时刻相位即初相不同,相位不同,表达式不同,C、D错.15.【答案】AB【解析】物体所做的往复运动是机械振动,A、B正确;圆周运动和竖直向上抛出物体的运动不是振动,C、D错误.16.【答案】(1)①⑤⑥⑨(2)(3)A【解析】(1)摆线选择1 m左右的长细线,摆球选择质量大一些,体积小一些的铁球,测量时间用秒表,测量摆长用毫米刻度尺,故选①⑤⑥⑨.(2)根据单摆的周期公式T=2π得,T2=,可知图线的斜率k==,解得g=.(3)根据T=2π得,g=,计算摆长时,只考虑悬线长度,而未加小球半径,则摆长的测量值偏小,导致重力加速度测量值偏小,故A正确.测量周期时,将n次全振动误记为n+1次全振动,则周期测量值偏小,导致重力加速度测量值偏大,故B错误.计算摆长时,将悬线长加小球直径,则摆长的测量值偏大,导致重力加速度的测量值偏大,故C错误.单摆振动时,振幅偏小,不影响重力加速度的测量,故D错误.17.【答案】(1)0.8 s (2)0.4 J【解析】(1)在t=1.8 s时,振子恰好第五次通过平衡位置,则有:2T=1.8 s振子振动周期为:T=0.8 s(2)由题意可知,弹簧振子做简谐运动,根据对称性,从最大位移处释放时开始计时,在t=1.8 s时,振子通过平衡位置时弹性势能为零,动能为:E=mv2=×0.05×42J=0.4 J,k则振子的机械能为:E=E k+E p=0+0.4 J=0.4 J.t=2 s=2.5T,则在t=2 s末到达最大位移处,弹簧的弹性势能为最大,动能为零,此时弹簧的弹性势能即为0.4 J;18.【答案】15 m/s210 N【解析】物体C放上之后静止时:设弹簧的压缩量为x0,对物体C,有:mg=kx0解得:x0=0.02 m当物体C从静止向下压缩x后释放,物体C就以原来的静止位置为中心上下做简谐运动,振幅A=x=0.03 m当物体C运动到最低点时,对物体C,有:k(x+x0)-mg=ma解得:a=15 m/s2当物体C运动到最低点时,设地面对框架B的支持力大小为F,对框架B,有:F=Mg+k(x+x0)解得:F=10 N由牛顿第三定律知框架B对地面的压力大小为10 N.19.【答案】(1)2(2)最大压力是重力的3倍(3)4mgx0【解析】(1)因为O1、O2两点与O0点距离相同,所以弹性势能相同,故:mg(2x)=mv-mv其中:v2=0解得:v1=2(2)最高点合力为2mg,最低点合力也为2mg,故在最低点,有:F-mg=2mgN解得:F=3mgN即得弹力是重力的3倍;(3)由动能定理可知:+W N=mv-mvWGE=-W Np又因为初末状态速度为零,所以:ΔE p=-W N=WG=4mgx0.。
2020年秋人教版高中物理选修3-4第十一章机械振动测试本试卷共100分,考试时间120分钟。
一、单选题(共10小题,每小题4.0分,共40分)1.关于单摆,下列说法中正确的是 ()A.摆球运动中的回复力是摆线拉力和重力的合力B.摆球在运动过程中,经过轨迹上的同一点时,加速度是相同的C.摆球在运动过程中,加速度的方向始终指向平衡位置D.摆球经过平衡位置时,加速度为零2.如图为某质点的振动图象,由图象可知()A.质点的振动方程为x=2sin 50πt(cm)B.在t=0.01 s时质点的加速度为负向最大C.P时刻质点的振动方向向下D.从0.02 s至0.03 s质点的动能减小,势能增大3.把在北京调准的摆钟,由北京移到赤道上时,摆钟的振动()A.变慢了,要使它恢复准确,应增加摆长B.变慢了,要使它恢复准确,应缩短摆长C.变快了,要使它恢复准确,应增加摆长D.变快了,要使它恢复准确,应缩短摆长4.如图所示为某个弹簧振子做简谐运动的振动图象,由图象可知()A.在0.1 s时,由于位移为零,所以振动能量为零B.在0.2 s时,振子具有最大势能C.在0.35 s时,振子具有的能量尚未达到最大值D.在0.4 s时,振子的动能最大5.某质点在0~4 s的振动图象如图所示,则下列说法正确的是()A.质点振动的周期是2 sB.在0~1 s内质点做初速度为零的加速运动C.在t=2 s时,质点的速度方向沿x轴的负方向D.质点振动的振幅为20 cm6.一个单摆做受迫振动,其共振曲线(振幅A与驱动力的频率f的关系)如图所示,则()A.此单摆的固有周期约为0.5 sB.此单摆的摆长约为1 mC.若摆长增大,单摆的固有频率增大D.若摆长增大,共振曲线的峰将向右移动7.在竖直平面内的一段光滑圆弧轨道上有等高的两点M、N,它们所对圆心角小于10°,P点是圆弧的最低点,Q为弧NP上的一点,在QP间搭一光滑斜面,将两小滑块(可视为质点)分别同时从Q点和M点由静止释放,则两小滑块的相遇点一定在()A.P点B.斜面PQ上的一点C.PM弧上的一点D.滑块质量较大的那一侧8.如图所示是半径很大的光滑凹球面的一部分,有一个小球第一次自A点由静止开始滑下,到达最低点O时的速度为v1,用时为t1;第二次自B点由静止开始滑下,到达最低点O时的速度为v2,用时为t2,下列关系正确的是()A.t1=t2,v1>v2B.t1>t2,v1<v2C.t1<t2,v1>v2D.t1>t2,v1>v29.如图是研究质点做受迫振动的实验装置.已知弹簧和悬挂物体组成的系统的固有周期为T0,如果摇动手柄,手柄均匀转动的周期为T1.则下列说法正确的是()A.手柄不动,拉一下悬挂物体使其振动,其振动的周期为T1B.手柄以周期T1均匀转动时,稳定后悬挂物体振动的周期为T0C.手柄以周期T1均匀转动时,稳定后悬挂物体振动的周期为T1D.当手柄转动的周期改变时,悬挂物体振动的周期不会随之改变10.如图所示,固定曲面AC是一段半径为4.0 m的光滑圆弧形成的,圆弧与水平方向相切于A点,AB=10 cm.现将一小物体先后从弧面顶端C和圆弧中点D处由静止释放,到达弧面底端时的速度分别为v1和v2,所需时间为t1和t2,则下列关系正确的是()A.v1>v2,t1=t2B.v1>v2,t1>t2C.v1<v2,t1=t2D.v1<v2,t1>t2二、多选题(共4小题,每小题5.0分,共20分)11.(多选)如图所示为某一质点的振动图象,|x1|>|x2|,由图可知,在t1和t2两个时刻,质点振动的速度v1、v2与加速度a1、a2的关系为()A.v1<v2,方向相同B.v1<v2,方向相反C.a1>a2,方向相同D.a1>a2,方向相反12.(多选)如图所示,一个弹簧振子在A、B两点间做简谐运动,O点为平衡位置,下列说法中正确的有()A.它在A、B两点时动能为零B.它经过O点时加速度方向不发生变化C.它远离O点时做匀减速运动D.它所受回复力的方向总跟它偏离平衡位置的位移方向相反13.(多选)如图所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M,若振子运动到B处时将一质量为m的物体放到M的上面,m和M无相对运动而一起运动,下列说法正确的()A.振幅不变B.振幅减小C.最大速度不变D.最大速度减小14.(多选)竖直悬挂的弹簧振子由最低点B开始作简谐运动,O为平衡位置,C为最高点,规定竖直向上为正方向,振动图象如图所示.则以下说法中正确的是()A.弹簧振子的振动周期为2.0 sB.t=0.5 s时,振子的合力为零C.t=1.5 s时,振子的速度最大,且竖直向下D.t=2.0 s时,振子的加速度最大,且竖直向下三、实验题(共1小题,每小题10.0分,共10分)15.学过单摆的周期公式以后,物理兴趣小组的同学们对钟摆产生了兴趣,老师建议他们先研究用厚度和质量分布均匀的方木块(如一把米尺)做成的摆(这种摆被称为复摆),如图1所示.让其在竖直平面内做小角度摆动,C点为重心,板长为L,周期用T表示.甲同学猜想:复摆的周期应该与板的质量有关.乙同学猜想:复摆的摆长应该是悬点到重心的距离.丙同学猜想:复摆的摆长应该大于.理由是:若OC段看成细线,线拴在C处,C点以下部分的重心离O点的距离显然大于.为了研究以上猜想是否正确,同学们进行了下面的实验探索:图1图2(1)把两个相同的木板完全重叠在一起,用透明胶(质量不计)粘好,测量其摆动周期,发现与单个木板摆动时的周期相同,重做多次仍有这样的特点.则证明了甲同学的猜想是______的(选填“正确”或“错误”).(2)用T0表示板长为L的复摆看成摆长为单摆的周期计算值(T0=2π),用T表示板长为L的复摆的实际周期测量值.计算与测量的数据如表:由上表可知,复摆的等效摆长______(选填“大于”“小于”或“等于”).(3)为了进一步定量研究,同学们用描点作图法对数据进行处理,所选坐标如图2.请在坐标纸上作出T-T0图象,并根据图象中反映出的规律求出=______(结果保留三位有效数字,其中L等是板长为L时的等效摆长T=2π).四、计算题(共3小题,每小题10.0分,共30分)16.如图为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?(g取10 m/s2)如果把此摆拿到月球上去,已知月球上的自由落体加速度为1.6 m/s2,它在月球上做50次全振动要用多少时间?17.如图所示,质量为m的木块A和质量为M的木块B用细线捆在一起,木块B与竖直悬挂的轻弹簧相连,它们一起在竖直方向上做简谐运动.