2019年西宁市中考数学试卷
- 格式:doc
- 大小:484.00 KB
- 文档页数:22
2019年青海省西宁市城区中考数学试卷副标题题号 一 二 三 总分 得分一、选择题(本大题共10小题,共30.0分)1. 若等式−2□(−2)=4成立,则“□”内的运算符号是( )A. +B. −C. ×D. ÷2. 下列图书馆标志的图形中不是轴对称图形的是( )A.B.C.D.3. 下列各数是无理数的是( )A. √93B. 3.141 141 114C. 227D. 3.1⋅4⋅4. 下列计算正确的是( )A. (ab)2=ab 2B. (a 3)2=a 6C. a 6÷a 2=a 3D. a 4⋅a 3=a 125. 下列说法正确的是( )A. 过一点有且只有一条直线与已知直线垂直B. 相等的圆心角所对的弧相等C. 若a 2=b 2,则a =bD. 一组数据3,2,5,3的中位数、众数都是36. 背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y =2x −4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是( )A. 14B. 34C. 12D. 17. 如图,Rt △ABC 中,∠ACB =90°,CD 是AB 边上的中线,BC =6,CD =5,则∠ACD 的正切值是( )A. 43B. 35C. 53D. 348. 边长为2的正三角形的外接圆的半径是( )A. 2√3B. 2C. 2√33D. √329. 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠使点A 落在点G 处,延长BG 交CD 于点F ,连接EF ,若CF =1,DF =2,则BC 的长是( )A. 3√3B. √26C. 5D. 2√610.如图1,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x分钟后甲、乙两人相距y米,y与x的函数关系如图2所示有以下结论:①图1中a表示为1000;②图1中EF表示为1000−200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,10分钟后相遇.其中正确的结论是()3A. ①②B. ③④C. ①②③D. ①③④二、填空题(本大题共10小题,共20.0分)11.−2的相反数是______.12.党的十八大以来,习近平总书记把脱贫攻坚摆在治国理政的突出位置,截至2018年底,我省共计减少贫困人口1083000人,将1083000用科学记数法表示为______.13.分解因式:2a2−4a+2=______.14.已知扇形的圆心角为120°,半径为4cm,则扇形的面积是______cm2.15.平行四边形的两条邻边的长分别是方程x2−7x+1=0的两根,则该平行四边形的周长是______.16.如图,△ABC中,点D,E分别是AB,AC的中点,连接DE并延长交△ABC的外角∠ACM的角平分线于点F,若BC=6,AC=10,则线段DF的长为______.17.如图,PA,PB是⊙O的切线,A,B为切点,若∠AOB=120°,OA=2,则△PAB的周长是______.18.如图,Rt△ABC中,∠B=90°,∠C=45°,∠ADB=60°,CD=2,则AB=______.19.平面直角坐标系中,将点A(3,4)绕点B(1,0)旋转90°,得到点A的对应点A′的坐标为______.20.平面直角坐标系中,将抛物线y=−x2平移得到抛物线C,如图所示,且抛物线C经过点A(−1,0)和B(0,3),点P是抛物线C上第一象限内一动点,过点P作x轴的垂线,垂足为Q,则OQ+PQ的最大值为______.三、解答题(本大题共8小题,共70.0分)21.计算:2−2−|√5−4|+√(−4)2.22.若m是不等式组{m<35m>m+4的整数解,解关于x的分式方程mx2−4+1=xx−2.23.如图,点A,B,C,D在同一条直线上,AB=BC,△AEC≌△BFD,连接BE,CF,EF.(1)求证:BE=CF;(2)当∠A=∠D时,求证四边形BCFE是矩形.24.如图,一次函数y=kx+b的图象与反比例函数y=6x 的图象交于A,B两点,与x轴交于点P,过点A作AE⊥x 轴于点E,AE=3.(1)求点A的坐标;(2)若PA:PB=3:1,求一次函数的解析式.25.西宁市教育局准备组织全市初中生去我市五个四星级公园开展“绿水青山,幸福西宁”社会实践活动.为了解学生的兴趣需求,对全市初中生进行一次抽样调查.针对给出的五个公园(每人限选一个):A高原明珠景区、B体育公园、C人民公园、D 南山公园、E湟水森林公园进行调查.根据调查结果绘制了如下不完整的统计图,请你根据统计图提供的信息解答下列问题:(1)在此调查中,下列抽样调查方式最合理的是______;(只需填上正确答案的序号)①对城北区所有初中学校的男同学进行调查;②对市中心某初中学校九年级的同学进行调查;③在全市每一所初中学校随机抽取100名同学进行调查.(2)将上面的条形统计图补充完整;(3)已知全市初中学生约有35000人,请根据调查结果估计全市初中学生最喜欢去体育公园的学生人数;(4)若甲、乙两名学生在上述选择率较高的三个公园中各选一个开展社会实践活动,请用画树状图或列表的方法求出甲、乙两名学生选择同一个公园的概率,并列出所有等可能的结果.26.如图,AB,CD是⊙O的直径,AB过弦CE的中点F,过点D作⊙O的切线交CE的延长线于点P,连接BD交CE于点G.(1)求证:PD=PG;(2)若OC=4,PG=6,求CE的长.27.某校为落实西宁市教育局“教育信息化2.0行动计划”,搭建数字化校园平台,需要购买一批电子白板和平板电脑,若购买2台电子白板和6台平板电脑共需9万元;购买3台电子白板和4台平板电脑共需11万元.(1)求电子白板和平板电脑的单价各是多少万元?(2)结合学校实际,该校准备购买电子白板和平板电脑共100台,其中电子白板至少购买6台且不超过24台,某商家给出了两种优惠方案,方案一:电子白板和平板电脑均打九折;方案二:买1台电子白板,送1台平板电脑.若购买电子白板a(台)所需的费用为W(万元),请根据两种优惠方案分别写出W关于a的函数关系式,并分析该校应选用哪种优惠方案购买更省钱.28.如图①,直线y=−√3x+2√3与x轴,y轴分别交于A,B两点,以A为顶点的抛物线经过点B,点P是抛物线上一点,连接OP,AP.(1)求抛物线的解析式;(2)若△AOP的面积是3√3,求P点坐标;(3)如图②,动点M,N同时从点O出发,点M以1个单位长度/秒的速度沿x轴正半轴方向匀速运动,点N以√3个单位长度/秒的速度沿y轴正半轴方向匀速运动,当其中一个动点停止运动时,另一个动点也随之停止运动,过点N作NE//x轴交直线AB于点E.若设运动时间为t秒,是否存在某一时刻,使四边形AMNE是菱形?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】C【解析】解:−2×(−2)=4.故选:C.分析:只需运用有理数的运算法则就可解决问题.本题考查的是有理数的混合运算,应熟练掌握有理数的运算法则.2.【答案】B【解析】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、轴对称图形,故本选项错误;D、轴对称图形,故本选项错误;故选:B.根据轴对称的定义,结合选项图形进行判断即可.本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】A3是无理数,【解析】解:√9故选:A.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.此题主要考查了无理数的定义,解题的关键是明确初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.【答案】B【解析】解:A、(ab)2=a2b2,故此选项错误;B、(a3)2=a6,正确;C、a6÷a2=a4,故此选项错误;D、a4⋅a3=a7,故此选项错误;故选:B.直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案.此题主要考查了积的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:在平面内,过一点有且只有一条直线与已知直线垂直,故选项A错误;在同圆或等圆中,相等的圆心角所对的弧相等,故选项B错误;若a2=b2,则a=±b,故选项C错误;一组数据3,2,5,3按照从小到排列是2,3,3,5,故这组数的中位数、众数都是3,故选项D正确;故选:D.根据各个选项中的说法可以判断是否正确,从而可以解答本题.本题考查垂线、众数、中位数、与圆有关的知识,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.6.【答案】B【解析】解:函数y=2x−4中k=2>0,y随着x的增大而增大,∵b=−4,∴函数的图象经过一、三、四象限;令x=0,y=−4,∴与y轴交与(0,−4);当x=0时,y=−4,当x=2时,y=0,∴当0<x<2时,−4<y<0,∵3张卡片中正确的有3张,∴随机抽取一张,抽到卡片上的结论正确的概率是34,故选:B.利用二次函数确定正确的结论,然后利用概率公式求解即可.考查了概率公式及一次函数的性质,解题的关键是根据一次函数的性质进行正确的判断,难度不大.7.【答案】D【解析】解:∵CD是AB边上的中线,∴CD=AD,∴∠A=∠ACD,∵∠ACB=90°,BC=6,CD=5,∴AB=10,∴AC=8,∴tan∠A=BCAC =68=34,∴tan∠ACD的值34.故选:D.根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,再根据等边对等角的性质可得∠A=∠ACD,然后根据正切函数的定义列式求出∠A的正切值,即为tan∠ACD的值.本题考查了锐角三角函数的定义,直角三角形斜边上的中线等于斜边的一半的性质,等边对等角的性质,求出∠A=∠ACD是解本题的关键.8.【答案】C【解析】解:如图,等边△ABC中,三边的垂直平分线交一点O,则O是△ABC外接圆的圆心,∴∠OBC=∠OCB=30°,BF=CF=12BC=1,∴OF=√33BF,∴OB=2OF=2√33.故选:C.等边三角形的边长是其外接圆半径的√3倍,据此直接算出答案.本题主要考查等边三角形及其外接圆的性质,知道等边三角形边长与其外接圆半径的倍数关系是解答关键.9.【答案】D【解析】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,∵∠ENG=∠BNM,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM//CD,∴BN:NF=BM:CM,∴BN=NF,∴NM=12CF=12,∴NG=12,∵BG=AB=CD=CF+DF=3,∴BN=BG−NG=3−12=52,∴BF=2BN=5,∴BC=√BF2−CF2=√52−12=2√6,故选:D.首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF 的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长.此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质.此题难度适中,注意辅助线的作法,注意数形结合思想的应用.10.【答案】A【解析】解:由图可知,a=1000,故①正确;乙的速度为:(1000−400)+100×33=300米/分钟,故③错误;图1中,EF表示为1000+100x−300x=1000−200x,故②正确;令100x+1000=300x,得x=5,即两人在相距a米处同时相向而行,5分钟后相遇,故④错误;故选:A.根据题意和函数图象中的数据,可以判断各个小题中的结论是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.11.【答案】2【解析】解:−2的相反数是:−(−2)=2,故答案为:2.根据一个数的相反数就是在这个数前面添上“−”号,求解即可.本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“−”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.12.【答案】1.083×106【解析】解:将1083000用科学记数法表示为1.083×106.故答案为:1.083×106.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】2(a−1)2【解析】解:原式=2(a2−2a+1)=2(a−1)2.故答案为:2(a−1)2.原式提取2,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.【答案】163π【解析】解:由题意得,n=120°,R=4cm,故可得扇形的面积S=nπR2360=120⋅π×42360=163π.故答案为163π.直接根据扇形的面积公式计算即可.此题考查了扇形的面积计算,属于基础题,解答本题的关键是掌握扇形的面积公式,难度一般.15.【答案】14【解析】解:∵平行四边形的两条邻边的长分别是方程x2−7x+1=0的两根,∴平行四边形的两条邻边的长的和是7,故该平行四边形的周长是7×2=14.故答案为:14.根据根与系数的关系求得平行四边形的两条邻边的长的和,再乘2即可求解.考查了平行四边形的性质,根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=−ba ,x1⋅x2=ca.16.【答案】8【解析】解:∵点D,E分别是AB,AC的中点,∴DE=12BC=3,EC=12AC=5,DE//BC,∴∠F=∠FCM,∵CF是∠ACM的角平分线,∴∠FCE=∠FCM,∴∠F=∠FCE,∴EF=EC=5,∴DF=DE+EF=8,故答案为:8.根据三角形中位线定理求出DE、EC,根据平行线的性质、角平分线的定义得到EF= EC=5,结合图形计算,得到答案.