【人教版】春八下数学第19章《一次函数》全章教学案(含解析)
- 格式:doc
- 大小:8.68 MB
- 文档页数:111
【人教版】数学八下:第19章《一次函数》全章名师教学设计一. 教材分析人教版数学八下第19章《一次函数》是学生在学习了初中阶段函数概念的基础上,进一步深入学习一次函数的知识。
一次函数是实际问题中应用最广泛的一种函数,本章内容主要包括一次函数的定义、性质、图像以及一次函数在实际问题中的应用。
通过本章的学习,使学生能理解和掌握一次函数的基本概念和性质,能运用一次函数解决一些简单的实际问题,为后续学习其他函数知识打下基础。
二. 学情分析学生在之前的学习中已经掌握了函数的基本概念,对函数有一定的认识。
但在实际应用中,对一次函数的理解和运用还不够熟练。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解和掌握一次函数的知识,提高学生运用一次函数解决实际问题的能力。
三. 教学目标1.理解一次函数的定义和性质。
2.学会绘制一次函数的图像。
3.能够运用一次函数解决实际问题。
四. 教学重难点1.一次函数的定义和性质。
2.一次函数图像的绘制。
3.一次函数在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解和掌握一次函数的知识。
2.实践操作法:让学生动手绘制一次函数的图像,提高学生的实践能力。
3.问题驱动法:提出实际问题,激发学生的思考,培养学生解决问题的能力。
六. 教学准备1.教学课件:制作一次函数的相关课件,包括图片、动画等。
2.练习题:准备一些一次函数的相关练习题,用于巩固所学知识。
3.教学工具:准备黑板、粉笔、直尺等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,引出一次函数的概念。
例如:某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
2.呈现(10分钟)讲解一次函数的定义和性质,通过课件展示一次函数的图像,让学生直观地理解一次函数的特点。
3.操练(10分钟)让学生动手绘制一次函数的图像,加深对一次函数的理解。
教师巡回指导,解答学生遇到的问题。
第十九章一次函数19.2一次函数19.2.2 一次函数1教学目标1.1知识与技能:[1]理解一次函数和正比例函数的图象是一条直线;[2]熟练地作出一次函数和正比例函数的图象,掌握k 与 b 的取值对直线位置的影响。
1.2 过程与方法:[1]经历一次函数的作图过程,探索某些一次函数图象的异同点;[2]体会用类比的思想研究一次函数,体验研究数学问题的常用方法:由特殊到一般,由简单到复杂。
1.3情感态度与价值观:[1]体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣。
[2]在探索过程中体验成功的喜悦,树立学习的自信心。
2教学重点 / 难点2.1教学重点[1]理解掌握一次函数的图象的特征和相关的性质。
2.2教学难点[1]理解一次函数的概念。
3专家建议本节课是以类比的思想方法为主线,研究什么是一次函数这是在学生学习了函数、正比例函数的定义、图象与性质,并初步了解了如何研究一个具体函数〔从定义到图象与性质〕的根底上学习的。
学生原有知识与学习经历对本节课的类比学习奠定扎实的学习根底,在前后知识的类比学习中,学生可以进一步理解函数的知识,体验研究函数的根本思路,促进学生的认知构造的不断的完善,进而开展学生的类比、抽象与概括能力而这些目标的达成必须是在充分发挥学生的主体作用,给予学生足够的活动、探究、交流、反思的时间与空间,让在学生在类比中学习、在类比中思考的前提下才能完成的。
4教学方法启发、引导、类比、发现第1页共1页5 教学用具多媒体课件,教学用直尺、三角板等。
6 教学过程6.1 情境创设【师】前面我们学习了用描点法画函数的图象的方法, 下面请同学们根据画图象的步骤: 列表、 描点、连线,在同一平面直角坐标系中画出以下函数的图象。
( 1) y1 x ; ( 2) y 1 x2 ; 22 (3) y 3x ; (4 )y = 3x 2 =+ . 【师】提示学生要注意在同一个平面直角坐标系中完成以上四个图象。
第19章一次函数年级八年级课题课型新授教学媒体多媒体教学目标知识技能1.掌握一次函数解析式的特点及意义.2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律通过实例总结函数三种表示方法。
过程方法1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.情感态度利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.教学难点1.一次函数与正比例函数关系.2.一次函数解析式的联系规律教学过程设计教学程序及教学内容师生行为设计意图一、情境引入Ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm 时,他们所处位置的气温是y℃.试用解析式表示y•与x 的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x (x≥0)当然,这个函数也可表示为:y=-6x+15 (x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.二、探究新知我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?教师出示问题,学生讨论。
教师根据问题设计引导学生写出函数解析式。
学生口述老师在黑板上板演这几个函数的解析式。
数学来源于生活又去指导生活。
培养学生的发现能力。
学生利用函数知识解决实际生活中的问题。
1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数C 与温度t(℃)有关,即C•的值约是t的7倍与35的差.2.一种计算成年人标准体重G(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是G的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.C=7t-35.2.G=h-105.3.y=0.01x+22.4.y=-5x+50.它们的形式与y=-6x+15一样,函数的形式都是自变量x的k倍与一个常数的和.如果我们用b来表示这个常数的话.•这些函数形式就可以写成:y=kx+b(k≠0)一般地,形如y=kx+b(k、b是常数,k≠0•)的函数,•叫做一次函数(•linearfunction).当b=0时,y=kx+b 即y=kx.所以说正比例函数是一种特殊的一次函数.以函数解析式为y=10+0.05t (0≤t≤5).(画图象略)(2)根据图象或表中数据规律都能估计出再过2小时的水位高度为10.35米,但不如利用解析式更为简便、准确:把t=7代入解析式,求得y=10.35米.点拨:解决函数问题,应优先考虑求解析式,解析式确定后许多问题便迎刃而解.2、归纳:题目中只给出了列表法,我们通过分析求出解析式并画出了图象,从这个例子可以看出函数的三种不同表示法可以转化。