在振动中两物体的接触面总处在竖直平面上,设弹簧的劲度系数为k,当它们经过平衡位置时,A、B之间的静摩擦力大小为F f0.当它们向下离开平衡位置的位移为x时,A、B间的静摩擦力为F fx.细线对木块的摩擦不计.求:(重力加速度为g)(1)F f0的大小;(2)F fx的大小.18.如图所示,一块涂有炭黑的玻璃板,质量为2 kg,在拉力F的作用下,由静止开始竖直向上做匀加速运动.一个装有水平振针的振动频率为5 Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1 cm,OB=4 cm,OC=9 cm,求外力F的大小.(g取10 m/s2)答案解析1.【答案】B【解析】单摆运动的回复力是重力沿圆弧切线方向的一个分力,故A错误;摆球在运动过程中,经过轨迹上的同一点时,受力不变,故加速度相同,故B正确;摆球在运动过程中,回复力产生的加速度的方向始终指向平衡位置,而向心加速度指向悬点,合成后,方向在变化,故C错误;单摆过平衡位置时,由于具有向心加速度,所受的合力指向悬点,不为零,D错误.2.【答案】D【解析】由图知,振幅A=2 cm,周期T=4×10-2s,则角频率ω===50π rad/s,质点的振动方程为x=-A sinωt=-2sin 50πt(cm),故A错误;在t=0.01 s时质点的位移为负向最大,由a=-知,加速度为正向最大,故B错误;P时刻图象的斜率为正,则质点的振动方向向上,故C错误;从0.02 s至0.03 s,质点的位移增大,离开平衡位置,则质点的动能减小,势能增大,故D正确.3.【答案】B【解析】把标准摆钟从北京移到赤道上,重力加速度g变小,则周期T=2π>T0,摆钟显示的时间小于实际时间,因此变慢了,要使它恢复准确,应缩短摆长,B正确.4.【答案】B【解析】弹簧振子做简谐运动,振动能量不变,振幅不变,选项A错;在0.2 s时位移最大,振子具有最大势能,选项B对;弹簧振子的振动能量不变,在0.35 s时振子具有的能量与其他时刻相同,选项C错;在0.4 s时振子的位移最大,动能为零,选项D错.5.【答案】C【解析】由图知,振动周期是4 s,振幅为10 cm,故A、D错误;在0~1 s内质点从平衡位置向最大位移处运动,速度减小,做减速运动,故B错误;在t=2 s时,质点经过平衡位置向负向最大位移处运动,速度沿x轴负向,故C正确.6.【答案】B【解析】由共振条件知单摆固有频率为f=0.5 Hz,则其固有周期为T==2 s,选项A错;由单摆周期公式T=2π,可求得单摆摆长为l=≈1 m,选项B对;摆长增大,单摆的周期变大,其固有频率变小,共振曲线的峰将向左移动,选项C、D错.7.【答案】B【解析】沿斜面下滑的物体:设圆弧的半径为r,NP与竖直方向的夹角是θ,NP距离为2r cosθ,加速度为g cosθ,时间:t1=2;沿圆弧下滑的小球的运动类似于简谐振动,周期T=2π,时间:t2==;明显t2<t1,故B正确.8.【答案】A【解析】从A、B点均做单摆模型运动,t1==,t2==,R为球面半径,故t1=t2;A点离平衡位置远些,高度差大,故从A点滚下到达平衡位置O时速度大,即v1>v2.9.【答案】C【解析】手柄不动,拉一下悬挂物体使其振动,是自由振动,其振动的周期为T0,故A错误;受迫振动的频率等于驱动力的频率,故手柄以周期T1均匀转动时,稳定后悬挂物体振动的周期为T1,故B错误,C正确;受迫振动的频率等于驱动力的频率,故当手柄转动的周期改变时,悬挂物体振动的周期会随之改变,故D错误.10.【答案】A【解析】小球的运动可视为简谐运动(单摆运动),根据周期公式T=2π=2π,知小球在C点和D点释放,运动到O点的时间相等,都等于.根据动能定理有:mgΔh=mv2-0,知C点的Δh大,所以从C点释放到达O点的速度大,故A正确.11.【答案】AD【解析】由图象可知,t1、t2两时刻,质点都在沿x轴负方向运动,越靠近平衡位置,速度越大,故选项A正确.由F=-kx可知F1>F2,对于同一质点来说,a1>a2且方向相反,选项D正确.12.【答案】AD【解析】振子经过A、B两点时速度为零,动能为零,当振子经过O点时,速度最大,动能最大,故A正确;由于振子的加速度方向总是指向平衡位置,振子在AO间运动时,加速度向右,在OB 间运动时,加速度向左,所以经过O点时加速度方向要发生变化,故B错误;振子远离O点时,位移增大,加速度增大,做加速度增大的变减速运动,故C错误;回复力的方向总跟它偏离平衡位置的位移方向相反,故D正确.13.【答案】AD【解析】振子运动到B处时将一质量为m的物体放到M的上面,m和M无相对运动而一起运动,离开平衡位置的最大位移未变,所以振幅不变,故A正确,B错误;振子在平衡位置时,速度最大,根据能量守恒得,从最大位移处到平衡位置,弹性势能转化为振子的动能,弹性势能与以前比较未变,但振子的质量变大,所以最大速度变小,故D正确,C错误.14.【答案】ABC【解析】周期是振子完成一次全振动的时间,由图知,该振子的周期是2.0 s,故A正确;由图可知,t=0.5 s时,振子位于平衡位置处,所以受到的合力为零,故B正确;由图可知,t=1.5 s时,振子位于平衡位置处,对应的速度最大.此时刻振子的位移方向从上向下,即振子的速度方向竖直向下,故C正确;由图可知,弹簧振子在t=2.0 s时位于负的最大位移处,所以回复力最大,方向向上,则振子的加速度最大,且竖直向上,故D错误.15.【答案】(1)错误(2)大于(3)1.16【解析】①把两个相同的木板完全重叠在一起,构成的复摆质量大于单个木板复摆的质量,而两者周期相同,说明复摆的周期与质量无关,证明甲同学的猜想是错误的.②由表格看出,周期测量值T大于周期计算值T0,由单摆的周期公式T=2π知,复摆的等效摆长大于③用描点作图法作出T-T0图线如图所示,由数学知识求得:图线的斜率k==1.16,则由T=2π,T0=2π得:=1.16.16.【答案】1 m10 cm245 s【解析】题图是单摆的共振曲线,当驱动力频率为0.5 Hz时单摆产生了共振现象;则单摆的固有频率即为0.5 Hz,固有周期为T=2 s,振幅为10 cm;根据单摆的周期公式T=2π,摆长为:L==≈1 m把此摆拿到月球上去,周期为:T=2π=2×3.14×=4.9 s做50次全振动时间为:t=50T=50×4.9=245 s.17.【答案】(1)mg(2)+mg【解析】(1)经过平衡位置时,回复力为0,对于A有:F f0=mg(2)在平衡位置时对于A、B组成的系统有:kx0=(m+M)g向下离开平衡位置的位移为x时对于A、B组成的系统有:k(x0+x)-(m+M)g=(m+M)a则kx=(m+M)a对于A有:F fx-mg=ma解得F fx=ma+mg=+mg18.【答案】24 N【解析】在力F作用下,玻璃板向上加速,图示OC间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC代表音叉振动1.5个周期内玻璃板运动的位移,而OA、AB、BC间对应的时间均为0.5个周期,即t===0.1 s.故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设玻璃板竖直向上的加速度为a,则有:sBA-sAO=aT2其中T==0.1 s由牛顿第二定律得F-mg=ma联立得F=24 N.。
第十一章《机械振动》检测题一、单选题(每小题只有一个正确答案)1.弹簧振子作简谐振动的周期是4 s,某时刻该振子的速度为v,要使该振子的速度变为-v,所需要的最短时间是( )A. 1 s B. 2 s C. 4 s D.无法确定2.小球做简谐运动,则下述说法正确的是( )A.小球所受的回复力大小与位移成正比,方向相同B.小球的加速度大小与位移成正比,方向相反C.小球的速度大小与位移成正比,方向相反D.小球速度的大小与位移成正比,方向可能相同也可能相反3.弹簧振子沿直线作简谐运动,当振子连续两次经过相同位置时下列说法不正确的( ) A.回复力相同 B.加速度相同 C.速度相同 D.机械能相同4.任何物体都有自己的固有频率.研究表明,如果把人作为一个整体来看,在水平方向上振动时的固有频率约为5 Hz.当工人操作风镐、风铲、铆钉机等振动机械时,操作者在水平方向将做受迫振动.在这种情况下,下列说法正确的是( )A.操作者的实际振动频率等于他自身的固有频率B.操作者的实际振动频率等于机械的振动频率C.为了保证操作者的安全,振动机械的频率应尽量接近人的固有频率D.为了保证操作者的安全,应尽量提高操作者的固有频率5.水平放置的弹簧振子先后以振幅A和2A振动,振子从左边最大位移处运动到右边最大位移处过程中的平均速度分别为v1和v2,则( )A.v1=2v2 B. 2v1=v2 C.v1=v2 D.v1=v26.如图所示为某质点在0~4 s内的振动图象,则( )A.质点在3 s末的位移为2 m B.质点在4 s末的位移为8 mC.质点在4 s内的路程为8 m D.质点在4 s内的路程为零7.如图所示是单摆做阻尼运动的位移—时间图线,下列说法中正确的是( )A.摆球在P与N时刻的势能相等 B.