本题考查的是三角形中位线定理、平行线的性质、线段中点的定义,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17.【答案】6√3【解析】解:∵PA、PB是⊙O的切线,A、B是切点,∴∠PAO=∠PBO=90°,PA=PB,∠OPA=∠OPB,∵∠AOB=120°,∴∠APB=360°−90°−90°−120°=60°,∴△PAB是等边三角形,∠OPA=∠OPB=30°,∴PA=PB=AB,∵∠PAO=90°,∠OPA=30°,∴AB=PB=PA=√3OA=2√3,∴△PAB的周长=PA+PB+AB=6√3;故答案为:6√3.由切线的性质得出∠PAO=∠PBO=90°,PA=PB,∠OPA=∠OPB,证△PAB是等边三角形,∠OPA=∠OPB=30°,得出PA=PB=AB,AB=PB=PA=√3OA=2√3,即可得出答案.本题考查了切线的性质、等边三角形的判定与性质、含30°角的直角三角形的性质等知识;熟练掌握切线的性质,证明△PAB为等边三角形是解题的关键.18.【答案】3+√3【解析】解:∵∠B=90°,∠C=45°,∴△ABC是等腰直角三角形,∴AB=CB,∵∠ADB=60°,∴∠BAD =30°, ∴AB =√3BD ,∵CD =BC −BD =AB −BD =2,∴√3BD −BD =2,解得:BD =√3+1,∴AB =CB =CD +BD =2+√3+1=3+√3;故答案为:3+√3.证出△ABC 是等腰直角三角形,得出AB =CB ,证出AB =√3BD ,由题意得出√3BD −BD =2,解得BD =√3+1,即可得出答案.本题考查了等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握等腰直角三角形和含30°角的直角三角形的性质是解题的关键. 19.【答案】(−3,2)或(5,−2)【解析】解:如图,点A(3,4)绕点B(1,0)顺时针或逆时针旋转90°,得到点A 的对应点A′的坐标为(5,−2),A″(−3,2).故答案为:(−3,2)或(5,−2). 根据旋转的性质分两种情况:点A 绕点B 顺时针和逆时针旋转画图求解即可. 本题考查了坐标与图形变化−旋转,解决本题的关键是掌握旋转的性质. 20.【答案】214【解析】解:设平移后的解析式为y =−x 2+bx +c ,∵抛物线C 经过点A(−1,0)和B(0,3),∴{−1−b +c =0c =3,解得{b =2c =3, ∴抛物线C 的解析式为y =−x 2+2x +3,设Q(x,0),则P(x,−x 2+2x +3),∵点P 是抛物线C 上第一象限内一动点,∴OQ +PQ =x +(−x 2+2x +3)=−x 2+3x +3=−(x −32)2+214,∴OQ +PQ 的最大值为214,故答案为214.求得抛物线C 的解析式,设Q(x,0),则P(x,−x 2+2x +3),即可得出OQ +PQ =x +(−x 2+2x +3)=−(x −32)2+214,根据二次函数的性质即可求得.本题考查了二次函数的性质,二次函数图象与几何变换,根据题意得出OQ +PQ =−x 2+3x +3是解题的关键.21.【答案】解:原式=14−(4−√5)+4=14−4+√5+4 =14+√5.【解析】原式利用负整数指数幂法则,绝对值的代数意义,以及二次根式性质计算即可求出值.此题考查了实数的运算,负整数指数幂,绝对值的代数意义,以及二次根式性质,熟练掌握运算法则是解本题的关键.22.【答案】解:不等式组整理得:{m <3m >1, 解得:1<m <3,整数m =2,代入分式方程得:2x 2−4+1=x x−2,去分母得:2+x 2−4=x 2+2x ,解得:x =−1,经检验x =−1是分式方程的解.【解析】求出不等式组的解集,确定出m 的值,代入分式方程计算即可.此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握各自的解法是解本题的关键.23.【答案】(1)证明:∵△AEC≌△BFD ,∴AE =BF ,∠EAB =∠FBC ,∵AB =BC ,∴△ABE≌△BCF(SAS),∴BE =CF ;(2)解:∵△ABE≌△BCF ,∴BE =CF ,∵△AEC≌△BFD ,∴AC =BD ,∠ACE =∠D ,∵AB =BC ,∴AB =BC =CD ,∵∠A =∠D ,∴∠A =∠ACE =∠DBF =∠D ,∴AE =CE ,BF =DF ,∴BE ⊥AD ,CF ⊥AD ,∴BE//CF ,∴四边形BCFE 是矩形.【解析】(1)根据全等三角形的判定和性质到了即可得到结论;(2)根据全等三角形的判定和性质定理以及矩形的判定定理即可得到结论.本题考查了矩形的判定,全等三角形的判定和性质,等腰三角形的判定和性质,正确的识别图形是解题的关键.24.【答案】解:(1)当y =3时,3=6x ,解得x =2,∴点A 的坐标为(2,3);(2)作BF ⊥x 轴于F ,如图,∵AE//BF ,∴PA PB =AE BF =3,∴BF =1,当y =−1时,−1=6x ,解得x =−6,∴B(−1,−6),把A(2,3),B(−6,−1)代入y =kx +b {2k +b =3−6k +b =−1,解得{k =12b =2, ∴一次函数解析式为y =12x +2.【解析】(1)由于A 点的纵坐标为3,则利用反比例函数的解析式可求出点A 的坐标;(2)作BF ⊥x 轴于F ,如图,利用平行线分线段成比例可求出BF =1,则利用反比例函数解析式可确定B(−1,−6),然后利用待定系数法求一次函数解析式.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.25.【答案】③【解析】解:(1)①②缺乏代表性和广泛性,得到的数据也不准确,则③最合理 故答案为:③;(2)区B 公园的人数是:800÷40%−300−800−400−100=400(人),补图如下:(3)根据题意得:35000×400800÷40%=7000(人),答:估计全市初中学生最喜欢去体育公园的学生人数是7000人;(4)三个公园分别用A 、B 、C 表示,画图如下:共有9种等情况数,分别是AA ,AB ,AC ,BA ,BB ,BC ,CA ,CB ,CC ,其中甲、乙两名学生选择同一个公园的有2种, 则甲、乙两名学生选择同一个公园的概率是29. (1)为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性; (2)根据人民公园的人数和所占的百分比求出总人数,再用总人数减去其它公园的人数,即可求出体育公园的人数,从而补全统计图;(3)用总人数乘以最喜欢去体育公园的学生所占的百分比即可;(4)根据题意画出树状图得出所有等情况数,再找出甲、乙两名学生选择同一个公园的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比;此题也考查了统计图.26.【答案】(1)证明:∵AB 为⊙O 的直径,AB 过弦CE 的中点F ,∴AB ⊥CE ,∴∠BGF +∠B =90°,∵PD 为⊙O 的切线,∴∠PDG +∠ODB =90°,∵OB =OD ,∴∠ODB =∠B ,∴∠BGF =∠PDG ,∵∠PGD =∠BGF ,∴∠PDG =∠PGD ,∴PD =PG ;(2)解:连接DE ,由(1)得:PD =PG =6,∵CD 是⊙O 的直径,∴CD =2OC =8,∠DEC =90°,∴DE ⊥CP ,∵PD 为⊙O 的切线,∴PD ⊥CD ,∴PC =√CD 2+PD 2=√82+62=10,∵△CDP 的面积=12PC ×DE =12CD ×PD ,∴DE =CD×PDPC =8×610=245,∴CE =√CD 2−DE 2=√82−(245)2=325.【解析】(1)由垂径定理得出∠ADB =90°,AB ⊥CE ,证∠PDG =∠PGD ,即可得出PD =PG ;(2)连接DE ,由(1)得PD =PG =6,由勾股定理得出PC =10,由三角形面积得出DE =245,再由勾股定理即可得出答案.本题考查了切线的性质、圆周角定理、垂径定理、等腰三角形的性质、勾股定理等知识;熟练掌握切线的性质和垂径定理是解题的关键.27.【答案】解:(1)设购买电子白板的单价为x 万元,平板电脑的单价是y 万元, {2x +6y =93x +4y =11, 解得,{x =3y =0.5, 答:电子白板的单价是3万元,平板电脑的单价是0.5万元;(2)由题意可得,方案一:W =[3a +0.5(100−a)]×0.9=2.25a +45,方案二:W =3a +0.5(100−a −a)=2a +50,当2.25a +45<2a +50时,得a <20,即当6≤a <20时,选择方案一;当2.25a +45=2a +50时,得a =20,即当a =20时,方案一和方案二花费一样多;当2.25a +45>2a +50,得a >20,即当20<x ≤24时,选择方案二;答:方案一:W 关于a 的函数关系式是W =2.25a +45,方案二:W 关于a 的函数关系式是W =2a +50,当6≤a <20时,方案一更省钱,当a =20时,两种方案花费一样,当20<x ≤24时,方案二更省钱.【解析】(1)根据题意,可以列出相应的二元一次方程组,从而可以求得电子白板和平板电脑的单价各是多少万元;(2)根据题意,可以分别写出两种方案下,W 关于a 的函数关系式,再利用分类讨论的方法可以得到该校应选用哪种优惠方案购买更省钱.本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.28.【答案】解:(1)y =−√3x +2√3,令x =0,则y =2√3,令y =0,则x =2, 故点A 、B 的坐标分别为:(2,0)、(0,2√3),∵抛物线的顶点为点A(2,0),∴设抛物线的表达式为:y =a(x −2)2,将点B 的坐标代入上式得:2√3=a(0−2)2,解得:a =√32, 故抛物线的表达式为:y =√32(x −2)2=√32x 2−2√3x +2√3;(2)∵点A(2,0),则OA =2,∴△AOP 的面积=12×OA ×y P =12×2×y P =3√3,解得:y P =3√3,则y P =3√3=√32(x −2)2,解得:x =2±√6, 故点P 的坐标为:(2+√6,3√3)或(2−√6,3√3);(3)存在,理由:由题意得:t 秒时,点M 、N 的坐标分别为:(t,0)、(0,√3t),当y=√3t时,y=√3t=−√3x+2√3,解得:x=2−t,故点E(2−t,√3t),而点N(0,√3t),故NE=2−t,当四边形AMNE是菱形时,NE=MN,即t2+(√3t)2=(2−t)2,解得:t=23或−2(舍去−2),故t=23.【解析】(1)求出点A、B的坐标;因为抛物线的顶点为点A,所以设抛物线的表达式为:y=a(x−2)2,将点B的坐标代入上式,即可求解;(2)△AOP的面积=12×OA×y P=12×2×y P=3√3,解得:y P=3√3,即可求解;(3)t秒时,点M、N的坐标分别为:(t,0)、(0,√3t),则点E(2−t,√3t),而点N(0,√3t),故NE=2−t,当四边形AMNE是菱形时,NE=MN,即可求解.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、三角形面积的计算等,有一定的综合性,难度适中.。
西宁城区2019年高中招生考试数 学 试 卷考生注意:1.本试卷满分120分,考试时间120分钟。
2.本试卷为试题卷,不允许作为答题卷使用,答题部分请在答题卡上作答,否则 无效。
3.答题前,考生务必将自己的姓名、准考证号、考点、考场、座位号写在答题卡上,同时填写在试卷上。
4.选择题用2B 铅笔把答题卡上对应题目的答案标号涂黑(如需改动,用橡皮擦 干净后,再选涂其他答案标号)。
非选择题用0.5毫米的黑色签字笔答在答题 卡相应位置,字体工整,笔迹清楚。
作图必须用2B 铅笔作答,并请加黑加粗, 描写清楚。
第Ⅰ卷 (选择题 共30分)一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上) 1. 31-的相反数是 A .31B .3-C .3D .31-2.下列计算正确的是A .a a a 632=⋅B .()623a a =-C .a a a 326=÷D .()3362a a -=-3.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是A .cm 3,cm 4,cm 8B .cm 8,cm 7,cm 15C .cm 5,cm 5,cm 11D .cm 13,cm 12,cm 204.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是A B C D 5.下列几何体中,主视图和俯视图都为矩形的是ABCD6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健 步走的步数(单位:万步),将记录结果绘制成了如图1所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是 A .2.1,3.1B .4.1,3.1C .4.1,35.1D .3.1,3.17.将一张长方形纸片折叠成如图2所示的形状,则=∠ABC A .︒73B .︒56C .68︒D .︒146图1图2 图39.如图3,在ABC ∆中,︒=∠90B ,43tan =∠C ,cm AB 6=,动点P 从点A 开始沿边AB 向点B 以s cm 1的速度移动,动点Q 从点B 开始沿边BC 向点C 以s cm 2的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,在运动过程中,PBQ ∆的最大面积是 A .218cmB .212cmC .29cmD .23cm9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有A .103块B .104块C .105块D .106块 10.如图4,点A 的坐标为(0,1),点B 是x 轴正半轴上的一动点,以AB 为边作等腰直角ABC ∆,使︒=∠90BAC ,设点B 的横坐标为x ,点C 的纵坐标为y ,能表示y 与x 的函数关系的图象大致是图4 A B C D第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共10题,每题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上) 11.