第十九章一次函数1.了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象分析简单的函数关系.2.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.3.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单的实际问题.1.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,利用函数模型解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系以及以建立一次函数模型来选择最优方案为素材的课题学习.本章是在学习了平面直角坐标系的基础上进行学习的,为画一次函数的图象进而研究性质奠定了基础.一次函数是初中阶段研究的第一个具体的函数,它的研究方法具有一般性和代表性,并为后面学习反比例函数、二次函数奠定了基础.一次函数和一元一次方程、一元一次不等式、二元一次方程等有着密切的联系,学习一次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解数形结合的重要思想.本章在整个教材中具有承上启下的作用.【重点】结合实例掌握变量、常量和函数的概念,掌握函数的三种表示方法,能结合图象讨论函数的基本性质,运用一次函数的图象和性质解决实际问题.【难点】函数的概念以及一次函数的图象和性质的应用.本章内容是初中数学教学中的重点,也是难点.要重视学生对基本概念的理解,及时了解学生在学习过程中的状况,探索有效地教与学的各种方式.在具体的实施过程中应注意:1.加强与学生已学知识的联系.在代数式、方程、不等式等内容的学习、探索中都已渗透了变化的思想,要注意引导学生在原有知识的基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解和准确应用.运用数学的语言和符号去理解、描述现实世界的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.4.给学生充分的自主探索时间.19.1函数19.1.1变量与函数(2课时)19.1.2函数的图象(2课时)19.2一次函数19.2.1正比例函数(2课时)19.2.2一次函数(3课时)19.2.3一次函数与方程、不等式(1课时)19.3课题学习选择方案单元概括整合4课时6课时1课时1课时19.1函数1.理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.2.掌握用描点法画出一些简单函数的图象,能根据函数图象所提供的信息获取函数的性质.3.全面理解函数的三种表示方法,会根据具体情况选择适当方法表示函数.1.在探究问题的过程中,体会从具体的实例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.2.学生通过自己动手,体会用描点法画函数的图象的步骤.1.从图象中获得变量之间的关系的有关信息,并预测变化趋势,进行科学决策,应用于社会生活.2.让学生通过实际操作,体会函数三种表示法在实际生活中的应用价值,渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流的能力.【重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【难点】函数的概念的理解.19.1.1变量与函数理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.在探究问题的过程中,体会从具体的事例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.通过列举自己身边的事例,体验数学与生活的密切联系,学会观察与发现,激发同学们探究问题的兴趣.【重点】函数的概念和函数自变量的取值范围.【难点】求函数自变量的取值范围.第课时1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.【教师准备】教学中出示的教学插图和例题.【学生准备】预习教材内容导入一:当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.[设计意图]利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:飞机从武汉飞往北京,在这个行驶的过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的汽油在不停的减少,飞机离武汉越来越远,离北京越来越近,….教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.[设计意图]由学生经历的事情提问题,能引起学生的好奇心.1.变量与常量的概念问题:汽车以60km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h12345s/km学生填表,并思考.1.根据题意填写下表:t/h12345s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1h行驶60km,2h行驶2×60km,即120km,3h行驶3×60km,即180km,4h行驶4×60km,即240km,5h行驶5×60km,即300km……t/h12345s/km60120180240300因此其中行驶里程s与时间t是变化的量,速度60km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?学生分析问题,并同桌交流.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元;第二场售出205张票,则第二场电影的票房收入为元;第三场售出310张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析:第一场电影的票房收入为150×10=1500(元).第二场电影的票房收入为205×10=2050(元).第三场电影的票房收入为310×10=3100(元).用含x的式子表示y为y=10x,y随x的增大而增大.[设计意图]通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10cm,20 cm,30cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)102030圆面积S(cm2)(2)S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)102030圆面积S(cm2)31412562826(2)S=πr2.圆的半径越大,它的面积就越大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题:用10m长的绳子围成一个矩形,当矩形的一边长x分别为3m,3.5m,4m,4.5m时,它的邻边长y 分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10m的一半,即5m.若矩形一边长为3m,则它的邻边长为5-3=2(m).若矩形一边长为3.5m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4m,则它的邻边长为5-4=1(m).若矩形一边长为4.5m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.[设计意图]在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量. [设计意图]通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.问题讲解在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):下图是某地一天的气温变化图象,任意给出这天中的某一时刻t,你能说出这一时刻的气温T吗?这一问题中涉及哪几个量?它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认.