摆球在P与N时刻的动能相等C.摆球在P与N时刻的机械能相等 D.摆球在P时刻的机械能小于N时刻的机械能8.某同学在用单摆测重力加速度的实验中,用的摆球密度不均匀,无法确定重心位置,他第一次量得悬线长为L1,测得周期为T1,第二次量得悬线长为L2,测得周期为T2,根据上述数据,重力加速度g的值为( )A. B. C. D.无法判断9.如图所示为演示简谐振动的沙摆,已知摆长为l,沙筒的质量为m,沙子的质量为M,沙子逐渐下漏的过程中,摆的周期( )A.不变 B.先变大后变小 C.先变小后变大 D.逐渐变大10.关于简谐运动周期、频率、振幅说法正确的是( )A.振幅是矢量,方向是由平衡位置指向最大位移处B.周期和频率的乘积不一定等于1C.振幅增加,周期必然增加,而频率减小D.做简谐运动的物体,其频率固定,与振幅无关11.将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图所示.某同学由此图线提供的信息做出了下列判断①t=0.2 s时摆球正经过最低点.②t=1.1 s时摆球正经过最低点.③摆球摆动过程中机械能减少.④摆球摆动的周期是T=0.6 s.上述判断中,正确的是( )A.①③ B.②③ C.③④ D.②④12.如图为某质点做简谐运动的图象.下列说法正确的是( )A.t=0时,质点的速度为零B.t=0.1 s时,质点具有y轴正向最大加速度C.在0.2 s~0.3 s内质点沿y轴负方向做加速度增大的加速运动D.在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动13.如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M点,与竖直墙相切于A点,竖直墙上另一点B与M的连线和水平面的夹角为60°,C是圆环轨道的最高点,D是圆环上与M靠得很近的一点(DM远小于).已知在同一时刻:a、b两球分别由A、B两点从静止开始沿光滑倾斜直轨道运动到M点,c球由C点自由下落到M点,d球从D点静止出发沿圆环运动到M点.则下列关于四个小球运动时间的关系,正确的是( )A.tb>tc>ta>td B.td>tb>tc>ta C.tb>tc=ta>td D.td>tb=tc=ta14.如图所示,一轻弹簧上端固定,下端系在甲物体上,甲、乙间用一不可伸长的轻杆连接,已知甲、乙两物体质量均为m,且一起在竖直方向上做简谐振动的振幅为A(A>).若在振动到达最高点时剪断轻杆,甲单独振动的振幅为A1,若在振动到达最低点时间剪断轻杆,甲单独振动的振幅为A2.则( )A.A2>A>A1 B.A1>A>A2 C.A>A2>A1 D.A2>A1>A二、多选题(每小题至少有两个正确答案)15.利用传感器和计算机可以测量快速变化的力.如图是用这种方法获得的弹性绳中拉力随时间的变化图线.实验时,把小球举高到绳子的悬点O处,然后让小球自由下落.从此图线所提供的信息,判断以下说法中正确的是( )A.t1时刻小球速度最大 B.t2时刻绳子最长C.t3时刻小球动能最小 D.t3与t4时刻小球速度大小相同16.物体做简谐运动时,下列叙述正确的是( )A.平衡位置就是回复力为零的位置B.处于平衡位置的物体,一定处于平衡状态C.物体到达平衡位置,合力一定为零D.物体到达平衡位置,回复力一定为零17.在“探究单摆周期与摆长的关系”的实验中,以下说法正确的是( )A.测量摆长时,应用力拉紧摆线B.单摆偏离平衡位置的角度不能太大C.要保证单摆自始至终在同一竖直面内摆动D.应从摆球通过最低位置时开始计时18.(多选)如图所示为半径很大的光滑圆弧轨道上的一小段,小球B静止在圆弧轨道的最低点O处,另有一小球A自圆弧轨道上C处由静止滚下,经t秒与B发生正碰.碰后两球分别在这段圆弧轨道上运动而未离开轨道,当两球第二次相碰时( )A.相间隔的时间为4t B.相间隔的时间为2tC.将仍在O处相碰 D.可能在O点以外的其他地方相碰19.如图所示,物体A与滑块B一起在光滑水平面上做简谐运动,A、B之间无相对滑动,已知轻质弹簧的劲度系数为k,A、B的质量分别为m和M,下列说法正确的是( )A.物体A的回复力是由滑块B对物体A的摩擦力提供B.滑块B的回复力是由弹簧的弹力提供C.物体A与滑块B(看成一个振子)的回复力大小跟位移大小之比为kD.物体A的回复力大小跟位移大小之比为k E.若A、B之间的最大静摩擦因数为μ,则A、B间无相对滑动的最大振幅为三、实验题20.某同学做“用单摆测定重力加速度”的实验,实验步骤如下:Ⅰ.选取一个摆线长约1 m的单摆,把线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂.Ⅱ.用米尺量出悬线长度,精确到毫米,作为摆长.Ⅲ.放开小球让它来回摆动,用停表测出单摆做30~50次全振动所用的时间,计算出平均摆动一次的时间.Ⅳ.变更摆长,重做几次实验,根据单摆的周期公式,计算出每次实验测得的重力加速度并求出平均值.(1)上述实验步骤有两点错误,请一一列举:Ⅰ.________________________________________________________________________;Ⅱ.________________________________________________________________________;(2)按正确的实验步骤,将单摆全部浸入水中做实验,测得的重力加速度变______.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,当地的重力加速度的真实值g =____________.21.在探究单摆的振动周期T和摆长L的关系实验中,某同学在细线的一端扎上一个匀质圆柱体制成一个单摆.(1)如图,该同学把单摆挂在力传感器的挂钩上,使小球偏离平衡位置一小段距离后释放,电脑中记录拉力随时间变化的图象如图所示.在图中读出N个峰值之间的时间间隔为t,则重物的周期为____________.(2)为测量摆长,该同学用米尺测得摆线长为85.72 cm,又用游标卡尺测量出圆柱体的直径(如图甲)与高度(如图乙),由此可知此次实验单摆的摆长为______cm.(3)该同学改变摆长,多次测量,完成操作后得到了下表中所列实验数据.请在坐标系中画出相应图线(4)根据所画的周期T与摆长L间的关系图线,你能得到关于单摆的周期与摆长关系的哪些信息.四、计算题22.如图所示是一个质点做简谐运动的图象,根据图象回答下面的问题:(1)振动质点离开平衡位置的最大距离;(2)写出此振动质点的运动表达式;(3)在0~0.6 s的时间内质点通过的路程;(4)在t=0.1 s、0.3 s、0.5 s、0.7 s时质点的振动方向;(5)振动质点在0.6 s~0.8 s这段时间内速度和加速度是怎样变化的?(6)振动质点在0.4 s~0.8 s这段时间内的动能变化是多少?答案解析1.【答案】D【解析】要使该振子的速度变为-v,可能经过同一位置,也可能经过关于平衡位置对称的另外一点;由于该点与平衡位置的间距未知,故无法判断所需要的最短时间,故选D.2.【答案】B【解析】简谐运动的回复力与位移关系为:F=-kx,方向相反,A、C、D错;a=,所以加速度与位移成正比,方向相反,B正确.3.【答案】C【解析】弹簧振子在振动过程中,两次连续经过同一位置时,位移、加速度、回复力、动能、势能、速度的大小均是相同的.但速度的方向不同,故速度不同.故选C.4.【答案】B【解析】物体在周期性驱动力作用下做受迫振动,受迫振动的频率等于驱动力的频率,与固有频率无关,可知操作者的实际频率等于机械的振动频率,故A错误,B正确;当驱动力频率等于物体的固有频率时,物体的振幅最大,产生共振现象,所以为了保证操作者的安全,振动机械的频率应尽量远离人的固有频率,故C错误;有关部门作出规定:拖拉机、风镐、风铲、铆钉机等各类振动机械的工作频率必须大于20 Hz,操作者的固有频率无法提高,故D错误.5.【答案】B【解析】弹簧振子做简谐运动,周期与振幅无关,设为T,则从左边最大位移处运动到右边最大位移处所用的时间为;第一次位移为2A,第二次位移为4A,即位移之比为1∶2,根据平均速度的定义式=,平均速度之比为1∶2.6.【答案】C【解析】振动质点的位移指的是质点离开平衡位置的位移.位移是矢量,有大小,也有方向.因此3 s末的位移为-2 m,4 s末位移为零.路程是指质点运动的路径的长度,在4 s内应该是从平衡位置到最大位置这段距离的4倍,即为8 m,C正确.7.【答案】A【解析】由于摆球的势能大小由其位移和摆球质量共同决定,P、N两时刻位移大小相同,关于平衡位置对称,所以势能相等,A正确;由于系统机械能在减少,P、N时刻势能相同,则P处动能大于N处动能,故B、C、D错.8.【答案】B【解析】设摆球的重心到线与球结点的距离为r,根据单摆周期的公式T=2π得T1=2π;T2=2π;联立解得g=,故选B.9.【答案】B【解析】在沙摆摆动、沙子逐渐下漏的过程中,沙摆的重心逐渐下降,即摆长逐渐变大,当沙子流到一定程度后,摆的重心又重新上移,即摆长变小,由周期公式可知,沙摆的周期先变大后变小,故选B.10.