因式分解:a a 242+ = .12.青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近1.86万人.将1.86万用科学记数法表示为 . 13.若式子1+x 有意义,则x 的取值范围是 .14.若一个多边形的内角和是它的外角和的2倍,则这个多边形的边数是 .15.已知052=-+x x ,则代数式()()()()22312-++---x x x x x 的值为 .16.如图5,在菱形ABCD 中,E ,F 分别是AD ,BD 的中点,若2=EF ,则菱形ABCD的周长是 .图5图617.如图6,OP 平分AOB ∠,︒=∠15AOP ,PC ∥OA ,OA PD ⊥于点D ,4=PC则=PD .19.⊙O 的半径为1,弦2=AB ,弦3=AC ,则BAC ∠度数为 .19.如图7,为保护门源百里油菜花海,由“芬芳浴”游客中心A 处修建通往百米..观景长廊BC 的两条栈道AB ,AC .若︒=∠56B ,︒=∠45C ,则游客中心A 到观景长廊BC 的距离AD 的长约为 米.(sin560.8︒≈,tan56 1.5︒≈)图7图920.如图9,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且︒=∠45EDF .将DAE ∆绕点D 逆时针旋转︒90,得到DCM ∆.若1=AE ,则FM的长为 .三、解答题(本大题共9题,第21、22题每题7分,第23、24、25题每题9分,第26、27题每题10分,第29题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上) 21.(本题共7分)计算:012016)21(3127-+-+-.22.(本题共7分)化简:1221421222+-+÷-+-+x x x x x x x ,然后在不等式x ≤2的非负整数解中选择一个适当的数代入求值.23.(本题共9分)如图9,一次函数m x y +=的图像与反比例函数xky =的图象交于A ,B 两点, 且与x 轴交于点C ,点A 的坐标为(2,1). (1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<m x +≤xk的解集.图924.(本题共9分)如图10,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:CF AB =;(2)连接DE ,若AB AD 2=,求证:AF DE ⊥.图1025.(本题共9分)随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客 万人,扇形统计图中“青海湖”所对应的圆心角的度数是 ,并补全条形统计图;(2)预计2019年国庆节将有90万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个 景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果. 26.(本题共10分)如图11,D 为⊙O 上一点,点C 在直径BA 的延长线上,且CBD CDA ∠=∠. (1)求证:CD 是⊙O 的切线;(2)过点B 作⊙O 的切线交CD 的延长线于点E ,6=BC ,32=BD AD .求BE 的长.图11 27.(本题共10分)青海新闻网讯:2019年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资5.340万元,新建120个公共自行车站点、配置2205辆公共自行车. (1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2019年到2019年市政府配置公共自行车数量的年平均增长率.29.(本题共12分)如图12,在平面直角坐标系中,四边形ABCD 是以AB 为直径的⊙M 的内接四边形,点A ,B 在x 轴上,MBC ∆是边长为2的等边三角形,过点M 作直线l 与x 轴垂直,交⊙M 于点E ,垂足为点M ,且点D 平分 . (1)求过A ,B ,E 三点的抛物线的解析式; (2)求证:四边形AMCD 是菱形;(3)请问在抛物线上是否存在一点P ,使得ABP ∆的面积等于定值5?若存在,请求出所有的点P 的坐标;若不存在,请说明理由.图12西宁城区2019年高中招生考试数学试题参考答案一、选择题(本大题共10题,每题3分,共30分)1.A 2.B 3.D 4.D 5.B 6.B 7.A 9.C 9.C 10.A 二、填空题(本大题共10题,每题2分,共20分)11.()122+a a 12.51061.8⨯13.x ≥1- 14.615.2 16.1617.2 19.︒15或︒75 19.60 20.25三、解答题(本大题共9题,第21、22题每题7分,第23、24、25题每题9分,第26、27每题10分,第29题12分,共70分)21.解:原式=121333-+-+ =3422.解:原式=()()()()211122122+-⋅-++-+x x x x x x x =12212+--+x x x x =1222++-x x x=12+x∵不等式x ≤2的非负整数解是0,1,2答案不惟一,如: 把0=x 代入212=+x23.解:(1)由题意可得:点A (2,1)在函数m x y +=的图象上∴12=+m 即1-=m ∵A (2,1)在反比例函数xky =的图象上 ∴12=k∴2=k(2)∵一次函数解析式为1y x =-,令0y =,得1x = ∴点C 的坐标是(1,0)由图象可知不等式组0<m x +≤xk的解集为1<x ≤224.证明:(1)∵四边形ABCD 是平行四边形 ∴AB ∥DF (平行四边形两组对边分别平行) ∴F BAE ∠=∠(两直线平行,内错角相等) ∵E 是BC 中点 ∴CE BE = 在AEB ∆和FEC ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠EC BE FEC AEB FBAE ∴AEB ∆≌FEC ∆(AAS )∴CF AB =(全等三角形对应边相等) (2)∵四边形ABCD 是平行四边形 ∴AB CD =(平行四边形的对边相等)∵CF AB =,DF DC CF =+ ∴2DF CF = ∴AB DF 2=∵AB AD 2= ∴DF AD = ∵AEB ∆≌FEC ∆∴EF AE =(全等三角形对应边相等)∴AF ED ⊥ (等腰三角形三线合一) 25.解:(1)50,︒108,图形补全正确(2)6809.650⨯=(万人) 估计将有9.6万人会选择去贵德旅游.(3)设A ,B ,C 分别表示青海湖、塔尔寺、原子城.树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种. ∴P (同时选择去同一个景点)31=26.(1)证明:连结OD ∵OD OB =∴BDO OBD ∠=∠ ∵CBD CDA ∠=∠ ∴ODB CDA ∠=∠又∵AB 是O ⊙的直径∴90ADB ∠=︒(直径所对的圆周角是直角)∴︒=∠+∠90ODB ADO ∴︒=∠+∠90CDA ADO即︒=∠90CDO ∴CD OD ⊥ ∵OD 是O ⊙半径∴CD 是O ⊙的切线(经过半径外端并且垂直于这条半径的直线是圆的切线) (2)解:∵C C ∠=∠,CBD CDA ∠=∠∴CDA ∆∽CBD ∆∴BD ADBC CD =∵32=BD AD 6=BC ∴4=CD∵CE ,BE 是O ⊙的切线 ∴DE BE = BC BE ⊥∴222EC BC BE =+ 即()22264BE BE +=+解得25=BE27.解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得⎩⎨⎧=+=+5.340220512011272040y x y x解得:⎩⎨⎧==1.01y x答:每个站点造价为1万元,自行车单价为1.0万元.(2)设2019年到2019年市政府配置公共自行车数量的年平均增长率为a .根据题意可得:()220517202=+a解此方程:()14444112=+a 12211±=+a 即:%75431==a ,12332-=a (不符合题意,舍去)EODA答:2019年到2019年市政府配置公共自行车数量的年平均增长率为%75. 29.解:(1)由题意可知MBC ∆为等边三角形 点A ,B ,C ,E 均在⊙M 上∴2====ME MC MB MA又∵MB CO ⊥ ∴1==BO MO ∴A (3-,0),B (1,0),E (1-,2-) 抛物线顶点E 的坐标为(1-,2-) 设函数解析式为()212-+=x a y (0≠a )把点B (1,0)代入()212-+=x a y解得:21=a ∴二次函数解析式为 ()21212-+=x y (2)连接DM ,∵MBC ∆为等边三角形 ∴︒=∠60CMB ∴︒=∠120AMC∵点D 平分弧AC ∴︒=∠=∠=∠6021AMC CMD AMD ∵MA MC MD ==∴MCD ∆,MDA ∆是等边三角形 ∴AD MA CM DC ===∴四边形AMCD 为菱形(四条边都相等的四边形是菱形)(3)存在. 理由如下:设点P 的坐标为(m ,n ) ∵12ABP S AB n ∆=g ,4=AB ∴5421=⨯⨯n 即52=n 解得25±=n当25=n 时,()2521212=-+m解此方程得:21=m ,42-=m即点P 的坐标为(2,25),(4-,25) 当25-=n 时,()2521212-=-+m此方程无解∴所求点P 坐标为(2,25),(4-,25)(注:每题只给出一种解法,如有不同解法请参照评分标准给分)。
2019年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)5的绝对值是;278的立方根是.2.(4分)分解因式:269ma ma m;分式方程323x x的解为.3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为米.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为.5.(2分)如图,P是反比例函数kyx图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.6.(2分)如图,在直角坐标系中,已知点(3,2)A,将ABO绕点O逆时针方向旋转180后得到CDO,则点C的坐标是.7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:4AM米,8AB米,45MAD,30MBC,则CD的长为米.(结果保留根号)8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有个菱形,第n个图中共有个菱形.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30角的三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A.15B.22.5C.30D.4515.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g 16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()每周做家务的时间()h01 1.52 2.53 3.54人数(人)2268121343 A.2.5和2.5B.2.25和3C.2.5和3D.10和13 17.(3分)如图,小莉从A点出发,沿直线前进10米后左转20,再沿直线前进10米,又向左转20,,照这样走下去,她第一次回到出发点A时,一共走的路程是()A.150米B.160米C.180米D.200米18.(3分)如图,////AD BE CF,直线1l、2l与这三条平行线分别交于点A、B、C和点D、E、F.已知1AB,3BC, 1.2DE,则DF的长为()A.3.6B.4.8C.5D.5,219.(3分)如图,在扇形AOB中,AC为弦,140AOB,60CAO,6OA,则BC 的长为()A.43B.83C.23D.220.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A .B .C .D .三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:011(491)()|21|2cos45322.(5分)化简求值:2321(2)22mm m m m ;其中21m 23.(8分)如图,在ABC 中,90BAC,D 是BC 的中点,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于点F ,连接CF .(1)求证:AEF DEB ;(2)证明四边形ADCF 是菱形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?25.(8分)如图,在O 中,点C 、D 分别是半径OB 、弦AB 的中点,过点A 作AECD于点E .(1)求证:AE是O的切线;(2)若2AE,2sin3ADE,求O的半径.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数105(1)本次随机抽取献血者人数为人,图中m;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则2222221[()]42a b cS a b①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2ab cp(周长的一半),则()()()Sp pa pb pc ②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①②或者②①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC 的内切圆半径为r ,三角形三边长为a ,b ,c ,仍记2ab cp,S 为三角形面积,则Spr .28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点(1,0)A 、(5,0)B 、(0,4)C 三点.