问题(2):弹簧原长22cm,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg0123456y/cm2222.52323.52424.525在这个问题中变化的量是什么?不变化的量是什么?学生讨论发现:弹簧的原长不变,为22cm,弹簧伸长的长度随着物体质量的变化而变化.因此,弹簧的总长=原长+伸长的长度.问题(3):你能举出生活中类似的例子吗?可以小组讨论.学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.[设计意图]在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.[知识拓展](1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=πr2,其中常量是π.3.例题讲解(补充)若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.〔解析〕根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V Rπ(补充)写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.〔解析〕先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.[设计意图]通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.1.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y(元)与购买支数x(支)的关系式是y=4x,∴变量为x,y,常量为4.答案:y=4x x,y42.在圆的周长公式C=2πR中,下列说法正确的是()A.π,R是变量,2是常量B.R是变量,C,2,π是常量C.C是变量,2,π,R是常量D.C,R是变量,2,π是常量解析:∵C=2πR,∴变量为C,R,常量为2,π.故选D.3.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为5cm,它的面积S(cm2)与这边上的高h(cm)的关系式是S=h;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S=h,∴变量为S,h,常量为.(2)∵β=90-α,∴变量为β,α,常量为-1,90.4.要画一个面积为10cm2的圆,圆的半径应取多少?圆的面积为20cm2呢?怎样用含有圆面积S的式子表示圆半径r?解:根据圆的面积公式S=πr2,得r=,面积为10cm2的圆半径r=≈1.78(cm).面积为20cm2的圆半径r=≈2.52(cm).用圆面积S的式子表示圆半径r的关系式为r=.第1课时1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2一、教材作业【必做题】教材第71页练习.【选做题】教材第81页习题19.1第1,2题.二、课后作业【基础巩固】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+503.(2015·临沂中考)已知甲、乙两地相距20千米,汽车从甲地运输匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数关系式是()A.t=20vB.t=C.t=D.t=4.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q(升)与行驶时间t(小时)的关系式是.6.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车离乙地的距离s(千米).【能力提升】7.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份1234…价钱/元…x与y之间的关系式是.8.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为y=,其中常量是,y和x都是量.9.夏季高山上温度从山脚起每升高100米降低0.7℃,已知山脚下的温度是23℃,则温度y(℃)与上升高度x(米)之间的关系式为.【拓展探究】10.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.【答案与解析】1.A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.B(解析:根据时间=,有t=.故选B.)4.y=30x,y(解析:由长方形的面积=长×宽进行求解.)5.Q=40-5t(解析:根据剩余油量=总油量-已用油量进行求解.)6.解:(1)W=(n-2)×180°,变量为W,n;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.7.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)8.500-5x500,-5变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.y=23-x10.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把π看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.练习(教材第71页)解:(1)变量为x,y;常量为4.(2)变量为t,w;常量为0.2,30.(3)变量为r,C;常量为π.(4)变量为x,y;常量为10.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,1642~1727,英国科学家)的《自然哲学的数学原理》中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried Wilhelm Leibniz,1646~1716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”.1718年,瑞士数学家约翰·贝努利(John Bernoulli,1667~1748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,1707~1783,被称为历史上最“多产”的数学家)将约翰·贝努利的思想进一步解析化,他在《无限小分析引论》中将函数定义为:“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式”,欧拉的函数定义在18世纪后期占据了统治地位.我国“函数”一词,是《代数积拾级》中首先使用的.这本书把函数定义为:“凡此变数中含彼变数,则此为彼之函数”.这里的“函”指包含的意思.这个定义相当于欧拉的解析表达式定义:在一个式中“包含”着变量x,那么这个式子就是x的函数.函数这个概念已成为数学中最重要的几个概念之一,而变量这个词却逐渐被新的词所代替.第课时初步了解函数三种表示方法以及三种表示方法的优缺点,会根据具体情况选择适当方法表示函数.1.经历回顾思考,训练提高归纳总结能力.2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力.通过分析具体的问题中的一个变量的值对应着另一个变量的值,体会到函数是刻画变量之间的对应关系的数学模型.【重点】函数表示方法的应用.【难点】确定实际问题中函数自变量的取值范围.【教师准备】带有网格的纸,三角板.【学生准备】三角板,铅笔,带有网格的纸.导入一:你听说过“两个铁球同时落地”的故事吗?站在比萨斜塔顶部,让两个铁球自由下落,在铁球下落的过程中,随着时间的变化,铁球下落的速度是怎样变化的?