【答案】D【解析】振幅是振动物体离开平衡位置的最大距离,是标量,A错;周期和频率互为倒数,B错;做简谐运动的物体的频率和周期由振动系统本身决定,C错误,D正确.11.【答案】A【解析】摆球经过最低点时,拉力最大,在0.2 s时,拉力最大,所以此时摆球经过最低点,故①正确;摆球经过最低点时,拉力最大,在1.1 s时,拉力最小,所以此时摆球不是经过最低点,是在最高点,故②错误;根据牛顿第二定律知,在最低点F-mg=m,则F=mg+m,在最低点的拉力逐渐减小,知是阻尼振动,机械能减小,故③正确;在一个周期内摆球两次经过最低点,根据图象知周期:T=2×(0.8 s-0.2 s)=1.2 s,故④错误.12.【答案】D【解析】由图可知,在t=0时,质点经过平衡位置,所以速度最大,故A错误;当t=0.1 s时,质点的位移为正向最大,速度为零,由加速度公式a=-y,知加速度负向最大.故B错误;在0.2 s时,质点经过平衡位置,0.3 s时质点的位移为负向最大,质点沿y轴负方向做加速度增大的减速运动,故C错误;在0.5 s时,质点的位移为正向最大,速度为零,0.6 s时,质点经过平衡位置,速度负向最大,可知在0.5 s~0.6 s内质点沿y轴负方向做加速度减小的加速运动,故D正确.13.【答案】C【解析】对于AM段,位移x1=R,加速度a1==g,根据x1=a1t得,t1=2.对于BM段,位移x2=2R,加速度a2=g sin 60°=g,根据x2=a2t得,t2=. 对于CM段,位移x3=2R,加速度a3=g,由x3=gt得,t3=2.对于D小球,做类单摆运动,t4==.故C正确.14.【答案】A【解析】未剪断轻杆时,甲、乙两物体经过平衡位置时,弹簧的伸长量为x0=;当剪断轻杆时,甲物体经过平衡位置时,弹簧的伸长量为x=,可知,平衡位置向上移动.则在振动到达最高点时剪断轻杆,A1<A;在振动到达最低点时间剪断轻杆,A2>A;所以有:A2>A>A1.15.【答案】BD【解析】把小球举高到绳子的悬点O处,让小球自由下落,t1时刻绳子刚好绷紧,此时小球所受的重力大于绳子的拉力,小球向下做加速运动,当绳子的拉力大于重力时,小球才开始做减速运动,所以t1时刻小球速度不是最大,故A错误;t2时刻绳子的拉力最大,小球运动到最低点,绳子也最长,故B正确;t3时刻与t1时刻小球的速度大小相等,方向相反,小球动能不是最小,应是t2时刻小球动能最小,故C错误;t3与t4时刻都与t1时刻小球速度大小相同,故D正确.16.【答案】AD【解析】平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A、D对.17.【答案】BCD【解析】测量摆长时,要让摆球自然下垂,不能用力拉紧摆线,否则使测量的摆长产生较大的误差,故A错误.单摆偏离平衡位置的角度不能太大,否则单摆的振动不是简谐运动,故B正确.要保证单摆自始至终在同一竖直面内摆动,不能形成圆锥摆,故C正确.由于摆球经过最低点时速度最大,从摆球通过最低位置时开始计时,测量周期引起的误差最小,故D 正确.18.【答案】BC【解析】因为它是一个很大的光滑圆弧,可以当作一个单摆运动.所以AB球发生正碰后各自做单摆运动.T=2π,由题目可知A球下落的时间为t=T,由此可见周期与质量、速度等因素无关,所以碰后AB两球的周期相同,所以AB两球向上运动的时间和向下运动的时间都是一样的.所以要经过2t的时间,AB两球同时到达O处相碰.19.【答案】ACE【解析】A做简谐运动时的回复力是由滑块B对物体A的摩擦力提供,故A正确;物体B作简谐运动的回复力是弹簧的弹力和A对B的静摩擦力的合力提供,故B错误;物体A与滑块B(看成一个振子)的回复力大小满足F=-kx,则回复力大小跟位移大小之比为k,故C正确;设弹簧的形变量为x,根据牛顿第二定律得到整体的加速度为:a=,对A:F f=ma =,可见,作用在A上的静摩擦力大小F f,即回复力大小与位移大小之比为:,故D错误;据题知,物体间达到最大摩擦力时,其振幅最大,设为A.以整体为研究对象有:kA=(M+m)a,以A为研究对象,由牛顿第二定律得:μmg=ma,联立解得:A=,故E正确.20.【答案】(1)Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时(2)小+【解析】(1)上述实验步骤有两点错误Ⅱ.测量摆球直径,摆长应为摆线长加摆球半径;Ⅲ.在细线偏离竖直方向小于5°位置释放小球,经过最点时进行计时.(2)按正确的实验步骤,将单摆全部浸入水中做实验,等效的重力加速度g′=,所以测得的重力加速度变小.已知测得的单摆周期为T,摆长为L,摆球质量为m,所受浮力为F,由单摆的周期公式得出T=2πg=+.21.【答案】(1)(2)88.10 (3)如图所示(4)摆长越长,周期越大,周期与摆长呈非线性关系【解析】(1)摆球做简谐运动,每次经过最低点时速度最大,此时绳子拉力最大,则两次到达拉力最大的时间为半个周期,所以t=(N-1)T解得:T=(2)图乙游标卡尺的主尺读数为47 mm,游标读数为0.1×5 mm=0.5 mm,则最终读数为47.5 mm=4.75 cm.所以圆柱体的高度为h=4.75 cm,摆长是悬点到球心的距离,则摆长l=85.72 cm+=88.10 cm(3)根据描点法作出图象,如图所示:(4)由图象可知,摆长越长,周期越大,周期与摆长呈非线性关系.22.【答案】(1)5 cm (2)x=5sin(2.5πt) cm(3)15 cm (4)正方向负方向负方向正方向(5)速度越来越大加速度的方向指向平衡位置越来越小(6)零【解析】(1)由振动图象可以看出,质点振动的振幅为5 cm,此即质点离开平衡位置的最大距离.(2)由图象可知A=5 cm,T=0.8 s,φ=0.所以x=A sin(ωt+φ)=A sin(t)=5sin(t) cm=5sin(2.5πt) cm.(3)由振动图象可以看出,质点振动的周期为T=0.8 s,0.6 s=3×,振动质点是从平衡位置开始振动的,故在0~0.6 s的时间内质点通过的路程为s=3×A=3×5 cm=15 cm.(4)在t=0.1 s时,振动质点处在位移为正值的某一位置上,但若从t=0.1 s起取一段极短的时间间隔Δt(Δt→0)的话,从图象中可以看出振动质点的正方向的位移将会越来越大,由此可以判断得出质点在t=0.1 s时的振动方向是沿题中所设的正方向的.同理可以判断得出质点在t=0.3 s、0.5 s、0.7 s时的振动方向分别是沿题中所设的负方向、负方向和正方向.(5)由振动图象可以看出,在0.6 s~0.8 s这段时间内,振动质点从最大位移处向平衡位置运动,故其速度是越来越大的;而质点所受的回复力是指向平衡位置的,并且逐渐减小的,故其加速度的方向指向平衡位置且越来越小.(6)由图象可以看出,在0.4 s~0.8 s这段时间内质点从平衡位置经过半个周期的运动又回到了平衡位置,尽管初、末两个时刻的速度方向相反,但大小是相等的,故这段时间内质点的动能变化为零.。
绝密★启用前人教版高中物理选修3-4 第十一章机械振动测试本试卷分第Ⅰ卷和第Ⅱ卷两部分,共100分第Ⅰ卷一、单选题(共15小题,每小题4.0分,共60分)1.水平放置的弹簧振子先后以振幅A和2A振动,振子从左边最大位移处运动到右边最大位移处过程中的平均速度分别为v1和v2,则()A.v1=2v2B. 2v1=v2C.v1=v2D.v1=v22.有一个在y方向上做简谐运动的物体,其振动曲线如图所示,关于此图的下列判断正确的是()A.图①可作为该物体的速度v-t图象B.图②可作为该物体的回复力F-t图象C.图③可作为该物体的回复力F-t图象D.图④可作为该物体的加速度a-t图象3.如图所示,BOC是半径为R的光滑弧形槽,O点是弧形槽的最低点,半径R远大于BOC的弧长,一小球由静止从B点开始释放,小球就在弧形槽内来回运动,欲增大小球的运动周期,可采取的方法是()A.小球开始释放处靠近O点一些B.换一个密度大一些的小球C.换一个半径R大一些的弧形槽D.换一个半径R小一些的弧形槽4.下列说法中正确的是()A.若t1、t2两时刻振动物体在同一位置,则t2-t1=TB.若t1、t2两时刻振动物体在同一位置,且运动情况相同,则t2-t1=TC.若t1、t2两时刻振动物体的振动反向,则t2-t1=D.若t2-t1=,则在t1、t2时刻振动物体的振动反向5.如图甲所示,小球在内壁光滑的固定半圆形轨道最低点附近做小角度振动,其振动图象如图乙所示,以下说法正确的是()A.t1时刻小球速度为零,轨道对它的支持力最小B.t2时刻小球速度最大,轨道对它的支持力最小C.t3时刻小球速度为零,轨道对它的支持力最大D.t4时刻小球速度为零,轨道对它的支持力最大6.甲、乙两人观察同一单摆的振动,甲每经过3.0 s观察一次摆球的位置,发现摆球都在其平衡位置处;乙每经过4.0 s观察一次摆球的位置,发现摆球都在平衡位置右侧的最高处,由此可知该单摆的周期不可能的是()A. 0.5 sB. 1.0 sC. 1.5 sD. 2.0 s7.如图为一振子做简谐运动的图象,在t1和t2时刻,振子的()A.位移相同B.速度相同C.回复力相同D.