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PAPC 的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由(请在图2中探索)2019年青海省中考数学试卷答案与解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)【分析】分别根据绝对值的定义、立方根的定义即可求解.【解答】解:5的绝对值是5;27 8的立方根是32.故答案为:5,32.【点评】此题主要考查了实数的定义及有关性质,要求学生熟悉立方根、绝对值的相关概念和性质.2.(4分)【分析】原式提取公因式,再利用完全平方公式分解即可;分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原式22(69)(3)m a a m a;去分母得:326x x,解得:6x,经检验6x是分式方程的解.故答案为:2(3)m a;6x【点评】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.3.(2分).【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10na,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:90.000000006610.故答案为:9610【点评】本题考查用科学记数法表示较小的数,一般形式为10na,其中1||10a,,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2分).【分析】设平均每次降价的百分比是x,则第一次降价后的价格为60(1)x元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60(1)(1)x x元,从而列出方程,然后求解即可.【解答】解:设平均每次降价的百分比是x,根据题意得:260(1)48.6x,解得:10.110%x,21.9x(不合题意,舍去),答:平均每次降价的百分比是10%;故答案为:10%.【点评】本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为2(1)a x b.5.(2分)【分析】根据反比例函数系数k的几何意义可知,PAO的面积1||2k,再根据图象所在象限求出k的值即可.【解答】解:依据比例系数k的几何意义可得,PAO面积等于1||2k,即1||1 2k,12k,由于函数图象位于第一、三象限,则12 k,故答案为:12.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于||k.该知识点是中考的重要考点,同学们应高度关注.6.(2分)【分析】根据中心对称的性质解决问题即可.【解答】解:由题意A,C关于原点对称,(3,2)A,(3,2)C,股本答案为(3,2).【点评】本题考查中心对称,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2分)【分析】在Rt CMB中求出CM,在Rt ADM中求出DM即可解决问题.【解答】解:在Rt CMB中,90CMB,12MB AM AB米,30MBC,3tan3012433CM MB,在Rt ADM中,90AMD,45MAD,45MAD MDA,4MD AM米,(434)CD CM DM米,故答案为:434.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题中考常考题型.8.(2分).【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【解答】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,所以第10次摸出红珠子的概率是31 124.故答案是:14.【点评】本题考查了概率的意义,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.9.(2分)【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图;AM 、BN 都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BCBN,杠杆的动力臂AC 与阻力臂BC 之比为5:1,51AM BN,即5AMBN ;当10BN cm …时,50AM cm …;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为:50.【点评】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.10.(2分)【分析】由题意输入1x然后平方得2x ,然后再3小于0,乘以13,可得y 的值.【解答】解:当1x 时,23130x ,(13)(13)132y,故答案为:2.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.11.(2分)【分析】直接利用正方形的性质结合转化思想得出阴影部分面积CEBS,进而得出答案.【解答】解:如图所示:连接BE ,可得,AE BE,90AEB,且阴影部分面积111221 244CEB ABC ABCDS S S正方形故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.12.(4分)【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n个图形中的菱形的个数的表达式;【解答】解:(1)第1个图形有菱形1个,第2个图形有菱形413个,第3个图形有菱形7132个,第4个图形有菱形10133个,,第n个图形有菱形13(1)(32)n n个,当5n时,3213n,故答案为:13,(32)n.【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.【分析】利用从上面看到的图叫做俯视图判断即可.【解答】解:A、俯视图为矩形;B、俯视图为圆(带有圆心);C、俯视图为圆;D、俯视图为三角形;故选:D.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30角的三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A.15B.22.5C.30D.45AB b,所以12,3430,AB a,利用平行线的性质得//【分析】过A点作//加上2345,易得115.AB a,【解答】解:如图,过A点作//12,a b,//AB b,//3430,而2345,215,115.故选:A.【点评】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A .10g ,40gB .15g ,35gC .20g ,30gD .30g ,20g【分析】根据图可得:3块巧克力的重2个果冻的重;1块巧克力的重1个果冻的重50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x 克,每个果冻的重y 克,由题意得:3250x y xy ,解得:2030x y .故选:C .【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()每周做家务的时间()h 01 1.52 2.53 3.54人数(人)2268121343A .2.5和2.5B .2.25和3C .2.5和3D .10和13【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,第25个,第26个数都是 2.5,故中位数是2.5;数据3小时出现了13次最多为众数.故选:C .【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.(3分)如图,小莉从A 点出发,沿直线前进10米后左转20,再沿直线前进10米,又向左转20,,照这样走下去,她第一次回到出发点A 时,一共走的路程是()A .150米B .160米C .180米D .200米【分析】多边形的外角和为360,每一个外角都为20,依此可求边数,再求多边形的周长.【解答】解:多边形的外角和为360,而每一个外角为20,多边形的边数为3602018,小莉一共走了:1810180(米).故选:C .【点评】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题关键.18.(3分)如图,////AD BE CF ,直线1l 、2l 与这三条平行线分别交于点A 、B 、C 和点D 、E 、F .已知1AB ,3BC, 1.2DE,则DF 的长为()A .3.6B .4.8C .5D .5,2【分析】根据平行线分线段成比例定理即可解决问题.【解答】解:////AD BE CF ,AB DE BC EF,即1 1.23EF,3.6EF , 3.61.24.8DFEFDE,故选:B .【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(3分)如图,在扇形AOB 中,AC 为弦,140AOB,60CAO,6OA ,则BC的长为()A .43B .83C .23D .2【分析】连接OC ,根据等边三角形的性质得到80BOC,根据弧长公式计算即可.【解答】解:连接OC ,OAOC ,60CAO,AOC 为等边三角形,60AOC ,1406080BOC AOB AOC ,则BC 的长80681803,故选:B .【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n r l是解题的关键.20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x ,水位高度变量为y ,下列图象中最符合故事情景的大致图象是()A .B .C .D .【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.【解答】解:乌鸦在沉思的这段时间内水位没有变化,排除C ,乌鸦衔来一个个小石子放入瓶中,水位将会上升,排除A ,乌鸦喝水后的水位应不低于一开始的水位,排除B ,D 正确.故选:D .【点评】本题考查动点问题的函数图象问题.注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:011(491)()|21|2cos453【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式2132122132123.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)化简求值:2321(2)22mm m m m ;其中21m【分析】先化简分式,然后将m 的值代入求值.【解答】解:原式2234(1)()222m m m m m 2(1)(1)22(1)m m mm m 11mm ,当21m 时,原式21121211.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.23.(8分)如图,在ABC 中,90BAC,D 是BC 的中点,E 是AD 的中点,过点A 作//AF BC 交BE 的延长线于点F ,连接CF .(1)求证:AEFDEB ;(2)证明四边形ADCF 是菱形.【分析】(1)由“AAS ”可证AFE DBE ;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF 是平行四边形,由直角三角形的性质可得ADCD ,即可得四边形ADCF 是菱形.【解答】证明:(1)//AF BC ,AFE DBEABC 是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,AEDE ,BDCD在AFE 和DBE 中,AFE DBE AEFBED AE DE,()AFEDBE AAS (2)由(1)知,AF BD ,且BD CD ,AF CD,且//AF BC,四边形ADCF是平行四边形90BAC,D是BC的中点,12AD BC CD,四边形ADCF是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD CD是本题的关系.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?【分析】(1)设安排x辆大型车,则安排(30)x辆中型车,根据30辆车调拨不超过190吨蔬菜和162吨肉制品补充当地市场,即可得出关于x的一元一次不等式组,解之即可得出x 的取值范围,结合x为整数即可得出各运输方案;(2)根据总运费单辆车所需费用租车辆车可分别求出三种租车方案所需费用,比较后即可得出结论.【解答】解:(1)设安排x辆大型车,则安排(30)x辆中型车,依题意,得:83(30)190 56(30)162x xx x,,,解得:1820x剟.x为整数,18x,19,20.符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(2)方案1所需费用为:900186001223400(元),方案2所需费用为:900196001123700(元),方案3所需费用为:900206001024000(元).234002370024000,方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.25.(8分)如图,在O 中,点C 、D 分别是半径OB 、弦AB 的中点,过点A 作AECD于点E .(1)求证:AE 是O 的切线;(2)若2AE,2sin3ADE,求O 的半径.【分析】(1)连接OA ,如图,利用AOB 的中位线得到//CD OA .