铁球下落的速度v随下落的时间t的变化而变化.这就是我们今天要继续学习的内容.[设计意图]结合学生熟悉的故事导入新课,激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.导入二:1.有根弹簧原长10cm,每挂1kg重物,弹簧伸长0.5cm,设所挂的重物为m kg,受力后弹簧的长度为l cm,根据上述信息完成下表:m/kg01233.5…l/cm受力后弹簧的长度l是所挂重物质量m的函数吗?2.有一辆出租车,前3公里内的起步价为8元,每超过1公里收2元,有一位乘客坐了t(t>3)公里,他付费y 元,用含x的式子表示y.3.如图所示的是某地某一天的气温变化图:学生自由思考,自由发言.上面用图、表格或关系式表达的问题反映了两个变量之间的关系.[设计意图]出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题,从而激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.1.自变量、函数和函数值思路一[过渡语]前面我们学习了变量与常量,下面我们一起来思考下面的问题:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿198410.34198911.06199411.76199912.52201013.71学生通过观察发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.引导学生归纳:上面用图或表格表达的问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.教师总结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值.学生分析上面两个问题中的自变量和函数,并交流.。
19.1函数19.1.1变量与函数第1课时常量与变量教学目标一、基本目标【知识与技能】1.认识变量、常量.2.学会用含一个变量的代数式表示另一个变量.【过程与方法】经历观察、分析、思考等数学活动过程,发展合情推理,有条理地、清晰地阐述自己观点.【情感态度与价值观】培养学生积极参与数学活动,对数学产生好奇心和求知欲.二、重难点目标【教学重点】1.认识变量、常量.2.用式子表示变量间关系.【教学难点】用含有一个变量的式子表示另一个变量.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P71的内容,完成下面练习.【3 min反馈】1.在一个变化的过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量.2.判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值是否发生变化.3.每张电影票售价为10元,如果早场售出150张,日场售出205张,晚场售出310张.三场电影的票房收入各多少元?设一场电影售票x张,票房收入y元.怎样用含x的式子表示y?解:早场电影票房收入:150×10=1500(元),日场电影票房收入:205×10=2050(元),晚场电影票房收入:310×10=3100(元), 关系式:y =10x .4.在一根弹簧的下端悬挂重物,改变并记录重物的质量,观察并记录弹簧长度的变化,探索它们的变化规律.如果弹簧原长10 cm ,每1 kg 重物使弹簧伸长0.5 cm ,怎样用含有重物质量m 的式子表示受力后的弹簧长度?解:挂1 kg 重物时弹簧长度:1×0.5+10=10.5(cm), 挂2 kg 重物时弹簧长度:2×0.5+10=11(cm), 挂3 kg 重物时弹簧长度:3×0.5+10=11.5(cm), 关系式:L =0.5m +10. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】分析并指出下列关系中的变量与常量: (1)球的表面积S 与球的半径R 的关系式是S =4πR 2;(2)以固定的速度v 0米/秒向上抛一个小球,小球的高度h 米与小球运动的时间t 秒之间的关系式是h =v 0t -4.9t 2;(3)一物体自高处自由落下,这个物体运动的距离h (m)与它下落的时间t (s)的关系式是h =12gt 2(其中g 取9.8 m/s 2); (4)已知橙子每千克的售价是1.8元,则购买数量x 千克与所付款W 元之间的关系式是W =1.8x .【互动探索】(引发学生思考)在一个变化的过程中,常量和变量怎样区分? 【解答】(1)S =4πR 2,常量是4,π,变量是S ,R . (2)h =v 0t -4.9t 2,常量是v 0,4.9,变量是h ,t .(3)h =12gt 2(其中g 取9.8 m/s 2),常量是12,g ,变量是h ,t .(4)W =1.8x ,常量是1.8,变量是x ,W .【互动总结】(学生总结,老师点评)常量与变量必须存在于同一个变化过程中,判断一个量是常量还是变量,需要看两个方面:一是看它是否在一个变化过程中;二是看它在这个变化过程中的取值情况是否发生变化.活动2 巩固练习(学生独学)1.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q (元)与他买这种笔记本的本数x 之间的关系是( C )A .Q =8xB .Q =8x -50C .Q =50-8xD .Q =8x +502.甲、乙两地相距s 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足v t =s ,在这个变化过程中,下列判断中错误的是 ( A )A .s 是变量B .t 是变量C .v 是变量D .s 是常量3.某种报纸的价格是每份0.4元,买x 份报纸的总价为y 元,先填写下表,再用含x 的式子表示y .份数/份 1 2 3 4 5 6 7 100 价钱/元0.40.81.21.62.02.42.840x 与y 之间的关系是y =0.4x ,在这个变化过程中,常量是报纸的单价,变量是报纸的份数.4.先写出下列问题中的函数关系式,然后指出其中的变量和常量: (1)直角三角形中一个锐角α与另一个锐角β之间的关系;(2)一个铜球在0 ℃的体积为1000 cm 3,加热后温度每增加1 ℃,体积增加0.051 cm 3,t ℃时球的体积为V cm 3;(3)等腰三角形的顶角为x 度,试用x 表示底角y 的度数. 解:(1)α=90°-β.90°是常量,α、β是变量.(2)V =1000+0.051t .其中1000,0.051是常量,t 、V 是变量.(3)y =180-x 2 =90-x 2(0<x <180°).其中90,12 是常量,x 、y 是变量.活动3 拓展延伸(学生对学)【例2】如图,等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10 cm ,AC 与MN 在同一直线上,开始时A 点与M 点重合,让△ABC 向右运动,最后A 点与N 点重合.试写出重叠部分的面积y cm 2与MA 的长度x cm 之间的关系式,并指出其中的常量与变量.【互动探索】根据图形及题意所述可得出重叠部分是等腰直角三角形,从而根据MA 的长度可得出y 与x 的关系,再根据变量和常量的定义得出常量与变量.【解答】由题意知,开始时A 点与M 点重合,让△ABC 向右运动,两图形重合的长度为AM =x cm.∵∠BAC =45°,∴S 阴影=12·AM ·h =12AM 2=12x 2,则y =12x 2,0≤x ≤10.其中的常量为12,变量为重叠部分的面积y cm 2与MA 的长度x cm.【互动总结】(学生总结,老师点评)通过分析题干中的信息得到等量关系并用字母表示是解题的关键,区分其中常量与变量可根据其定义判别.环节3 课堂小结,当堂达标 (学生总结,老师点评)常量与变量⎩⎪⎨⎪⎧定义判断练习设计请完成本课时对应训练!