答案 f(x)=x2-x+1
方法 3 分段函数的解题策略
1.求函数值,弄清自变量所在区间,然后代入对应的解析式,从最内层逐 层往外计算,求“层层套”的函数值. 2.求最值,分别求出每段上的最值,然后比较大小取得最值. 3.解不等式,根据分段函数中自变量取值范围的界定,代入相应解析式求 解. 4.求参数,“分段处理”,利用代入法列出各区间上的方程求解.
17,
∴a=2,b=7,故f(x)=2x+7.
(3)当x∈(-1,1)时,有
2f(x)-f(-x)=lg(x+1). ①
以-x代x,得
2f(-x)-f(x)=lg(-x+1). ②
由①②消去f(-x)得
f(x)= 2 lg(x+1)+1 lg(1-x),x∈(-1,1).
3
3
评析 (1)用的是换元法,定义法的实质也是换元;(2)用的是待定系数法; (3)-x与x互为相反数,赋值消元可求得函数解析式.
1.已知函数解析式,函数的定义域是使解析式有意义的自变量的取值范
围,只需要解不等式(组)即可.
2.对于复合函数的定义域问题,若已知f(x)的定义域为[a,b],a,b∈R,其复
合函数f(g(x))的定义域应由不等式a≤g(x)≤b解出.
3.实际问题或几何问题除要考虑解析式有意义外,还应使实际问题或几
高考数学
§2.1 函数及其表示
知识清单
考点一 函数的概念及其表示
1.函数的概念 如果A、B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数, 记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的 集合C⊆B叫做函数y=f(x)的值域. 2.函数的三要素:① 定义域 ,值域,对应关系. 3.两个函数能成为同一函数的条件是定义域、值域、② 对应关系 都相同. 4.函数的表示法主要有:③ 解析法 ,④ 图象法 ,⑤ 列表法 . 图象法表示函数是函数变量间对应关系的直观体现,是数形结合思想的 重要表现,是研究函数性质的基础.利用函数解析式作出函数图象,利用