则可判断AO AE ,即可证得结论;(2)连接OD ,如图,利用垂径定理得到OD AB ,再在Rt AED 中利用正弦定义计算出3AD ,接着证明OADADE .从而在Rt OAD 中有2sin3OAD,设2ODx ,则3OA x ,利用勾股定理可计算出5ADx ,从而得到53x,然后解方程求出x 即可得到O 的半径长.【解答】(1)证明:连接OA ,如图,点C 、D 分别是半径OB 、弦AB 的中点,//DC OA ,即//EC OA ,AE CD ,AEAO ,AE 是O 的切线;(2)解:连接OD ,如图,AD CD ,ODAB ,90 ODA,在Rt AED中,2 sin3AEADEAD,3AD,//CD OA,OAD ADE.在Rt OAD中,2 sin3OAD,设2OD x,则3OA x,22(3)(2)5 AD x x x,即53x,解得355x,9535OA x,即O的半径长为955.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定和性质,勾股定理的应用以及解直角三角形,熟练掌握性质定理是解题的关键.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表血型A B AB O人数12105(1)本次随机抽取献血者人数为人,图中m;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;(4)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为510%50(人),所以101002050m;故答案为50,20;(2)O型献血的人数为46%5023(人),A型献血的人数为501052312(人),血型A B AB O人数1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率1265025,6130031225,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以21126O P 两个型.【点评】本题考查了概率公式:随机事件A 的概率P (A )事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a ,b ,c 为三角形三边,S 为面积,则2222221[()]42abcSa b ①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2ab cp(周长的一半),则()()()Sp pa pb pc ②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①②或者②①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC 的内切圆半径为r ,三角形三边长为a ,b ,c ,仍记2ab cp,S 为三角形面积,则Spr .【分析】(1)由公式①得:2222221578[57()]10342S,由②得:578102p,10(105)(107)(108)103S ;(2)求出2pab c ,把①中根号内的式子可化为:222222111()()()()()()2(22)(22)(22)()()()4221616abcabcababa bc abc cab cab p pc p b pa p pa pb pc ,即可得出结论;(3)连接OA 、OB 、OC ,AOBAOCBOC SSSS ,由三角形面积公式即可得出结论.【解答】解:(1)由①得:2222221578[57()]10342S,由②得:578102p ,10(105)(107)(108)103S;(2)公式①和②等价;推导过程如下:2ab c p ,2pab c ,①中根号内的式子可化为:2222221()()422ab cab cab ab2222221(2)(2)16ab abc abab c 22221[()][()]16a b c ca b 1()()()()16abc a bc cab ca b 12(22)(22)(22)16p pc p b p a ()()()p p a pb pc ,2222221[()]()()()42ab ca b p p a p b pc ;(3)连接OA 、OB 、OC ,如图所示:111()2222AOBAOCBOCa b cSSSSrcrbra rpr .【点评】本题考查了三角形的内切圆、数学常识以及三角形面积公式;熟练掌握三角形面积的计算方法是解题的关键.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点(1,0)A 、(5,0)B 、(0,4)C 三点.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PAPC 的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由(请在图2中探索)【分析】(1)将点A 、B 的坐标代入二次函数表达式得:2(1)(5)(65)ya x xa xx ,即可求解;(2)连接B 、C 交对称轴于点P ,此时PA PC 的值为最小,即可求解;(3)512EEOEBFS OBy y 四边形,则125Ey ,将该坐标代入二次函数表达式即可求解.【解答】解:(1)将点A 、B 的坐标代入二次函数表达式得:2(1)(5)(65)ya x xa xx ,则54a,解得:45a,抛物线的表达式为:224424(65)4555y xx xx ,函数的对称轴为:3x,顶点坐标为16(3,)5;(2)连接B 、C 交对称轴于点P ,此时PA PC 的值为最小,将点B 、C 的坐标代入一次函数表达式:y kx b 得:054k bb,解得:454k b,直线BC 的表达式为:445yx,当3x时,85y,故点8(3,)5P ;(3)存在,理由:四边形OEBF 是以OB 为对角线且面积为12的平行四边形,则512EEOEBF S OB y y 四边形,则125E y ,将该坐标代入二次函数表达式得:2412(65)55yxx ,解得:37x,故点E 的坐标为(37,12)5或(37,12)5.【点评】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(2),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法。
2019年初中毕业升学考试(青海西宁卷)数学【含答案及解析】2019年初中毕业升学考试(青海西宁卷)数学【含答案及解析】姓名___________ 班级____________ 分数__________⼀、选择题1. ﹣的相反数是()A. B.﹣3 C.3 D.﹣2. 下列计算正确的是()A.2a?3a=6a B.(﹣a3)2=a6 C.6a÷2a=3a D.(﹣2a)3=﹣6a33. 下列每组数分别是三根⽊棒的长度,能⽤它们摆成三⾓形的是()A.3cm,4cm,8cmB.8cm,7cm,15cmC.5cm,5cm,11cmD.13cm,12cm,20cm4. 在⼀些汉字的美术字中,有的是轴对称图形.下⾯四个美术字中可以看作轴对称图形的是()A. B. C. D.5. 下列⼏何体中,主视图和俯视图都为矩形的是()A. B. C. D.⼆、单选题6. 某健步⾛运动的爱好者⽤⼿机软件记录了某个⽉(30天)每天健步⾛的步数(单位:万步),将记录结果绘制成了如图所⽰的统计图.在每天所⾛的步数这组数据中,众数和中位数分别是()A. 1.2,1.3B. 1.3,1.3C. 1.4,1.35D. 1.4,1.3三、选择题7. 将⼀张长⽅形纸⽚折叠成如图所⽰的形状,则∠ABC=()A.73° B.56° C.68° D.146°8. 如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q两点分别从A,B两点同时出发,在运动过程中,△PBQ的最⼤⾯积是()A.18cm2 B.12cm2 C.9cm2 D.3cm2四、单选题9. 某经销商销售⼀批电话⼿表,第⼀个⽉以550元/块的价格售出60块,第⼆个⽉起降价,以500元/块的价格将这批电话⼿表全部售出,销售总额超过了5.5万元.这批电话⼿表⾄少有()A. 103块B. 104块C. 105块D. 106块五、选择题10. 如图,点A的坐标为(0,1),点B是x轴正半轴上的⼀动点,以AB为边作等腰直⾓△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表⽰y与x的函数关系的图象⼤致是()A. B. C.D.六、填空题11. 因式分【解析】 4a2+2a= .12. 青海⽇报讯:⼗五年免费教育政策已覆盖我省所有贫困家庭,⾸批惠及学⽣近86.1万⼈.将86.1万⽤科学记数法表⽰为.13. 使式⼦有意义的x取值范围是.14. ⼀个多边形的内⾓和是外⾓和的2倍,则这个多边形的边数为.15. 已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为.16. 如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是.17. 如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD= .18. ⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.19. 如图,为保护门源百⾥油菜花海,由“芬芳浴”游客中⼼A处修建通往百⽶观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中⼼A到观景长廊BC的距离AD 的长约为⽶.(sin56°≈0.8,tan56°≈1.5)20. 如图,已知正⽅形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.七、计算题21. 计算:⼋、解答题22. 化简:,然后在不等式x≤2的⾮负整数解中选择⼀个适当的数代⼊求值.23. 如图,⼀次函数y=x+m的图象与反⽐例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.24. 如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25. 随着我省“⼤美青海,美丽夏都”影响⼒的扩⼤,越来越多的游客慕名⽽来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客万⼈,扇形统计图中“青海湖”所对应的圆⼼⾓的度数是,并补全条形统计图;(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万⼈会选择去贵德旅游?(3)甲⼄两个旅⾏团在青海湖、塔尔寺、原⼦城三个景点中,同时选择去同⼀个景点的概率是多少?请⽤画树状图或列表法加以说明,并列举所有等可能的结果.26. 如图,D为⊙O上⼀点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.27. 青海新闻⽹讯:2016年2⽉21⽇,西宁市⾸条绿道免费公共⾃⾏车租赁系统正式启⽤.市政府今年投资了112万元,建成40个公共⾃⾏车站点、配置720辆公共⾃⾏车.今后将逐年增加投资,⽤于建设新站点、配置公共⾃⾏车.预计2018年将投资340.5万元,新建120个公共⾃⾏车站点、配置2205辆公共⾃⾏车.(1)请问每个站点的造价和公共⾃⾏车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共⾃⾏车数量的年平均增长率.28. 如图,在平⾯直⾓坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三⾓形,过点M作直线l与x轴垂直,交⊙M于点E,垂⾜为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在⼀点P,使得△ABP的⾯积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。