第2课时 函 数教学目标一、基本目标 【知识与技能】1.认识变量中的自变量与函数. 2.进一步掌握确定函数关系式的方法. 3.会确定自变量的取值范围. 【过程与方法】1.经历回顾思考过程,提高归纳总结概括能力.2.通过从图或表格中寻找两个变量间的关系,提高识图及读表能力,体会函数的不同表达方式.【情感态度与价值观】积极参与活动,提高学习兴趣,并形成合作交流意识及独立思考的习惯. 二、重难点目标 【教学重点】1.进一步掌握确定函数关系的方法. 2.确定自变量的取值范围. 【教学难点】认识函数、领会函数的意义.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P74的内容,完成下面练习. 【3 min 反馈】1.函数的概念:一般地,在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.2.用关于自变量的数学式子表示函数与自变量之间的关系的式子叫做函数的解析式. 3.对函数的理解,要抓住三点:(1)两个变量;(2)一个变量的数值随着另一个变量数值的变化而发生变化;(3)自变量的每一个确定的值,函数都有唯一的一个值与其对应.4.使得函数有意义的自变量的取值的全体叫做自变量的取值范围.确定自变量取值范围的条件:(1)使函数解析式有意义;(2)使函数所代表的实际问题有意义.5.对于自变量的取值范围内的一个确定的值,如当x =a 时,y =b ,函数有唯一的值b 与之对应,则这个对应值b 叫做x =a 时的函数值.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】下列变量间的关系不是函数关系的是( ) A .长方形的宽一定,其长与面积 B .正方形的周长与面积 C .等腰三角形的底边长与面积 D .圆的周长与半径【互动探索】(引发学生思考)如何判断两个变量是否是函数关系?【分析】长方形的宽一定,它是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也改变,故A 选项是函数关系;正方形的面积=(正方形的周长)216,正方形的周长与面积是两个变量,16是常量,故B 选项是函数关系;等腰三角形的面积=12×高×底,底边长与面积虽然是两个变量,但面积公式中还有底边上的高,而这里高也是变量,有三个变量,故C 选项不是函数关系;圆的周长=2π×半径,圆的周长与其半径是函数关系,故D 选项是函数关系.【答案】C【互动总结】(学生总结,老师点评)判断两个变量是否是函数关系,就看是否存在两个变量,并且在这两个变量中,确定哪个是自变量,哪个是函数,然后再看看这两个变量是否是一一对应关系.【例2】根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值y 为( )A .32B .25C .425D .254【互动探索】(引发学生思考)已知函数解析式,怎样求函数值?自变量的取值范围不同,对应的函数关系式不同,又怎样求函数值呢?【分析】∵2<52<4,∴将x =52代入函数y =1x ,得y =25.【答案】B【互动总结】(学生总结,老师点评)根据所给的自变量的值结合各个函数关系式所对应的自变量的取值范围,确定其对应的函数关系式,再代入计算.【例3】写出下列函数中自变量x 的取值范围: (1)y =2x -3; (2)y =31-x ; (3)y =4-x ; (4)y =x -1x -2. 【互动探索】(引发学生思考)怎样确定自变量的取值范围? 【解答】(1)全体实数. (2)分母1-x ≠0,即x ≠1. (3)被开方数4-x ≥0,即x ≤4.(4)由题意,得⎩⎪⎨⎪⎧x -1≥0,x -2≠0, 解得x ≥1且x ≠2.【互动总结】(学生总结,老师点评)本题考查了函数自变量的取值范围:有分母的要满足分母不能为0,有根号的要满足被开方数为非负数.活动2 巩固练习(学生独学)1.下列变量之间的关系是函数关系的是( C ) A .水稻的产量与用肥量 B .小明的身高与饮食 C .球的半径与体积 D .家庭收入与支出2.如图,△ABC 底边BC 上的高是6 cm ,当三角形的顶点C 沿底边所在直线向点B 运动时,三角形的面积发生了变化.(1)在这个变化过程中,自变量是BC ,因变量是 △ABC 的面积; (2)如果三角形的底边长为x (cm),三角形的面积y (cm 2)可以表示为y =3x ; (3)当底边长从12 cm 变到3 cm 时,三角形的面积从36cm 2变到9cm 2; (4)当点C 运动到什么位置时,三角形的面积缩小为原来的一半? 解:当点C 运动到中点时,三角形的面积缩小为原来的一半.3.下列问题中哪些量是自变量?哪些量是自变量的函数?试写出用自变量表示函数的式子.(1)一个弹簧秤最大能称不超过10 kg 的物体,它的原长为10 cm ,挂上重物后弹簧的长度y (cm)随所挂重物的质量x (kg)的变化而变化,每挂1 kg 物体,弹簧伸长0.5 cm ;(2)设一长方体盒子高为30 cm ,底面是正方形,底面边长a (cm)改变时,这个长方体的体积V (cm 3)也随之改变.解:(1)y =10+12x (0<x ≤10),其中x 是自变量,y 是自变量的函数.(2)V =30a 2(a >0),其中a 是自变量,V 是自变量的函数.4.一辆小汽车在高速公路上从静止到启动10秒后的速度经测量如下表: 时间 (秒) 012345678910速度 (米/秒)0.31.32.84.97.611.014.118.424.228.9(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒时,v 的变化情况相同吗?在哪1秒时,v 的增加量最大? (4)若高速公路上小汽车行驶速度的上限为120千米/时,试估计大约还需几秒这辆小汽车速度就将达到这个上限?解:(1)上表反映了时间和速度之间的关系,时间是自变量,速度是因变量.(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是v 随着t 的增大而增大.(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加量最大. (4)120×10003600=1003≈33.3(米/秒),由33.3-28.9=4.4,且28.9-24.2=4.7>4.4,所以估计大约还需1秒.活动3 拓展延伸(学生对学)【例4】水箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t 分钟时,水箱内存水y 升.(1)求y 关于t 的函数关系式和自变量的取值范围; (2)7:55时,水箱内还有多少水? (3)何时水箱内的水恰好放完?【互动探索】(1)根据水箱内存有的水等于原有水减去放掉的水列式整理即可,再根据剩余水量不小于0列不等式求出t 的取值范围;(2)当7:55时,t =55-30=25,将t =25代入(1)中的关系式即可;(3)令y =0,求出t 的值即可.【解答】(1)∵水箱内存有的水=原有水-放掉的水, ∴y =200-2t .∵y ≥0,∴200-2t ≥0, 解得t ≤100, ∴0≤t ≤100,∴y 关于t 的函数关系式为y =200-2t (0≤t ≤100). (2)∵7:55-7:30=25(分钟),∴当t =25时,y =200-2t =200-50=150(升), ∴7:55时,水箱内还有水150升. (3)令y =0,即200-2t =0,解得t =100. 100分=1时40分,7时30分+1时40分=9时10分, 故9:10水箱内的水恰好放完.【互动总结】(学生总结,老师点评)(1)已知函数解析式求函数值,就是将自变量x 的值带入解析式,求代数式的值;(2)已知函数解析式并给出函数值,求相应的自变量x 的值,实际上就是解方程.环节3 课堂小结,当堂达标 (学生总结,老师点评) 函数⎩⎪⎨⎪⎧概念自变量的取值范围函数值练习设计请完成本课时对应训练!。