加速度相同8.如图所示,一质点在A、B间做简谐运动,从A第一次运动到B,历时2 s,路程为12 cm,则质点的振动周期和振幅分别为()A. 4 s,6 cmB. 6 s,6 cmC. 6 s,9 cmD. 4 s,8 cm9.如图所示为某质点做简谐运动的振动图象.则关于该质点的振动情况,下列说法正确的是()A . 振动周期为4s,振幅为5mB . 前2s内质点的路程为0C . t=1s时,质点位移最大,速度为零D . t=2s时,质点的振动方向是沿x轴正方向10.若单摆的摆长不变,摆球的质量增为原来的4倍,摆球经过平衡位置时的速度减为原来的,则单摆的振动跟原来相比()A.频率不变,机械能不变B.频率不变,机械能改变C.频率改变,机械能改变D.频率改变,机械能不变11.如图所示,在光滑水平面上振动的弹簧振子的平衡位置为O,把振子拉到A点,OA=1 cm,然后释放振子,经过0.2 s振子第1次到达O点,如果把振子拉到A′点,OA′=2 cm,则释放振子后,振子第1次到达O点所需的时间为()A. 0.2 sB. 0.4 sC. 0.1 sD. 0.3 s12.一单摆的摆球质量为m、摆长为l,球心离地心距离为r.已知地球的质量为M,引力常量为G,关于单摆做简谐运动的周期T与r的关系,下列公式中正确的是()A.T=2πrB.T=2πrC.T=2πlD.T=2πl13.两个等长的单摆,一个放在地面上,另一个放在高空,当第一个摆振动n次的同时,第二个摆振动了(n-1)次,如果地球半径为R,那么第二个摆离地面的高度为()A.nRB. (n-1)RC.D.14.做简谐运动的弹簧振子,其质量为m,最大速度为v0,若从某时刻算起,在半个周期内,合外力()A.做功一定为0B.做功可能是0到mv之间的某一个值C.做功一定不为0D.做功一定是mv15.发生下列哪一种情况时,单摆周期会增大()A.增大摆球质量B.缩短摆长C.减小单摆振幅D.将单摆由山下移至山顶第Ⅱ卷二、计算题(共4小题,每小题10分,共40分)16.某个质点的简谐运动图象如图所示,求振动的振幅和周期.17.如图所示,三角架质量为M,沿其中轴线用两根轻弹簧拴一质量为m的小球,原来三角架静止在水平面上.现使小球做上下振动,已知三角架对水平面的压力最小为零,求:(1)此时小球的瞬时加速度;(2)若上、下两弹簧的劲度系数均为k,则小球做简谐运动的振幅为多少?18.如图所示,小球m自A点以向AD方向的初速度v逐渐接近固定在D点的小球n,已知AB弧长为0.8 m,圆弧AB半径R=10 m,AD=10 m,A、B、C、D在同一水平面上,则v为多大时,才能使m恰好碰到小球n?(设g取10 m/s2,不计一切摩擦)19.竖直方向有一光滑半圆,一个小球位于圆心处,一个小球位于半圆除最低端的任意处,两球同时从静止释放,问:哪个小球先到达半圆最底部,请给予证明.答案解析1.【答案】B【解析】弹簧振子做简谐运动,周期与振幅无关,设为T,则从左边最大位移处运动到右边最大位移处所用的时间为;第一次位移为2A,第二次位移为4A,即位移之比为1∶2,根据平均速度的定义式=,平均速度之比为1∶2.2.【答案】C【解析】在简谐运动中,速度与位移是互余的关系,即位移为零,速度最大;位移最大,速度为零,则知速度与位移图象也互余,①图不能作为该物体的速度—时间图象,故A错误;由简谐运动特征F=-kx可知,回复力的图象与位移图象的相位相反,则知③图可作为该物体的回复力-时间图象,故B错误,C正确;由a=-可知,加速度的图象与位移图象的相位相反,则知④图不能作为该物体的a-t图象,故D错误.3.【答案】C【解析】小球的运动可视为单摆模型,由单摆的周期公式T=2π可知,其周期取决于摆长和g,与质量和振幅无关;欲增大运动周期,可增大摆长即换一个半径R大一些的弧形槽,故A、B、D错误,C正确.4.【答案】D【解析】若t1、t2如图所示,则t2-t1≠T,故A错误.如图所示,与t1时刻在同一位置且运动情况相同的时刻有t2、t2′……等.故t2-t1=nT(n=1、2、3……),故B错误.同理可判断C错误,D正确.5.【答案】A【解析】t1时刻小球位于最大位移处,速度为零,离平衡位置最远,与最低点切面夹角最大,则轨道对它的支持力最小,A正确;t2时刻小球处于平衡位置,位移为零,速度最大,根据牛顿第二定律,可知轨道对它的支持力最大,B错误;t3时刻小球处于负向位移最大处,速度为零,与A项分析相同,C项错误;t4时刻小球处于平衡位置,速度最大,D错误.6.【答案】C【解析】单摆的摆动具有周期性,题中每次经过半个周期通过平衡位置或最右端;故3 s和4 s都是半周期的整数倍,故时间差1 s也是半周期的整数倍;即1=n;T=(n为正整数);T=0.5 s 时,n=4,故A正确;T=1.0 s时,n=2,故B正确;T=1.5 s时,n=,故C错误;T=2.0 s 时,n=1,故D正确;故选C.7.【答案】B【解析】从振子的位移—时间图象可以看出,正向位移逐渐变小并反向增加,故运动方向没有改变,即速度方向不变;根据对称性可知,两时刻的速度相同,振子先靠近平衡位置再远离平衡位置,位移由正向变为负向,F=-kx,再据牛顿第二定律:a=-可知,回复力、加速度由负向变为正向,加速度方向发生了改变,故A、C、D错误,B正确.8.【答案】A【解析】质点在A、B间做简谐运动,从A第一次运动到B,历时2 s,路程为12 cm,故周期为:T=2t=2×2 s=4 s,振幅为:A===6 cm.9.【答案】D10.【答案】A【解析】单摆摆动的周期公式为T=2π,故周期与振幅、小球的质量均无关,摆长不变,故周期和频率均不变;最低点为重力势能零点,动能E k=mv2,质量增加为4倍,速度减小为倍,故动能不变,势能也不变,故机械能也不变.11.【答案】A【解析】简谐运动的周期只跟振动系统本身的性质有关,与振幅无关,两种情况下振子第1次到达平衡位置所需的时间都是振动周期的,故A正确.12.【答案】B【解析】在地球表面,重力等于万有引力,故:mg=G解得:g=G①单摆的周期为:T=2π②联立①②解得:T=2πr.13.【答案】D【解析】单摆的周期为:T=2π.根据物体的重力等于万有引力,则有:=mg,则得:g=,则得:T=2π=2πr①式中M是地球的质量,L是单摆的摆长,r是物体到地心的距离.由题知,当第一个单摆振动n次的时候,第二个单摆振动n-1次.则两个单摆的周期之比为:T1∶T2=(n-1)∶n②由①得:=③联立②③得:=解得:h=.14.【答案】A【解析】经过半个周期后,振动的速度大小不变,由动能定理可知,A选项正确.15.【答案】D【解析】由单摆周期公式T=2π知,T与单摆的摆球质量、振幅无关,缩短摆长,l变小,T 变小;单摆由山下移到山顶,g变小,T变大.16.【答案】10cm8 s【解析】由图读出振幅A=10cm简谐振动方程x=A sin(t)代入数据-10=10sin(×7),得T=8 s.17.【答案】(1),竖直向下(2)【解析】(1)小球运动到最高点时,三角架对水平面的压力最小为零,此时对整体根据牛顿第二定律,有:(M+m)g=ma解得:a=,方向向下(2)小球做简谐运动,根据回复力公式F=kx,有:2k·A=ma解得:A=18.【答案】m/s(k=1,2,3…)【解析】小球m的运动由两个分运动合成,这两个分运动分别是:以速度v沿AD方向的匀速直线运动和在圆弧面AB方向上的往复运动.因为A≪R,所以小球在圆弧面上的往复运动具有等时性,是类单摆,其圆弧半径R即为类单摆的摆长;设小球m恰好能碰到小球n,则有:A=vt且满足:t=kT(k=1,2,3…)又T=2π解以上方程得:v=m/s(k=1,2,3…)19.【答案】小球a先到达最底部【解析】假设小球a位于圆心处,小球b位于半圆除最低端的任意处,根据题意知小球a做自由落体运动,小球b做单摆运动,小球b到最低点的时间为个周期:=T=×2π×=;tb则在小球b到最底部时,小球a下落的高度:=gt2=×g××=R>R,由此知,当小球b到达最低点时,小球a在竖直方向上下落高ha度大于半径R,故小球a先到达最底部.。
第一章·机械振动·单元检测一、不定项选择题(共10小题,每小题4分,)1.(2012·青州一中检测)做简谐运动的物体,其加速度a随位移x的变化规律应是下图中的哪一个()2.如图是甲、乙两个单摆做简谐运动的图象,以向右的方向作为摆球偏离平衡位置位移的正方向,从t=0时刻起,当甲第一次到达右方最大位移处时,乙在平衡位置的()A.左方,向右运动B.左方,向左运动C.右方,向右运动D.右方,向左运动3.关于质点做简谐运动,下列说法中正确的是()A.在某一时刻,它的速度与回复力的方向相同,与位移的方向相反B.在某一时刻,它的速度、位移和加速度的方向都相同C.在某一段时间内,它的回复力的大小增大,动能也增大D.在某一段时间内,它的势能减小,加速度的大小也减小4.下表记录了某受迫振动的振幅随驱动力频率变化的关系,若该振动系统的固有频率为f固,则()驱动力频率/Hz304050607080受迫振动的10.216.827.1228.116.58.3振幅/cmA.f固=60 Hz B.60 Hz<f固<70 HzC.50 Hz<f固<70 Hz D.以上三个答案都不对5.有一弹簧振子,振幅为0.8cm,周期为0.5s,初始时具有负方向的最大加速度,则它的振动方程是()A .x =8×10-3sin(4πt +π2)mB .x =8×10-3sin(4πt -π2)mC .x =8×10-1sin(πt +3π2)mD .x =8×10-1sin(π4t +π2)m6.一质点做简谐运动的图象如图所示,下列说法正确的是( )A .质点振动频率是4HzB .在10s 内质点经过的路程是20cmC .第4s 末质点的速度是零D .在t =1s 和t =3s 两时刻,质点位移大小相等,方向相同7.做简谐振动的单摆摆长不变,若摆球质量增加为原来的4倍,摆球经过平衡位置时速度减小为原来的1/2,则单摆振动的( )A .频率、振幅都不变B .频率、振幅都改变C .频率不变、振幅改变D .频率改变、振幅不变8.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过钢轨接缝处时,车轮就会受到一次冲击。