2019年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1. 5-的绝对值是_____;278的立方根是_____. 【答案】 (1). 5 (2).32. 【解析】【分析】分别根据绝对值的定义、立方根的定义即可求解.【详解】解:5-的绝对值是5;278的立方根是32. 故答案为5,32. 【点睛】本题考查实数的定义及有关性质,要求学生熟悉立方根、绝对值的相关概念和性质.2. 分解因式:269ma ma m +-=_____;分式方程323x x=-的解为_____. 【答案】 (1). 2(3)m a -; (2). 6x =-【解析】【分析】原式提取公因式,再利用完全平方公式分解即可;分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:原式22693m a a m a +--=()=(); 323x x=- 去分母得:326x x -=,解得:6x =-,经检验6x =-是分式方程的解.故答案为23m a -();6x =- 【点睛】本题考查解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解题的关键. 3. 世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为_____米.【答案】9610⨯﹣【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a ⨯﹣,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:90.000000006610⨯﹣=.故答案为9610⨯﹣【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a ⨯﹣,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为_____.【答案】10%.【解析】【分析】设平均每次降价的百分比是x ,则第一次降价后的价格为601x ⨯-()元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为6011x x ⨯-⨯-()()元,从而列出方程,然后求解即可. 【详解】解:设平均每次降价的百分比是x ,根据题意得:260148.6x -()=,解得:120.110% 1.9x x ==,=(不合题意,舍去),答:平均每次降价的百分比是10%;故答案为10%.【点睛】本题考查一元二次方程的应用,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为21a x b ±()=.5. 如图,P 是反比例函数k y x=图象上的一点,过点P 向x 轴作垂线交于点A ,连接OP .若图中阴影部分的面积是1,则此反比例函数的解析式为_____.【答案】2y x =. 【解析】 【分析】 根据反比例函数系数k 的几何意义可知,PAO 的面积12k =,再根据图象所在象限求出k 的值即可. 【详解】解:依据比例系数k 的几何意义可得, PAO 面积等于12k , 即112k =, 2k ±=,由于函数图象位于第一、三象限,则2k =,∴反比例函数的解析式为2y x=; 故答案为2y x=. 【点睛】本题考查反比例系数k 的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于k .6. 如图,在直角坐标系中,已知点2(3)A ,,将ABO 绕点O 逆时针方向旋转180︒后得到CDO ,则点C 的坐标是_____.【答案】32)(﹣,﹣.【解析】【分析】根据中心对称的性质解决问题即可.【详解】解:由题意A C,关于原点对称,32A(,),32C (﹣,﹣),故本答案为:32(﹣,﹣).【点睛】本题考查中心对称,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为_______米(结果保留根号).【答案】3 4【解析】【分析】分析:利用特殊三角函数值,解直角三角形,AM=MD,再用正切函数,利用MB求CM,作差可求DC.【详解】因为∠MAD=45°, AM=4,所以MD=4,因为AB=8,所以MB=12,因为∠MBC=30°,所以CM=MB tan30°3所以CD3-4.【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的相关定义以及变形是解题的关键.8. 一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是_____.【答案】14.【解析】【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【详解】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,所以第10次摸出红珠子的概率是31124=. 故答案是:14. 【点睛】本题考查概率的意义,解题的关键是熟练掌握概率公式.9. 如图是用杠杆撬石头的示意图,C 是支点,当用力压杠杆的A 端时,杠杆绕C 点转动,另一端B 向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B 端必须向上翘起10cm ,已知杠杆的动力臂AC 与阻力臂BC 之比为51:,要使这块石头滚动,至少要将杠杆的A 端向下压_____cm .【答案】50.【解析】【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A 向下压的长度.【详解】解:如图;AM BN 、都与水平线垂直,即//AM BN ;易知:ACM BCN ∽;AC AM BC BN∴=, 杠杆的动力臂AC 与阻力臂BC 之比为51:,51AM BN ∴=,即5AM BN =; ∴当10BN cm ≥时,50AM cm ≥;故要使这块石头滚动,至少要将杠杆的端点A 向下压50cm .故答案为50.【点睛】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键. 10. 根据如图所示的程序,计算y 的值,若输入x 的值是1时,则输出的y 值等于_____.【答案】−2【解析】【分析】由题意输入x =1然后平方得x 2,然后再-3小于0,乘以1+3,可得y 的值.【详解】解:当x =1时,x 2−3=1−3<0,∴y =(1−3)(1+3)=1−3=−2,故答案为−2.【点睛】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型. 11. 如图在正方形ABCD 中,点E 是以AB 为直径的半圆与对角线AC 的交点,若圆的半径等于1,则图中阴影部分的面积为_____.【答案】1.【解析】【分析】直接利用正方形的性质结合转化思想得出阴影部分面积CEB S= ,进而得出答案.【详解】如图所示:连接BE ,可得,AE BE =,90AEB ∠︒=, 且阴影部分面积111221244CEB ABC ABCD SS S ⨯⨯正方形===== 故答案为1【点睛】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形. 12. 如图,将图1中的菱形剪开得到图,图2中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有_____个菱形……,第n 个图中共有_____个菱形.【答案】 (1). 13, (2). 32)n(﹣ 【解析】【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n 个图形中的菱形的个数的表达式.【详解】解:(1)第1个图形有菱形1个,第2个图形有菱形413+=个,第3个图形有菱形7132+⨯=个,第4个图形有菱形10133+⨯=个,…,第n 个图形有菱形()()13132nn +-﹣= 个, 当5n =时,32=13n - ,故答案为1332n -,(). 【点睛】本题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13. 下面的几何体中,主(正)视图为三角形的是【 】A. B. C. D.【答案】C【解析】【分析】【详解】解:圆柱的主视图是矩形,正方体的主视图是正方形,圆锥的主视图是三角形,三棱柱的主视图是宽相等两个相连的矩形.故选C.14. 将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A.15°B. 22.5°C. 30°D. 45°【答案】A 【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.15. (2011四川泸州,6,2分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A. 10g ,40gB. 15g ,35gC. 20g ,30gD. 30g ,20g【答案】C【解析】 考点:二元一次方程组的应用.分析:根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.解答:解:设每块巧克力的重x 克,每个果冻的重y 克,由题意得:, 解得:.故选C .点评:此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组. 16. 为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为( )每周做家务的时间()h 01 1.52 2.53 3.54 人数(人)2 2 6 8 12 134 3A. 2.5和2.5B. 2.25和3C. 2.5和3D. 10和13【答案】C【解析】【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:表中数据为从小到大排列,第25个,第26个数都是2.5,故中位数是2.5;数据3小时出现了13次最多为众数.故选C .【点睛】本题属于基础题,考查确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17. 如图所示,小华从A 点出发,沿直线前进10米后左转20,再沿直线前进10米,又向左转20, ,照这样走下去,他第一次回到出发地A 点时,一共走的路程是( )A. 200米B. 180米C. 160米D. 140米【答案】B【解析】【分析】多边形的外角和为360°每一个外角都为20°,依此可求边数,再求多边形的周长.【详解】∵多边形的外角和为360°,而每一个外角为20°, ∴多边形的边数为360°÷20°=18, ∴小华一共走了:18×10=180米. 故选B .【点睛】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题的关键.18. 如图,////AD BE CF ,直线12l l 、与这三条平行线分别交于点、、A B C 和点D E F 、、.已知AB =1,BC =3,DE =1.2,则DF 的长为( )A. 3.6B. 4.8C. 5D. 5.2【答案】B 【解析】 【分析】根据平行线分线段成比例定理即可解决问题. 【详解】解:////AD BE CF ,AB DEBC EF ∴=,即1 1.23EF=, 3.6EF ∴=,3.6 1.24.8DF EF DE ∴++===,故选B .【点睛】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19. 如图,在扇形AOB 中,AC 为弦,140AOB ∠︒=,60CAO ∠︒=,6OA =,则BC 的长为( )A.43πB.83π C. 23πD. 2π【答案】B 【解析】 【分析】连接OC ,根据等边三角形的性质得到80BOC ∠︒=,根据弧长公式计算即可. 【详解】连接OC ,60OA OC CAO ∠︒=,=,AOC ∴为等边三角形,60AOC ∴∠︒=,1406080BOC AOB AOC ∴∠∠-∠︒-︒︒===,则BC 的长80681803ππ⨯==, 故选B .【点睛】本题考查弧长的计算,等边三角形的判定和性质,掌握弧长公式:180n rl π=是解题的关键. 20. 大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x ,水位高度变量为y ,下列图象中最符合故事情景的大致图象是( )A. B. C. D.【答案】D 【解析】 【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断. 【详解】解:乌鸦在沉思的这段时间内水位没有变化,∴排除C ,乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A ,乌鸦喝水后的水位应不低于一开始的水位,∴排除B , ∴ D 正确.故选D .【点睛】本题考查动点问题的函数图象问题.注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21. 计算:)11491212453cos -⎛⎫+--︒ ⎪⎝⎭【答案】3-. 【解析】 【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.【详解】解:原式13122-+-⨯=131-=3=-.故答案为3-.【点睛】本题考查实数运算,正确化简各数是解题关键.22. 先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m【答案】11m m +-,. 【解析】 【分析】先把括号里通分化简,再把除法转化为乘法约分化简,然后把m +1代入化简的结果中计算即可.【详解】原式=(23422m m m -+++)÷2(1)2m m -+ =2(1)(1)22(1)m m m m m +-+⋅+-=11m m +-,当m 时,1.【点睛】本题考查了分式的化简求值,以及二次根式的除法,熟练掌握运算法则是解答本题的关键. 23. 在Rt ABC ∆中,90BAC ∠=︒,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F ,连接CF .(1)求证:AF BD =. (2)求证:四边形ADCF是菱形.【答案】(1)见解析;(2) 见解析 【解析】 【分析】(1)根据已知条件易证AFE DBE ∆≅∆,利用全等三角形的性质即可证得结论;(2)根据(1)的结论,结合已知条件证得AF CD =,利用一组对边平行且相等的四边形为平行四边形,证得四边形ADCF 是平行四边形,再利用直角三角形斜边的中线等于斜边的一半证得12AD BC DC ==,由一组邻边相等的平行四边形为菱形即可判定四边形ADCF 是菱形. 【详解】(1)证明:如图,//AF BC ,AFE DBE ∴∠=∠,ABC ∆是直角三角形,AD 是BC 边上的中线,E 是AD 的中点,AE DE ∴=,BD CD =,在AFE ∆和DBE ∆中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFE DBE ∴∆≅∆; AF BD ∴=.(2)由(1)知,AF BD =BD CD =, AF CD ∴=,//AF BC ,∴四边形ADCF 是平行四边形,90BAC ∠=︒,D 是BC 的中点,12AD BC DC ∴==, ∴四边形ADCF 是菱形.【点睛】本题考查全等三角形的判定与性质、平行四边形的判定、菱形的判定及直角三角形斜边的中线等于斜边的一半的性质,熟练运用相关知识是解决问题的关键.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24. 某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨. (1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明()1中哪种运输方案费用最低?最低费用是多少元?