第十九章一次函数1.了解常量、变量的意义和函数的概念,体会“变化与对应”的思想,了解函数的三种表示方法(列表法、解析式法和图象法),能结合图象分析简单的函数关系.2.能确定简单的实际问题中函数自变量的取值范围,并会求函数值.3.结合具体情境体会和理解正比例函数和一次函数的意义,能根据已知条件确定它们的表达式,会画它们的图象,能结合图象讨论这些函数的增减变化,能利用这些函数分析和解决简单的实际问题.1.通过讨论一次函数与二元一次方程等的关系,从运动变化的角度,用函数的观点加深对已经学习过的方程等内容的认识,构建和发展相互联系的知识体系.2.进行探究性课题学习,以选择方案为问题情境,进一步体会建立数学模型的方法与作用,提高综合运用函数知识分析和解决实际问题的能力.以探索简单实际问题中的数量关系和变化规律为背景,经历“找出常量和变量,建立并表示函数模型,利用函数模型解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.本章主要内容包括:常量与变量的意义,函数的概念,函数的三种表示法,一次函数的概念、图象、性质和应用举例,一次函数与二元一次方程等内容的关系以及以建立一次函数模型来选择最优方案为素材的课题学习.本章是在学习了平面直角坐标系的基础上进行学习的,为画一次函数的图象进而研究性质奠定了基础.一次函数是初中阶段研究的第一个具体的函数,它的研究方法具有一般性和代表性,并为后面学习反比例函数、二次函数奠定了基础.一次函数和一元一次方程、一元一次不等式、二元一次方程等有着密切的联系,学习一次函数将为它们的解法提供新的方法和途径,并使学生更为深刻地理解数形结合的重要思想.本章在整个教材中具有承上启下的作用.【重点】结合实例掌握变量、常量和函数的概念,掌握函数的三种表示方法,能结合图象讨论函数的基本性质,运用一次函数的图象和性质解决实际问题.【难点】函数的概念以及一次函数的图象和性质的应用.本章内容是初中数学教学中的重点,也是难点.要重视学生对基本概念的理解,及时了解学生在学习过程中的状况,探索有效地教与学的各种方式.在具体的实施过程中应注意:1.加强与学生已学知识的联系.在代数式、方程、不等式等内容的学习、探索中都已渗透了变化的思想,要注意引导学生在原有知识的基础上理解变量和函数的概念.2.创设丰富的现实情境,重视直观感知的作用.3.注重学生对必要的数学语言和符号的理解和准确应用.运用数学的语言和符号去理解、描述现实世界的变化规律,是本章学习的主要目的之一.要在现实情境中鼓励学生运用自己的语言进行描述和交流,进而逐步学习和掌握规范的数学语言,增强符号感.4.给学生充分的自主探索时间.19.1函数4课时19.1.1变量与函数(2课时)19.1.2函数的图象(2课时)19.2一次函数19.2.1正比例函数(2课时)6课时19.2.2一次函数(3课时)19.2.3一次函数与方程、不等式(1课时)19.3课题学习选择方案1课时单元概括整合1课时19.1函数1.理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.2.掌握用描点法画出一些简单函数的图象,能根据函数图象所提供的信息获取函数的性质.3.全面理解函数的三种表示方法,会根据具体情况选择适当方法表示函数.1.在探究问题的过程中,体会从具体的实例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.2.学生通过自己动手,体会用描点法画函数的图象的步骤.1.从图象中获得变量之间的关系的有关信息,并预测变化趋势,进行科学决策,应用于社会生活.2.让学生通过实际操作,体会函数三种表示法在实际生活中的应用价值,渗透数形结合思想,体会到数学来源于生活,又应用于生活,培养学生的团结协作精神、探索精神和合作交流的能力.【重点】会用描点法画函数的图象,并能利用函数的三种表示方法解决实际问题.【难点】函数的概念的理解.19.1.1变量与函数理解自变量的取值范围和函数的意义,会求自变量的取值范围,会根据自变量的取值范围求函数的值.在探究问题的过程中,体会从具体的事例中寻找常量和变量,判断两个变量之间是否满足函数关系的过程.通过列举自己身边的事例,体验数学与生活的密切联系,学会观察与发现,激发同学们探究问题的兴趣.【重点】函数的概念和函数自变量的取值范围.【难点】求函数自变量的取值范围.第课时1.了解常量与变量的含义,能分清实例中的常量与变量.2.学会用含一个变量的代数式表示另一个变量.经历观察、分析、思考等数学活动过程,发展合情推理,以提高分析问题和解决问题的能力.引导学生探索实际问题中的数量关系,渗透事物是运动的,运动是有规律的辩证思想,培养学生对学习的兴趣和积极参与数学活动的热情.【重点】认识变量、常量,会用式子表示变量间的关系.【难点】用含有一个变量的式子表示另一个变量.【教师准备】教学中出示的教学插图和例题.【学生准备】预习教材内容导入一:当我们用数学的眼光来分析现实世界的各种现象时,会遇到各种各样的量,如物体运动中的速度、时间和距离;圆的半径、周长和圆周率;购买商品的数量、单价和总价;某城市一天中各时刻变化着的气温等.在某一个过程中,有些量固定不变,有些量不断改变.为了更好地认识和了解这些变化现象中所隐含的变化规律,从本节课开始我们将学习这一部分知识.[设计意图]利用学生较熟悉的生活实例引入本课学习的内容,调动学生学习的积极性.导入二:飞机从武汉飞往北京,在这个行驶的过程中,哪些量没有发生改变,哪些量发生了改变?学生说出自己的看法:如飞机上乘客的人数不变;飞机离地面的高度在改变;飞机油箱中的汽油在不停的减少,飞机离武汉越来越远,离北京越来越近,….教师也可以让学生举出自己熟悉的例子,据此引出今天学习的课题:变量与函数.[设计意图]由学生经历的事情提问题,能引起学生的好奇心.1.变量与常量的概念问题:汽车以60 km/h的速度匀速行驶,行驶时间为t h.填写表19-1,s的值随t的值的变化而变化吗?(出示教材表19-1)表19-1t/h 1 2 3 4 5s/km学生填表,并思考.1.根据题意填写下表:t/h 1 2 3 4 5s/km2.在以上这个过程中,变化的量是.不变化的量是.3.试用含t的式子表示s.教师引导学生交流:从题意中可以知道汽车是匀速行驶,那么它1 h行驶60 km,2 h行驶2×60 km,即120 km,3 h行驶3×60 km,即180 km,4 h行驶4×60 km,即240 km,5 h行驶5×60 km,即300 km……t/h 1 2 3 4 5s/km 60 120 180 240 300因此其中行驶里程s与时间t是变化的量,速度60 km/h是不变的量.行驶里程s km与时间t h之间有关系:s=60t.s随t的增大而增大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中的变量与常量.问题:电影票的售价为10元/张,第一场售出150张票,第二场售出205张票,第三场售出310张票,三场电影的票房收入各是多少元?设一场电影售出x张票,票房收入为y元,y的值随x的值的变化而变化吗?学生分析问题,并同桌交流.1.电影票的售价为10元/张,第一场售出150张票,则第一场电影的票房收入为元;第二场售出205张票,则第二场电影的票房收入为元;第三场售出310张票,则第三场电影的票房收入为元.2.设一场电影售票x张,票房收入y元,则用含x的式子表示y为.教师解析:第一场电影的票房收入为150×10=1500(元).第二场电影的票房收入为205×10=2050(元).第三场电影的票房收入为310×10=3100(元).用含x的式子表示y为y=10x,y随x的增大而增大.[设计意图]通过适当地把问题进行分解,引导学生通过合理、正确的思维方法探索出变化规律.问题:你见过水中涟漪吗?如图所示,圆形水波慢慢的扩大.