高中物理机械振动练习题一.选择题(共25小题)1.如图所示,PQ为一竖直弹簧振子振动路径上的两点,振子经过P点时的加速度大小为6m/s2,方向指向Q点;当振子经过Q点时,加速度的大小为8m/s2,方向指向P点。
若PQ之间的距离为14cm,已知振子的质量为1kg,则以下说法正确的是()A.振子经过P点时所受的合力比经过Q点时所受的合力大B.该弹簧振子的平衡位置在P点正下方7cm处C.振子经过P点时的速度比经过Q点时的速度大D.该弹簧振子的振幅一定为8cm2.如图甲所示,在升降机的顶部安装了一个能够显示拉力大小的传感器,传感器下方挂上一轻质弹簧,弹簧下端挂一质量为m的小球,若升降机在匀速运行过程中突然停止,并以此时为零时刻,在后面一段时间内传感器显示弹簧弹力F随时间t变化的图象如图乙所示,g为重力加速度,忽略一切阻力,则()A.升降机停止前在向上运动B.0~t1和时间内小球处于失重状态,t1~t2时间内小球处于超重状态C.t2~t3的时间内弹簧弹性势能变化量等于重力势能变化量D.t3~t4时间内小球向下运动,加速度减小3.如图所示图线Ⅰ、图线Ⅱ为两单摆分别做受迫振动的共振曲线,下列判断正确的是()A.若摆长为1m的单摆在地球上做受迫振动,则其共振曲线为图线ⅠB.若图线Ⅱ是单摆在地球上做受迫振动的共振曲线,则该单摆摆长约为0.5mC.若两单摆分别在月球上和地球上做受迫振动,则图线Ⅰ一定是在月球上的单摆的共振曲线D.若两单摆是在地球上同一地点做受迫振动,则两单摆摆长之比h1:h2=25:44.如图所示,水平弹簧振子以坐标原点O为水平位置,沿x轴在M、N之间做简谐运动,其运动方程为x=5sin(2πt+)cm,则()A.t=0.5s时,振子的位移最小B.t=1.5s时,振子的加速度最小C.t=2.25s时,振子的速度沿x轴负方向D.t=0到t=1.5s的时间内,振子通过的路程为15cm5.甲、乙两位同学分别使用图中左图所示的同一套装置,观察单摆做简谐运动时的振动图象,已知两人实验时所用的摆长相同,落在同一木板上的细砂分别形成的曲线如图N1、N2所示。
第十一章 机械振动 章末综合检测(时间:90分钟,满分:100分)一、选择题(本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得5分,选对但不全的得3分,有选错或不答的得0分)1.关于做简谐运动的物体完成一次全振动的意义有以下说法,其中正确的是( ) A .回复力第一次恢复原来的大小和方向所经历的过程 B .速度第一次恢复原来的大小和方向所经历的过程C .动能或势能第一次恢复原来的大小和方向所经历的过程D .速度和加速度第一次同时恢复原来的大小和方向所经历的过程解析:选D.物体完成一次全振动,是一次完整的振动过程.物体回到原位置,位移、速度、回复力的大小和方向与原来的大小和方向都相同.因此D 正确.2. 一个弹簧振子在A 、B 间做简谐运动,如图11-3所示,O 是平衡位置,以某时刻作为计时零点(t =0),经过14周期,振子具有正方向的最大加速度,那么图11-4中的四个x -t图象能正确反映运动情况的是( )图11-3图11-4解析:选D.由题意可知当t =14T 时,振子具有正向最大加速度,也就是位移负向最大,所以D 正确.3. (2011年烟台高二检测)如图11-5所示是一做简谐运动物体的振动图象,由图象可知物体速度最大的时刻是( )图11-5 A .t 1 B .t 2 C .t 3 D .t 4答案:B4.(原创题)2011年3月11日14时46分,日本宫城县和岩手县等地发生9.0级地震,导致很多房屋坍塌,场景惨不忍睹,就此事件,下列说法正确的有( )A .所有建筑物振动周期相同B.所有建筑物振幅相同C.建筑物的振动周期由其固有周期决定D.所有建筑物均做受迫振动解析:选AD.地面上的所有建筑物都在同一驱动力下做受迫振动,它们的振动周期都与驱动力的周期相同,与其固有周期无关,故A、D正确,C错误.由于不同的建筑物固有周期不尽相同,所以做受迫振动时,它们的振幅不一定相同,B错误.5.如图11-6所示为水平面内振动的弹簧振子,O是平衡位置,A是最大位移处,不计小球与轴的摩擦,则下列说法正确的是()图11-6A.每次经过O点时的动能相同B.从A到O的过程中加速度不断增加C.从A到O的过程中速度不断增加D.从O到A的过程中速度与位移的方向相反解析:选AC.简谐运动中机械能守恒,故振子每次过O点时动能相同,A对;从A到O 过程中位移逐渐减小,而振子的加速度大小与位移大小成正比,故加速度也逐渐减小,B错;A到O过程中振子的合力(回复力)做正功,振子速度增加,C对;O到A过程中,振子向右运动,位移也向右,故速度与位移方向相同,D错.6.(2011年沈阳高二检测)如图11-7所示,虚线和实线分别为甲、乙两个弹簧振子做简谐运动的图象.已知甲、乙两个振子质量相等,则()图11-7A.甲、乙两振子的振幅分别为2 cm、1 cmB.甲、乙两个振子的相位差总为πC.前2秒内甲、乙两振子的加速度均为正值D.第2秒末甲的速度最大,乙的加速度最大解析:选AD.两振子的振幅A甲=2 cm,A乙=1 cm,A 对;两振子的频率不相等,相位差为一变量,B错;前2 s内,甲的加速度为负值,乙的加速度为正值,C错;第2 s末甲在平衡位置,速度最大,乙在最大位移处加速度最大,D对.7. 如图11-8所示,光滑槽半径远大于小球运动的弧长,今有两个小球同时由图示位置从静止释放,O点为槽的最低点,则它们第一次相遇的地点是()图11-8A.O点B.O点左侧C .O 点右侧D .无法确定解析:选 A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g ,从释放到最低点O 的时间t =T4相同,所以在O 点相遇,选项A 正确. 8.如图11-9所示,一质点做简谐运动,先后以相同的速度依次通过M 、N 两点,历时1 s ,质点通过N 点后再经过1 s 又第2次通过N 点,在这2 s 内质点通过的总路程为12 cm.则质点的振动周期和振幅分别为( )图11-9A .3 s,6 cmB .4 s,6 cmC .4 s,9 cmD .2 s,8 cm解析:选B.因质点通过M 、N 两点时速度相同,说明M 、N 两点关于平衡位置对称,由时间的对称性可知,质点由N 到最大位移,与由M 到最大位移的时间相等,即t 1=0.5 s ,则T2=t MN +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2A ,即2A =12 cm ,A =6 cm ,故B 正确.9. 弹簧振子在AOB 之间做简谐运动,如图11-10所示,O 为平衡位置,测得AB 间距为8 cm ,完成30次全振动所用时间为60 s .则( )图11-10A .振动周期是2 s ,振幅是8 cmB .振动频率是2 HzC .振子完成一次全振动通过的路程是16 cmD .振子过O 点时计时,3 s 内通过的路程为24 cm 答案:CD10.一个摆长为l 1的单摆,在地面上做简谐运动,周期为T 1,已知地球质量为M 1,半径为R 1,另一摆长为l 2的单摆,在质量为M 2,半径为R 2的星球表面做简谐运动,周期为T 2,若T 1=2T 2,l 1=4l 2,M 1=4M 2,则地球半径与星球半径之比R 1∶R 2为( )A .2∶1B .2∶3C .1∶2D .3∶2解析:选A.在地球表面单摆的周期 T 1=2πl 1g ① 在星球表面单摆的周期 T 2=2πl 2g ′② 又因为GM 1R 21=g ③G M 2R 22=g ′④①②③④联立得R 1R 2= M 1M 2· l 2l 1·T 1T 2=21.二、实验题(本题共2小题,11题6分,12题8分,共14分.把答案填在题中横线上) 11.(2011年高考福建理综卷)某实验小组在利用单摆测定当地重力加速度的实验中: (1)用游标卡尺测定摆球的直径,测量结果如图11-11所示,则该摆球的直径为________cm.图11-11(2)小组成员在实验过程中有如下说法,其中正确的是________.