【答案】(1)符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车;(2)方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元. 【解析】 【分析】1()设安排x 辆大型车,则安排30x (﹣)辆中型车,根据30辆车调拨不超过190吨蔬菜和162吨肉制品补充当地市场,即可得出关于x 的一元一次不等式组,解之即可得出x 的取值范围,结合x 为整数即可得出各运输方案;2()根据总运费=单辆车所需费用⨯租车辆车可分别求出三种租车方案所需费用,比较后即可得出结论. 【详解】解:(1)设安排x 辆大型车,则安排30x (﹣)辆中型车, 依题意,得:()()8330190,5630162x x x x ⎧+-≤⎪⎨+-≤⎪⎩解得:1820x ≤≤.x 为整数,181920x ∴=,,.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车. 2()方案1所需费用为:900186001223400⨯+⨯=(元), 方案2所需费用为:900196001123700⨯+⨯=(元), 方案3所需费用为:900206001024000⨯+⨯=(元).234002370024000<<,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.答:(1)符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车;(2)方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.【点睛】本题考查一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键. 25. 如图,在O 中,点C D 、分别是半径OB 、弦AB 的中点,过点A 作AE CD ⊥于点E .(1)求证:AE 是O 的切线;(2)若2AE =,23sin ADE ∠=,求O 的半径.【答案】(1)见解析;(2)O 的半径长为955. 【解析】 【分析】1()连接OA ,如图,利用AOB 的中位线得到//CD OA .则可判断AO AE ⊥,即可证得结论;2()连接OD ,如图,利用垂径定理得到⊥OD AB ,再在Rt AED △中利用正弦定义计算出3AD =,接着证明OAD ADE ∠∠=.从而在Rt OAD 中有23sin OAD ∠=,设2OD x =,则3OA x =,利用勾股定理可计算出5AD x =53x =,然后解方程求出x 即可得到O 的半径长.【详解】1()连接OA ,如图,点C D 、分别是半径OB 、弦AB 的中点,//DC OA ,即//EC OA ,AE CD ⊥,AE AO ∴⊥, AE ∴是O 的切线;2()连接OD ,如图,AD CD =, OD AB ∴⊥, 90ODA ∴∠︒=,在Rt AED △中,23AE sin ADE AD ∠==, 3AD ∴=, //CD OA , OAD ADE ∴∠∠=.在Rt OAD 中,23sin OAD ∠=, 设2OD x =,则3OA x =,()()22325AD x x x ∴-==,53x =,解得35x =535OA x ∴==, 即O 的半径长为55. 【点睛】本题考查等腰三角形的性质,平行线的判定和性质,切线的判定和性质,勾股定理的应用以及解直角三角形,熟练掌握性质定理是解题的关键.26. “只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A 、B 、AB 、O ”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图): 血型统计表血型 ABAB O 人数105(1)本次随机抽取献血者人数为 人,图中m = ; (2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A 型血?(4)现有4个自愿献血者,2人为O 型,1人为A 型,1人为B 型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O 型的概率.【答案】(1)50,20;(2)12,23;(3)312;(4)16. 【解析】 【分析】(1)用AB 型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m 的值; (2)先计算出O 型的人数,再计算出A 型人数,从而可补全上表中的数据;(3)用样本中A 型的人数除以50得到血型是A 型的概率,然后用3000乘以此概率可估计这3000人中是A 型血的人数;(4)画出树状图,根据概率公式即可得到结果.【详解】解:(1)这次随机抽取的献血者人数为5÷10%=50(人), 所以m =1050×100=20; 故答案为50,20;(2)O 型献血的人数为46%×50=23(人), A 型献血的人数为50﹣10﹣5﹣23=12(人), 血型 AB AB O 人数 1210523故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A 型的概率=1250=625,1300×625=312,估计这1300人中大约有312人是A 型血;(4)画树状图如图所示,所以P (两个O 型)=212=16. 【点睛】本题考查了树状图求概率,随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.也考查了统计图.五、(本大题共2小题,第27题10分,第28题12分,共22分)27. 我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a b c ,,为三角形三边,S 为面积,则222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦①,这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设2a b cp ++=(周长的一半),则()()()S p p a p b p c ---=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以578,,为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从⇒①②或者⇒②①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,ABC 的内切圆半径为r ,三角形三边长为a b c ,,,仍记2a b cp ++=,S 为三角形面积,则S pr =. 【答案】(1)103S =(2)公式①和②等价;推导过程见解析;(3)见解析.【解析】 【分析】1()分别将5,7,8代入两个公式计算验证即可;2()求出2p a b c ++=,把①中根号内的式子可化为:2222221142216a b c a b c ab ab ⎛⎫⎛⎫+-+-+- ⎪⎪⎝⎭⎝⎭=()()a b c a b c c a b c a b +++-+--+()()=()()p p a p b p c --()-,即可得出结论;3()连接OA OB OC 、、,AOBAOCBOCS S SS++=,由三角形面积公式即可得出结论.【详解】解:1()由①得:S == 由②得:578102p ++==,S2()公式①和②等价;推导过程如下: 2a b cp ++=, 2p a b c ∴++=,①中根号内的式子可化为:2222221422a b c a b c ab ab ⎛⎫⎛⎫+-+-+- ⎪⎪⎝⎭⎝⎭ ()()22222212216ab a b c ab a b c --++-+=()()2222116a b c c a b ⎡⎤⎡⎤+---⎣⎦⎣⎦=()116a b c a b c c a b c a b +++-+--+=()()() ()1222222216p p c p b p a =⨯⨯(﹣)﹣(﹣) ()p p a p b p c ---=()(),=3()连接OA OB OC 、、,如图所示:1112222AOB AOC BOC a b c S S S S rc rb ra r pr ++⎛⎫++++ ⎪⎝⎭====. 【点睛】本题考查三角形的内切圆、数学常识以及三角形面积公式;熟练掌握三角形面积的计算方法是解题的关键.28. 如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点三点0(1)A ,,(50)B ,,4(0)C ,.(1)求抛物线的解析式和对称轴;(2)P 是抛物线对称轴上的一点,求满足PA PC +的值为最小的点P 坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E ,使四边形OEBF 是以OB 为对角线且面积为12的平行四边形?若存在,请求出点E 坐标,若不存在请说明理由.(请在图2中探索)【答案】(1)2545442y x x -+=,函数的对称轴为:3x =;(2)点8(3)5P ,;(3)存在,点E 的坐标为12(2,)5-或12,)5(4-. 【解析】【分析】1()根据点AB 、的坐标可设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,由C 点坐标即可求解; 2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,即可求解; 3()512E E OEBF S OB y y ⨯⨯四边形===,则125E y =,将该坐标代入二次函数表达式即可求解. 【详解】解:1()根据点0(1)A ,,(50)B ,的坐标设二次函数表达式为:()()()21565y a x x a x x +--=﹣=,∵抛物线经过点4(0)C ,, 则54a =,解得:45a =,抛物线的表达式为:()()2224416465345555245y x x x x x --+--+=== , 函数的对称轴为:3x =;2()连接B C 、交对称轴于点P ,此时PA PC +的值为最小,设BC 的解析式为:y kx b +=,将点B C 、的坐标代入一次函数表达式:y kx b +=得:05,4k b b =+⎧⎨=⎩ 解得:4,54k b ⎧=-⎪⎨⎪=⎩直线BC 的表达式为:4y x 45=-+, 当3x =时,85y =, 故点835P (,);3()存在,理由: 四边形OEBF 是以OB 为对角线且面积为12的平行四边形, 则512E E OEBF S OB y y ⨯⨯四边形=== , 点E 在第四象限,故:则125E y =-, 将该坐标代入二次函数表达式得:()24126555y x x -+==-, 解得:2x =或4,故点E的坐标为12 2,5(-)或12 ,5(4-).【点睛】本题考查二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中2(),求线段和的最小值,采取用的是点的对称性求解,这也是此类题目的一般解法.。
青海省西宁市2019年中考数学试题一、选择题(本大题共10小题,每小题3分,满分30分)1.-2的相反数是【 】A .2B . 1 2C .- 1 2D .-2 2.,我国《高效节能房间空气调节器惠民工程推广实施细则》出台,根据奥维咨询(AVC )数据测算,节能补贴新政能直接带动空调终端销售1.030千亿元.那么1.030保留两个有效数字的近似数是【 】A .1B .10C .1.0D .1.033.函数y =x -2的自变量x 的取值范围在数轴上可表示为【 】4.下列分解因式正确的是【 】A .3x 2-6x =x(3x -6)B .-a 2+b 2=(b +a)(b -a)C .4x 2-y 2=(4x +y)(4x -y)D .4x 2-2xy +y 2=(2x -y)25.用长分别为5cm 、6cm 、7cm 的三条线段围成三角形的事件是【 】A .随机事件B .必然事件C .不可能事件D .以上都不是6.如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是【 】A .两个外切的圆B .两个内切的圆C .两个相交的圆D .两个外离的圆7.如图,E 、F 分别是正方形ABCD 的边BC 、CD 上的点,BE =CF ,连接AE 、BF .将△ABE 绕正方形的对角线的交点O 按顺时针方向旋转到△BCF ,则旋转角是【 】A .45ºB .120ºC .60ºD .90º8.折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴涵许多数学知识,我们还可以通过折纸验证数学猜想.把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论【 】A .角的平分线上的点到角的两边的距离相等B .在直角三角形中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半C .直角三角形斜边上的中线等于斜边的一半D .如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形9.如图,二次函数y =ax 2+bx +c 的图象过点(-1,1)、(2,-1).下列关于这个二次函数的叙述正确的是【 】A .当x =0时,y 的值大于1B .当x =3时,y 的值小于0C.当x=1时,y的值大于1 D.y的最大值小于010.如图,将矩形沿图中虚线(其中x>y)剪成四块图形,用这四块图形恰能拼一个正方形.若y=2,则x的值等于【】A.3 B.25-1 C.1+5 D.1+2二、填空题(本大题共10小题,每小题2分,满分20分)11.计算:a2b-2a2b=.12.分式方程 2x-3 =3x的解是.13.某饮料瓶上这样的字样:Eatable D ate 18 months.如果用x(单位:月)表示Eatable Date(保质期),那么该饮料的保质期可以用不等式表示为.14.请你写出一个图象过点(0,2),且y随x增大而减小的一次函数的解析式.15.一条弧所对的圆心角为135º,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为 c m.16.