在这一过程中,当圆的半径r分别为10 cm,20 cm,30 cm时,圆的面积S分别为多少?S的值随r的值的变化而变化吗?学生活动填表,并讨论.(1)填表:半径r(cm)10 20 30圆面积S(cm2)(2)S与r之间满足下列关系:S=.教师解析:(1)半径r(cm)10 20 30圆面积S(cm2)314 1256 2826(2)S=πr2.圆的半径越大,它的面积就越大.[设计意图]挖掘和利用实际生活中与变量有关的问题情境,让学生经历探索具体情境中两个变量关系的过程,直接获得探索变量关系的体验.问题:用10 m长的绳子围成一个矩形,当矩形的一边长x分别为3 m,3.5 m,4 m,4.5 m时,它的邻边长y分别为多少?y的值随x的值的变化而变化吗?学生活动小组讨论后,教师进行解析:因为矩形两组对边相等,所以它的一边长与它的邻边长的和应是周长10 m的一半,即5 m.若矩形一边长为3 m,则它的邻边长为5-3=2(m).若矩形一边长为3.5 m,则它的邻边长为5-3.5=1.5(m).若矩形一边长为4 m,则它的邻边长为5-4=1(m).若矩形一边长为4.5 m,则它的邻边长为5-4.5=0.5(m).若矩形一边长为x m,则它的邻边长为y=5-x(m),y随x的增大而减小.[设计意图]在本环节中,设计了问题情境,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.这些问题反映了不同事物的变化过程,涉及多个量,你能将这些问题中出现的量按照某种标准进行分类吗?学生分组讨论,交流自己的看法.按照有无变化,我们发现其中有些量(例如时间t,路程s;售出票数x,票房收入y……)的值是变化的,有些量的值始终不变(例如速度60 km/h;电影票的单价10元……),因此可分为两类.师生共同总结出变量和常量的定义并板书.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.[设计意图]通过上述的四个问题进行具体的讲评,借助实例来理解变量、常量的概念,在讲解概念后强调常量与变量的区别与联系,使学生进一步理解、领会有关常量和变量的概念.2.问题讲解在学习与生活中,经常要研究一些数量关系,先看下面的问题.问题(1):下图是某地一天的气温变化图象,任意给出这天中的某一时刻t,你能说出这一时刻的气温T吗?这一问题中涉及哪几个量?它们变化吗?学生结合图,说出每一时刻所对应的温度值,教师进行确认.问题(2):弹簧原长22 cm,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂物体的质量x(kg)有如下关系:x/kg 0 1 2 3 4 5 6y/cm 22 22.5 23 23.5 24 24.5 25在这个问题中变化的量是什么?不变化的量是什么?学生讨论发现:弹簧的原长不变,为22 cm,弹簧伸长的长度随着物体质量的变化而变化.因此,弹簧的总长=原长+伸长的长度.问题(3):你能举出生活中类似的例子吗?可以小组讨论.学生讨论、举例,在上述实例的解决过程中,体会在一个变化过程中各个量的变化规律,进而发现有的量变化、有的量不变.教师引导学生概括:在上面的问题中,我们研究了一些数量关系,出现了各种各样的量,有些量,它们始终保持不变,我们称之为常量,而有些量,在某一变化过程中,可以取不同数值,我们称之为变量.[设计意图]在本环节中,设计了问题情境,并让学生举出生活中类似的例子,目的是让学生在现实情境中感知变量和常量的存在和意义,体会变量之间的互相依存关系和变化规律.此外,希望通过这几个问题引出常量、变量的概念,使学生体验从具体到抽象的认识过程.[知识拓展](1)常量与变量是相对而言的,是相对某个变化过程来说的,换句话说,在这个变化过程中是变量,而在另一个变化过程中有可能以常量身份出现.如s=vt中,若v=20,此式子为s=20t,可见s,t为变量,若t=10,此式子为s=10v,s,v为变量,变量与常量的身份可以相互转化.(2)判断一个量是常量还是变量关键是看这个量所在的变化过程中,该量的值是否发生变化.(3)常数也叫常量,如S=πr2,其中常量是π.3.例题讲解(补充)若球体体积为V,半径为R,则V=πR3.其中变量是、,常量是.〔解析〕根据变量和常量的概念进行求解,解题时注意π是一个常量.答案:V Rπ(补充)写出下列各问题中的关系式,并指出其中的常量与变量:(1)圆的周长C与半径r的关系式;(2)火车以60千米/时的速度行驶,它驶过的路程s(千米)和所用时间t(小时)的关系式.〔解析〕先根据实际问题确定所给问题的关系式,再根据变量和常量的概念进行求解.解:(1)C=2πr,2π是常量,r,C是变量.(2)s=60t,60是常量,t,s是变量.[设计意图]通过上述几个问题进行具体的讲评,借助实例来理解变量、常量的概念.本节课从现实问题出发,找出了寻求事物变化中变量之间变化规律的一般方法步骤.它对以后学习函数及建立函数关系式有很重要的意义.1.确定事物变化中的变量与常量.变量和常量的定义:在某个变化过程中,我们称数值发生变化的量为变量;数值始终不变的量叫做常量.2.尝试运算寻求变量间存在的规律.3.利用学过的有关知识公式确定关系式.[设计意图]通过小结、课堂训练和学生反思,进一步理顺学生的学习思路,加深对变量、常量有关概念的理解.1.学校购买某种型号的钢笔作为学生的奖品,钢笔的价格是4元/支,则总金额y(元)与购买支数x(支)的关系式是,其中变量是,常量是.解析:∵钢笔的价格是4元/支,∴总金额y(元)与购买支数x(支)的关系式是y=4x,∴变量为x,y,常量为4.答案:y=4x x,y 42.在圆的周长公式C=2πR中,下列说法正确的是()A.π,R是变量,2 是常量B.R是变量,C,2,π是常量C.C是变量,2,π,R是常量D.C,R是变量,2,π是常量解析:∵C=2πR,∴变量为C,R,常量为2,π.故选D.3.分别指出下列各关系式中的变量与常量.(1)三角形的一边长为5 cm,它的面积S(cm2)与这边上的高h(cm)的关系式是S=h;(2)若直角三角形中的一个锐角的度数为α(度),则另一个锐角β(度)与α(度)间的关系式是β=90-α.解:(1)∵S=h,∴变量为S,h,常量为.(2)∵β=90-α,∴变量为β,α,常量为-1,90.4.要画一个面积为10 cm2的圆,圆的半径应取多少?圆的面积为20 cm2呢?怎样用含有圆面积S的式子表示圆半径r?解:根据圆的面积公式S=πr2,得r=,面积为10 cm2的圆半径r=≈1.78(cm).面积为20 cm2的圆半径r=≈2.52(cm).用圆面积S的式子表示圆半径r的关系式为r=.第1课时1.变量与常量的概念:变量:在一个变化过程中,数值发生变化的量为变量.常量:在一个变化过程中,数值始终不变的量为常量.2.例题讲解:例1例2一、教材作业【必做题】教材第71页练习.【选做题】教材第81页习题19.1第1,2题.二、课后作业【基础巩固】1.甲、乙两地相距s千米,某人行完全程所用的时间t(小时)与他的速度v(千米/时)满足vt=s,在这个变化过程中,下列判断中错误的是()A.s是变量B.t是变量C.v是变量D.s是常量2.小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q(元)与他买这种笔记本的本数x之间的关系式是()A.Q=8xB.Q=8x-50C.Q=50-8xD.Q=8x+503.(2015·临沂中考)已知甲、乙两地相距20千米,汽车从甲地运输匀速行驶到乙地,则汽车行驶时间t(单位:小时)关于行驶速度v(单位:千米/时)的函数关系式是()A.t=20vB.t=C.t=D.t=4.长方形相邻两边长分别为x,y,面积为30,则用含x的式子表示y为,则这个问题中,是常量;是变量.5.汽车开始行驶时油箱内有油40升,如果每小时耗油5升,那么油箱内剩余油量Q(升)与行驶时间t(小时)的关系式是.6.根据下列题意写出适当的关系式,并指出其中的变量与常量.