(填选项前的字母) A .把单摆从平衡位置拉开30°的摆角,并在释放摆球的同时开始计时B .测量摆球通过最低点100次的时间t ,则单摆周期为t100C .用悬线的长度加摆球的直径作为摆长,代入单摆周期公式计算得到的重力加速度值偏大D .选择密度较小的摆球,测得的重力加速度值误差较小解析:(1)游标卡尺读数为0.9 cm +7×0.1 mm =0.97 cm(2)单摆符合简谐运动的条件是最大偏角不超过10°,并从平衡位置计时,故A 错误;若第一次过平衡位置计为“0”则周期T =t 50,若第一次过平衡位置计为“1”则周期T =t49.5,B错误;由T =2πl /g 得g =4π2lT 2,其中l 为摆长,即悬线长加摆球半径,若为悬线长加摆球直径,由公式知g 偏大,故C 正确;为了能将摆球视为质点和减少空气阻力引起的相对误差,应选密度较大体积较小的摆球,故D 错误.答案:(1)0.97 (2)C 12.(2011年大同高二检测)(1)在“用单摆测重力加速度”的实验中,下列措施中可以提高实验精度的是________.A .选细线做为摆线B .单摆摆动时保持摆线在同一竖直平面内C .拴好摆球后,令其自然下垂时测量摆长D .计时起止时刻,选在最大摆角处(2)如果测得的g 值偏小,可能的原因是________. A .测摆线长时摆线拉得过紧B .摆线上端悬点末固定,振动中出现松动,使摆线长度增加了C .开始计时时,秒表过迟按下D .实验中误将49次全振动记为50次(3)为了提高实验精度,在实验中可改变几次摆长l 并测出相应的周期T ,从而得出一组对应的l 与T 的数据,再以l 为横坐标,T 2为纵坐标,将所得数据连成直线如图11-12所示,并求得该直线的斜率为k ,则重力加速度g =________(用k 表示).图11-12答案:(1)ABC (2)B (3)4π2k三、计算题(本题共4小题,共36分,解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(6分)(2011年高考江苏卷)将一劲度系数为k 的轻质弹簧竖直悬挂,下端系上质量为m 的物块.将物块向下拉离平衡位置后松开,物块上下做简谐运动,其振动周期恰好等于以物块平衡时弹簧的伸长量为摆长的单摆周期.请由单摆的周期公式推算出该物块做简谐运动的周期T .解析:单摆周期公式T =2πlg,且kl =mg解得T =2πmk.答案:见解析14.(8分)一水平弹簧振子做简谐运动,其位移和时间关系如图11-13所示.图11-13(1)求t =0.25×10-2s 时的位移.(2)从t =0到t =8.5×10-2 s 的时间内,质点的路程、位移各为多大?解析:(1)由图象可知T =2×10-2 s ,横坐标t =0.25×10-2 s 时,所对应的纵坐标x =-A cos ωt =-2cos100π×0.25×10-2 cm ≈-1.414 cm.(2)因振动是变速运动,因此只能利用其周期性求解.即一个周期内通过的路程为4个振幅,本题中Δt =8.5×10-2 s =174T ,所以通过的路程为174×4A =17A =17×2 cm =34 cm ,经174个周期振子回到平衡位置,位移为零.答案:(1)-1.414 cm (2)34 cm 015.(10分)有人利用安装在气球载人舱内的单摆来确定气球的高度.已知该单摆在海平面处的周期是T 0.当气球停在某一高度时,测得该单摆周期为T ,求该气球此时离海平面的高度h ,把地球看成质量均匀分布的半径为R 的球体.解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M (R +h )2据单摆的周期公式可知T 0=2πLg,T =2πL g h由以上各式可求得h =(TT 0-1)R .答案:(TT 0-1)R16.(12分)如图11-14所示,两个完全相同的弹性小球A 和B 分别挂在l 和l /4的细线上,重心在同一水平面且小球恰好相互接触,把第一个小球A 向右拉开一个不大的距离后由静止释放,经过多长时间两球发生第12次碰撞(两球碰撞时交换速度)?图11-14解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g=πl g. 则该振动系统的周期 T =12T A +12T B =12(T A +T B )=3π2lg . 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为 t =6T -t ′=9πl g -π2l g =17π2l g. 答案:17π2l g。
单元过关测试 ----机械振动本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷 1 至 4 页,第 II 卷 4 至 8 页,合计 100 分,考试时间 90 分钟第 I 卷(选择题共40分)一、此题共 10 小题;每题 4 分,合计 40 分。
在每题给出的四个选项中,有一个或多个选项正确,全部选对得 4 分,选对但不全得 2 分,有错选得0 分 .1.弹簧振子作简谐运动,t 1时辰速度为v, t 2时辰也为 v,且方向同样。
已知(t 2- t 1)小于周期T,则( t 2-t 1)()A.可能大于四分之一周期B.可能小于四分之一周期MN C.必定小于二分之一周期D.可能等于二分之一周期P2.有一摆长为L的单摆,悬点正下方某处有一小钉,当摆球经过均衡地点向左摇动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摇动,摆球从右边最高点M至左侧最高点 N运动过程的闪光照片,如右图所示,( 悬点和小钉未被摄取) ,P为摇动中的最低点。
已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为()A.L/4B.L/2C.3L/4D.没法确立3.A、 B 两个完整同样的弹簧振子,把 A 振子移到 A 的均衡地点右边10cm,把 B 振子移到 B 的均衡位置右边 5cm,而后同时松手,那么:()A. A、B 运动的方向老是同样的.B.A、B运动的方向老是相反的.C. A、B 运动的方向有时同样、有时相反. D.没法判断A、 B运动的方向的关系.4.铺设铁轨时,每两根钢轨接缝处都一定留有必定的空隙,匀速运队列车经过轨端接缝处时,车轮就会遇到一次冲击。
因为每一根钢轨长度相等,因此这个冲击力是周期性的,列车遇到周期性的冲击做受迫振动。
一般钢轨长为12.6m,列车固有振动周期为0.315s。
以下说法正确的选项是()A.列车的危险速率为40m / s B.列车过桥需要减速,是为了防备列车发生共振现象C.列车运转的振动频次和列车的固有频次老是相等D.增添钢轨的长度有益于列车高速运转5.把一个筛子用四根弹簧支起来,筛子上装一个电动偏爱轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,筛子做自由振动时,达成20 次全振动用15 s ,在某电压下,电动偏爱轮转速是88r /min.已知增大电动偏爱轮的电压,能够使其转速提升,增添筛子的质量,能够增大筛子的固有周期,要使筛子的振幅增大,以下做法中,正确的选项是(r /min读作“转每分” )()A. 降低输入电压B.提升输入电压C.增添筛子的质量D. 减小筛子的质量6.一质点作简谐运动的图象如下图,则该质点()A.在 0.015s 时,速度和加快度都为-x 方向B.在 0.01 至 0.03s 内,速度与加快度先反方向后同方向,且速度是先减小后增大,加快度是先增大后减小。
选修3-4机械振动试题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共计100分。
考试时间90分钟。
第I 卷(选择题 共40分)一、本题共10小题;每小题4分,共计40分。
在每小题给出的四个选项中,有一个或多个选项正确,全部选对得4分,选对但不全得2分,有错选得0分.1.弹簧振子作简谐运动,t 1时刻速度为v ,t 2时刻也为v ,且方向相同。
已知(t 2-t 1)小于周期T ,则(t 2-t 1) ( )A .可能大于四分之一周期B .可能小于四分之一周期C .一定小于二分之一周期D .可能等于二分之一周期2.有一摆长为L 的单摆,悬点正下方某处有一小钉,当摆球经过平衡位置向左摆动时,摆线的上部将被小钉挡住,使摆长发生变化,现使摆球做小幅度摆动,摆球从右边最高点M 至左边最高点N 运动过程的闪光照片,如右图所示,(悬点和小钉未被摄入),P 为摆动中的最低点。
已知每相邻两次闪光的时间间隔相等,由此可知,小钉与悬点的距离为 ( )A .L /4B .L /2C .3L /4D .无法确定3.A 、B 两个完全一样的弹簧振子,把A 振子移到A 的平衡位置右边10cm ,把B 振子移到B 的平衡位置右边5cm ,然后同时放手,那么: ( )A .A 、B 运动的方向总是相同的. B .A 、B 运动的方向总是相反的.C .A 、B 运动的方向有时相同、有时相反.D .无法判断A 、B 运动的方向的关系.4.铺设铁轨时,每两根钢轨接缝处都必须留有一定的间隙,匀速运行列车经过轨端接缝处时,车轮就会受到一次冲击。