(1)多边形的内角和W与边数n的关系;(2)甲、乙两地相距y千米,一自行车以每小时10千米的速度从甲地驶向乙地,试用行驶时间t(小时)表示自行车离乙地的距离s(千米).【能力提升】7.某种报纸的价格是每份0.4元,买x份报纸的总价为y元,先填写下表,再用含x的式子表示y.份数/份 1 2 3 4 …价钱/元…x与y之间的关系式是.8.现有笔记本500本,学生x人,若每人5本,则余下y本笔记本,用含x的式子表示y为y=,其中常量是,y和x都是量.9.夏季高山上温度从山脚起每升高100米降低0.7 ℃,已知山脚下的温度是23 ℃,则温度y(℃)与上升高度x(米)之间的关系式为.【拓展探究】10.圆柱形物体如下图(横截面)那样堆放.试确定圆柱形物体的总数y与层数x之间的关系式.【答案与解析】1.A(解析:某人行完全程,甲、乙两地距离不变,故s是常量,因此A不正确.)2.C(解析:单价是8元的笔记本,买这种笔记本x本用了8x元,故Q=50-8x.故选C.)3.B(解析:根据时间=,有t=.故选B.)4.y=30x,y(解析:由长方形的面积=长×宽进行求解.)5.Q=40-5t(解析:根据剩余油量=总油量-已用油量进行求解.)6.解:(1)W=(n-2)×180°,变量为W,n;常量为-2,180°.(2)s=y-10t,变量为s,t;常量为-10,y.7.0.40.81.21.6y=0.4x(解析:根据总金额=单价×数量进行求解.)8.500-5x500,-5变(解析:根据剩余笔记本数=总的笔记本数-已发的笔记本数进行求解.)9.y=23-x10.解析:要求变量间的关系式,需首先知道两个变量间存在的规律是什么.不妨尝试堆放,找出规律,再寻求确定关系式的办法.解:由题意可知:堆放1层,总数y=1,堆放2层,总数y=1+2,堆放3层,总数y=1+2+3,…,堆放x层,总数y=1+2+3+…+x,即y=x(x+1).本节课以问题为载体、以学生为主体、以合作交流为手段、以能力提高为目的.在探究知识上,以学生自主探究分组交流为主线,发挥学生的主体作用.在课堂教学中选择贴近生活的实例,与变量和常量的概念紧密结合,能使课堂效果达到最佳状态.在某个变化过程中,变量和常量是相对而言的,学生理解较困难,解题时学生容易出现把π看成变量这种错误.教学时通过对比教学多举出变量和常量是相对而言的事例,让学生真正理解变量和常量的概念.练习(教材第71页)解:(1)变量为x,y;常量为4.(2)变量为t,w;常量为0.2,30.(3)变量为r,C;常量为π.(4)变量为x,y;常量为10.函数的起源函数的概念在17世纪已经引入,牛顿(Isaac Newton,1642~1727,英国科学家)的《自然哲学的数学原理》中提出的“生成量”就是雏形的函数概念.笛卡儿(R.名言:“我思故我在”)引入变量后,随之而来的便是函数的概念.他指出y和x是变量(“未知量和未定的量”)的时候,也注意到y依赖于x而变.这正是函数思想的萌芽,但是他没有使用“函数”这个词.最早把“函数”(function)这个词用作数学术语的数学家是莱布尼茨(Gottfried WilhelmLeibniz,1646~1716,德国数学家),但其含义和现在不同,他把函数看成是“像曲线上点的横坐标、纵坐标、切线长度、垂线段长度等所有与曲线上的点有关的量”. 1718年,瑞士数学家约翰·贝努利(John Bernoulli,1667~1748,欧拉的数学老师)将函数概念公式化,给出了函数的一个定义,同时第一次使用了“变量”这个词.他写到:“变量的函数就是变量和变量以任何方式组成的量”.他的学生,瑞士数学家欧拉(Leonard Euler,1707~1783,被称为历史上最“多产”的数学家)将约翰·贝努利的思想进一步解析化,他在《无限小分析引论》中将函数定义为:“变量的函数是一个由该变量与一些常数以任何方式组成的解析表达式”,欧拉的函数定义在18世纪后期占据了统治地位.我国“函数”一词,是《代数积拾级》中首先使用的.这本书把函数定义为:“凡此变数中含彼变数,则此为彼之函数”.这里的“函”指包含的意思.这个定义相当于欧拉的解析表达式定义:在一个式中“包含”着变量x,那么这个式子就是x的函数.函数这个概念已成为数学中最重要的几个概念之一,而变量这个词却逐渐被新的词所代替.第课时初步了解函数三种表示方法以及三种表示方法的优缺点,会根据具体情况选择适当方法表示函数.1.经历回顾思考,训练提高归纳总结能力.2.利用数形结合思想,根据具体情况选用适当方法解决问题的能力.通过分析具体的问题中的一个变量的值对应着另一个变量的值,体会到函数是刻画变量之间的对应关系的数学模型.【重点】函数表示方法的应用.【难点】确定实际问题中函数自变量的取值范围.【教师准备】带有网格的纸,三角板.【学生准备】三角板,铅笔,带有网格的纸.导入一:你听说过“两个铁球同时落地”的故事吗?站在比萨斜塔顶部,让两个铁球自由下落,在铁球下落的过程中,随着时间的变化,铁球下落的速度是怎样变化的?铁球下落的速度v随下落的时间t的变化而变化.这就是我们今天要继续学习的内容.[设计意图]结合学生熟悉的故事导入新课,激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.导入二:1.有根弹簧原长10 cm,每挂1 kg重物,弹簧伸长0.5 cm,设所挂的重物为m kg,受力后弹簧的长度为l cm,根据上述信息完成下表:m/kg 0 1 2 3 3.5 …l/cm受力后弹簧的长度l是所挂重物质量m的函数吗?2.有一辆出租车,前3公里内的起步价为8元,每超过1公里收2元,有一位乘客坐了t(t>3)公里,他付费y 元,用含x的式子表示y.3.如图所示的是某地某一天的气温变化图:学生自由思考,自由发言.上面用图、表格或关系式表达的问题反映了两个变量之间的关系.[设计意图]出示题目,同时提出新的问题,让学生在解决旧知的基础上提出问题,从而激发学生的学习兴趣,并且提高学生对新知识的求知欲,为本节课的学习打下基础.1.自变量、函数和函数值思路一[过渡语]前面我们学习了变量与常量,下面我们一起来思考下面的问题:(1)下图是体检时的心电图.其中横坐标x表示时间,纵坐标y表示心脏部位的生物电流,它们是两个变量.在心电图中,对于x的每个确定的值,y都有唯一确定的对应值吗?(2)在下面的我国人口数统计表中,年份与人口数可以记作两个变量x与y,对于表中每一个确定的年份(x),都对应着一个确定的人口数(y)吗?中国人口数统计表年份人口数/亿1984 10.341989 11.061994 11.761999 12.522010 13.71学生通过观察发现在问题(1)的心电图中,对于x的每个确定值,y都有唯一确定的值与其对应;在问题(2)中,对于表中每个确定的年份x,都对应着一个确定的人口数y.引导学生归纳:上面用图或表格表达的问题中的两个变量互相联系,当其中一个变量取定一个值时,另一个变量随之就有唯一确定的值与它对应.教师总结:一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.如果当x=a时,y=b,那么b叫做当自变量的值为a 时的函数值.学生分析上面两个问题中的自变量和函数,并交流.在以上心电图问题中,时间x是自变量,心脏电流y是x的函数;人口数统计表中,年份x是自变量,人口数y是x的函数.当x=2010时,函数值y=13.71.思路二[过渡语]生活中有许许多多的图形与图象,比如体检时的心电图,心电图直观地反映了心脏生物电流与时间的关系,电流随时间的变化而变化.又如投篮后,篮球划过的一道优美的弧线(抛物线),有些问题中的函数关系很难列式子表示,但我们可以通过图象来直观反映,比如心电图直观地反映心脏生物电流与时间的关系;抛物线直观地反映了篮球的高度与水平距离之间的函数关系,即使对于能列式表示的函数关系,若也能画图表示,则会使函数关系更清晰.教师随着学生的思考渐渐提问:你去过游乐园吗?你坐过摩天轮吗?你能描述一下坐摩天轮的感觉吗?。