由于每一根钢轨长度相等,所以这个冲击力是周期性的,列车受到周期性的冲击做受迫振动。
普通钢轨长为12.6m ,列车固有振动周期为0.315s 。
下列说法正确的是 ( )A .列车的危险速率为s m /40B .列车过桥需要减速,是为了防止列车发生共振现象C .列车运行的振动频率和列车的固有频率总是相等D .增加钢轨的长度有利于列车高速运行5.把一个筛子用四根弹簧支起来,筛子上装一个电动偏心轮,它每转一周,给筛子一个驱动力,这就做成了一个共振筛,筛子做自由振动时,完成20次全振动用15 s ,在某电压下,电动偏心轮转速是88r /min.已知增大电动偏心轮的电压,可以使其转速提高,增加筛子的质量,可以增大筛子的固有周期,要使筛子的振幅增大,下列做法中,正确的是(r /min 读作“转每分”)( )A.降低输入电压B.提高输入电压C.增加筛子的质量D.减小筛子的质量6.一质点作简谐运动的图象如图所示,则该质点 ( ) A .在0.015s 时,速度和加速度都为-x 方向B .在0.01至0.03s 内,速度与加速度先反方向后同方向,且速度是先减小后增大,加速度是先增大后减小。
C .在第八个0.01s 内,速度与位移方向相同,且都在不断增大D .在每1s 内,回复力的瞬时功率有100次为零。
7.摆长为L 的单摆做简谐振动,若从某时刻开始计时,(取作t =0),当振动至 gLt 23π= 时,摆球具有负向最大速度,则单摆的振动图象是图中的 ( )8.将一个电动传感器接到计算机上,就可以测量快速变化的力,用这种方法测得的某单摆摆动时悬线上拉力的大小随时间变化的曲线如图所示。
某同学由此图线提供的信息做出了下列判断 ( )① 0.2t =s 时摆球正经过最低点。
② 1.1t =s 时摆球正经过最低点。
③ 摆球摆动过程中机械能减少。
④ 摆球摆动的周期是 T =1.4s 。
上述判断中,正确的是 A. ①③ B. ②③ C. ③④ D. ②④9.甲乙两人同时观察同一单摆的振动,甲每经过2.0S 观察一次摆球的位置,发现摆球都在其平衡位置处;乙每经过3.0S 观察一次摆球的位置,发现摆球都在平衡位置右侧的最高处,由此可知该单摆的周期可能是 ( )A .0.5SB .1.0SC .2.0SD .3.0S10. 关于小孩子荡秋千,有下列四种说法:①质量大一些的孩子荡秋千,它摆动的频率会更大些 ②孩子在秋千达到最低点处有失重的感觉 ③拉绳被磨损了的秋千,绳子最容易在最低点断开 ④自己荡秋千想荡高一些,必须在两侧最高点提高重心,增加势能。
上述说法中正确的是 ( )A.①②B.③④C.②④D.②③11:如图所示,一轻质弹簧竖直放置,下端固定在水平面上,上端处于a 位置,当一重球放在弹簧上端静止时,弹簧上端被压缩到b 位置。
现将重球(视为质点)从高于a 位置的c 位置沿弹簧中轴线自由下落,弹簧被重球压缩到最低位置d.以下关于重球运动过程的正确说法应是( )A .重球下落压缩弹簧由a 至d 的过程中,重球做减速运动。
B .重球下落至b 处获得最大速度。
C .重球下落至d 处获得最大加速度。
D .由a 至d 过程中重球克服弹簧弹力做的功等于小球由c 下落至d 处时重力势能减少量。
12:一质点做简谐运动的图象如图8所示,下列说法正确的是 A .质点运动频率是4HzB .在10要内质点经过的路程是20cmC .第4末质点的速度是零D .在t=1s 和t =3s 两时刻,质点位移大小相等、方向相同c a (dx /c mt /so2 4 6 10 12 8 2-2第II卷(非选择题共58分)注意事项:1.第II卷共4页,用钢笔或圆珠笔直接答在试卷上。
2.答卷前将密封线内的项目填写清楚。
选择题答题表:题号 1 2 3 4 5 6 7 8 9 10 11 12得分二、填空题:本题共5小题,共20分。
把答案填写在题后括号内或横线上。
13.如图所示,质量为m的物块放在水平木板上,木板与竖直弹簧相连,弹簧另一端固定在水平面上,今使m随M一起做简谐运动,且始终不分离,则物块m做简谐运动的回复力是由提供的,当振动速度达最大时,m对M的压力为。
14.如图所示为水平放置的两个弹簧振子A和B的振动图像,已知两个振子质量之比为m A :m B=2:3,弹簧的劲度系数之比为k A:k B=3:2,则它们的周期之比T A:T B=;它们的最大加速度之比为a A:a B=。
15.某同学在做“利用单摆测重力加速度”的实验中,先测得摆线长为101.00cm,摆球直径为2.00cm,然后用秒表记录了单摆振动50次所用的时间为101.5 s。
则:(1)他测得的重力加速度g = m/s2.(计算结果取三位有效数字)(2) 他测得的g值偏小,可能原因是:A.测摆线长时摆线拉得过紧。
B.摆线上端未牢固地系于悬点,振动中出现松动,使摆线长度增加了。
C.开始计时时,秒表过迟按下。
D.实验中误将49次全振动计为50次。
(3)为了提高实验精度,在实验中可改变几次摆长l并测出相应的周期T,从而得出一组对应的l和T 的数值,再以l为横坐标、T2为纵坐标将所得数据连成直线,并求得该直线的斜率K。
则重力加速度g = 。
(用K表示)16.如图所示,两木块A 和B 叠放在光滑水平面上,质量分别为m 和M ,A 与B 之间 的最大静摩擦力为f ,B 与劲度系数为k 的轻质弹簧连接构成弹簧振子。
为使A 和B 在振动过程中不发生相对滑动,则它们的振幅不能大于 , 它们的最大加速度不能大于 。
三、计算题:本大题共4小题,共40分。
解答应写出必要的文字说明、方程式和重要演算步骤。
只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。
17.弹簧振子以O 点为平衡位置在B 、C 两点之间做简谐运动.B 、C 相距20 cm .某时刻振子处于B 点.经过0.5 s ,振子首次到达C 点.求:(1)振动的周期和频率;(2)振子在5 s 内通过的路程及位移大小;(3)振子在B 点的加速度大小跟它距O 点4 cm 处P 点的加速度大小的比值.18.观察振动原理的应用:心电图仪是用来记录心脏生物电的变化规律的装置,人的心脏跳动时会产生一股股强弱不同的生物电,生物电的变化可以通过周围组织传到身体的表面.医生用引导电极放置于肢体或躯体的一定部位就可通过心电图仪记录出心电变化的波动曲线,这就是心电图.请去医院进行调查研究.下面是甲、乙两人在同一台心电图机上作出的心电图分别如图甲、乙所示,医生通过测量后记下甲的心率是60次/分.试分析:(1)该心电图机图纸移动的速度; (2)乙的心动周期和心率.BA19.如图所示,一块涂有炭黑玻璃板,质量为2kg,在拉力F的作用下,由静止开始竖直向上运动。
一个装有水平振针的振动频率为5Hz的固定电动音叉在玻璃板上画出了图示曲线,量得OA=1cm,OB=4cm,OC=9cm.求外力F的大小。
(g=10m/s2,不计阻力)20.有人利用安装在气球载人舱内的单摆来确定气球的高度。
已知该单摆在海平面处的周期是T0。
当气球停在某一高度时,测得该单摆周期为T.求该气球此时离海平面的高度h。
把地球看作质量均匀分布的半径为R的球体。
选修3-4第十一章机械振动试题参考答案1. AB2. C3. A4.共振的条件是驱动力的频率等于系统的固有频率,由lTv可求出危险车速为40 m/ s,故选项A正确。
列车过桥需要减速,是为了防止桥与火车发生共振现象,故选项B错误。
AD5. AD6. BD7. 解:从t =0时经过g Lt 23π=时间,这段时间为T 43,经过 T 43摆球具有负向最大速度,说明摆球在平衡位置,在给出的四个图象中,经过T 43具有最大速度的有C 、D 两图,而具有负向最大速度的只有D 。
所以选项D 正确。
8. A 9. AB10. 解析:秋千近似为单摆,其周期、频率由摆长l 和当地的重力加速度决定,与质量无关,故知①错;具有向下的加速度时处于失重状态,而在最低点具有向上的向心加速度,故②错;最低点绳子承受的拉力最大,故在最低点易断,故③对;在最高点提高重心,可使体内化学能转化为机械能(势能),可荡得高一些,可见④亦正确. 答案:B11.分析与解:重球由c 至a 的运动过程中,只受重力作用,做匀加速运动;由a 至b 的运动过程中,受重力和弹力作用,但重力大于弹力,做加速度减小的加速运动;由b 至d 的运动过程中,受重力和弹力作用,但重力小于弹力,做加速度增大的减速运动。
所以重球下落至b 处获得最大速度,由a 至d 过程中重球克服弹簧弹力做的功等于小球由c 下落至d 处时重力势能减少量,即可判定B 、D 正确。
C 选项很难确定是否正确,但利用弹簧振子的特点就可非常容易解决这一难题。
重球接触弹簧以后,以b 点为平衡位置做简谐运动,在b 点下方取一点a ,,使ab=a ,b,根据简谐运动的对称性,可知,重球在a 、a ,的加速度大小相等,方向相反,如图1所示。
而在d 点的加速度大于在a ,点的加速度,所以重球下落至d 处获得最大加速度,C 选项正确。