如图,反比例函数y= kx的图象与经过原点的直线交于点A、B,已知点A的坐标为(-2,1),则点B的坐标是.17.如图是某风景区的一个圆拱形门,路面AB宽为2m,净高CD为5m,则圆拱形门所在圆的半径为 m.18.72人参加商店举办的单手抓糖活动的统计结果如下表所示,若抓到糖果数的中位数为a,众数为b,则a+b19.5张不透明的卡片,除正面有不同的图形外,其它均相同.把5张卡片洗匀后,正面向下放在桌上,从中随机抽取1张,与卡片上图形形状相对应的这种地板砖能进行平面镶嵌的概率是.20.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD的中点,点P在x轴上移动.小明同学写出了两个使△POE为等腰三角形的P点坐标为(-5,0)和(5,0).请你写出其余所有符合这个条件的P点的坐标.三、解答题(本大题共8小题,满分70分)21.(7分)计算:01)3(2127-+⎪⎭⎫ ⎝⎛--π.22.(7分)先化简 x -1 x ÷⎝ ⎛⎭⎪⎫x - 2x -1 x ,再从-1、0、2中选取一个合适的数作为x 的值代入求值.23.(8分)如图,在△ABC 中,∠ACB =90º,CD ⊥AB ,BC =1.(1)如果∠BCD =30º,求AC ;(2)如果tan ∠BCD = 1 3,求CD .24.(8分)如图,已知菱形ABCD ,AB =AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)证明:四边形AECF 是矩形;(2)若AB =8,求菱形的面积.25.(8分)西宁市教育局自实施新课程改革后,学生的自主学习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,将调查结果分成四类:A —特别好、B —好、C —一般、D —较差,并将调查结果绘制成两幅不完整的统计图.请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表或画树状图的方法列出所有等可能的结果,并求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(10分)如图1,AB是⊙O的直径,C为⊙O上一点,直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)求证:△ACD∽△ABC;(2)如图2,将直线CD向下平移与⊙O相交于点C、G,但其它条件不变.若AG=4,BG=3,求tan∠CAD的值.27.(10分)召开的青海省居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对青海省居民阶梯电价发、方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0.38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量用x(度)来表示,实付金额用y(元)来表示,请你写出这两种情况实付金额y 与月用电量x之间的函数关系式;(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?28.(12分)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,已知A(0,4)、C(5,0).作∠AOC 的平分线交AB 于点D ,连接CD ,过点D 作DE ⊥CD 交OA 于点E .(1)求点D 的坐标;(2)求证:△ADE ≌△BCD ;(3)抛物线y = 4 5x 2- 24 5x +4经过点A 、C ,连接AC .探索:若点P 是x 轴下方抛物线上一动点,过点P 作平行于y 轴的直线交AC 于点M .是否存在点P ,使线段MP 的长度有最大值?若存在,求出点P 的坐标;若不存在,请说明理由.。
2019年青海省西宁市中考数学试题及参考答案与解析(满分120分,考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,恰有一项是符合题目要求的)1.若等式﹣2□(﹣2)=4成立,则“□”内的运算符号是()A.+ B.﹣C.×D.÷2.下列图书馆标志的图形中不是轴对称图形的是()A.B.C.D.3.下列各数是无理数的是()A.B.3.141 141 114 C.D.3.4.下列计算正确的是()A.(ab)2=ab2B.(a3)2=a6C.a6÷a2=a3D.a4•a3=a125.下列说法正确的是()A.过一点有且只有一条直线与已知直线垂直B.相等的圆心角所对的弧相等C.若a2=b2,则a=b D.一组数据3,2,5,3的中位数、众数都是3 6.背面图案、形状大小都相同的四张卡片的正面分别记录着有关函数y=2x﹣4的四个结论,现将卡片背面朝上,随机抽取一张,抽到卡片上的结论正确的概率是()A.B.C.D.17.如图,Rt△ABC中,∠ACB=90°,CD是AB边上的中线,BC=6,CD=5,则∠ACD的正切值是()A.B.C.D.8.边长为2的正三角形的外接圆的半径是()A.2B.2 C.D.9.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠使点A落在点G处,延长BG交CD于点F,连接EF,若CF=1,DF=2,则BC的长是()A.3B.C.5 D.210.如图1,甲、乙两人沿湟水河滨水绿道同向而行,甲步行的速度为100米/分,乙骑公共自行车的速度为v米/分,起初甲在乙前a米处,两人同时出发,当乙追上甲时,两人停止前行.设x分钟后甲、乙两人相距y米,y与x的函数关系如图2所示有以下结论:①图1中a表示为1000;②图1中EF表示为1000﹣200x;③乙的速度为200米/分;④若两人在相距a米处同时相向而行,分钟后相遇.其中正确的结论是()A.①②B.③④C.①②③D.①③④二、填空题(本大题共10小题,每小题2分,共20分。
2019年青海省中考数学试卷一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣5的绝对值是;的立方根是.2.(4分)分解因式:ma2﹣6ma+9m=;分式方程=的解为.3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为米.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为.5.(2分)如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.6.(2分)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是.7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为米.(结果保留根号)8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C 点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压cm.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有个菱形……,第n个图中共有个菱形.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g 16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()A.2.5和2.5B.2.25和3C.2.5和3D.10和1317.(3分)如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是()A.150米B.160米C.180米D.200米18.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5.219.(3分)如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A.B.C.D.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:(﹣1)0+(﹣)﹣1+|﹣1|﹣2cos45°22.(5分)化简求值:(+m﹣2)÷;其中m=+123.(8分)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD 于点E.(1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=,求⊙O的半径.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表(1)本次随机抽取献血者人数为人,图中m=;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=(周长的一半),则S=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=,S为三角形面积,则S=pr.28.(12分)如图1(注:与图2完全相同),在直角坐标系中,抛物线经过点A(1,0)、B(5,0)、C(0,4)三点.(1)求抛物线的解析式和对称轴;(2)P是抛物线对称轴上的一点,求满足P A+PC的值为最小的点P坐标(请在图1中探索);(3)在第四象限的抛物线上是否存在点E,使四边形OEBF是以OB为对角线且面积为12的平行四边形?若存在,请求出点E坐标,若不存在请说明理由(请在图2中探索)2019年青海省中考数学试卷参考答案与试题解析一、填空题(本大题共12小题15空,每空2分,共30分)1.(4分)﹣5的绝对值是5;的立方根是.【分析】分别根据绝对值的定义、立方根的定义即可求解.【解答】解:﹣5的绝对值是5;的立方根是.故答案为:5,.【点评】此题主要考查了实数的定义及有关性质,要求学生熟悉立方根、绝对值的相关概念和性质.2.(4分)分解因式:ma2﹣6ma+9m=m(a﹣3)2;分式方程=的解为x=﹣6.【分析】原式提取公因式,再利用完全平方公式分解即可;分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原式=m(a2﹣6a+9)=m(a﹣3)2;去分母得:3x=2x﹣6,解得:x=﹣6,经检验x=﹣6是分式方程的解.故答案为:m(a﹣3)2;x=﹣6【点评】此题考查了解分式方程,以及提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.3.(2分)世界科技不断发展,人们制造出的晶体管长度越来越短,某公司研发出长度只有0.000000006米的晶体管,该数用科学记数法表示为6×10﹣9米.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000006=6×10﹣9.故答案为:6×10﹣9【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(2分)某种药品原价每盒60元,由于医疗政策改革,价格经过两次下调后现在售价每盒48.6元,则平均每次下调的百分率为10%.【分析】设平均每次降价的百分比是x,则第一次降价后的价格为60×(1﹣x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1﹣x)×(1﹣x)元,从而列出方程,然后求解即可.【解答】解:设平均每次降价的百分比是x,根据题意得:60(1﹣x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去),答:平均每次降价的百分比是10%;故答案为:10%.【点评】本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.(2分)如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为y=.【分析】根据反比例函数系数k的几何意义可知,△P AO的面积=|k|,再根据图象所在象限求出k的值即可.【解答】解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.6.(2分)如图,在直角坐标系中,已知点A(3,2),将△ABO绕点O逆时针方向旋转180°后得到△CDO,则点C的坐标是(﹣3,﹣2).【分析】根据中心对称的性质解决问题即可.【解答】解:由题意A,C关于原点对称,∵A(3,2),∴C(﹣3,﹣2),故本答案为(﹣3,﹣2).【点评】本题考查中心对称,旋转变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.(2分)如图是矗立在高速公路边水平地面上的交通警示牌,经过测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则CD的长为4﹣4米.(结果保留根号)【分析】在Rt△CMB中求出CM,在Rt△ADM中求出DM即可解决问题.【解答】解:在Rt△CMB中,∵∠CMB=90°,MB=AM+AB=12米,∠MBC=30°,∴CM=MB•tan30°=12×=4,在Rt△ADM中,∵∠AMD=90°,∠MAD=45°,∴∠MAD=∠MDA=45°,∴MD=AM=4米,∴CD=CM﹣DM=(4﹣4)米,故答案为:4﹣4.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是熟练掌握锐角三角函数的定义,属于基础题中考常考题型.8.(2分)一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是3个红珠子,4个白珠子和5个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续9次摸出的都是红珠子的情况下,第10次摸出红珠子的概率是.【分析】每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,可以直接应用求概率的公式.【解答】解:因为每次只摸出一个珠子时,布袋中共有珠子12个,其中红珠子3个,所以第10次摸出红珠子的概率是=.故答案是:.【点评】本题考查了概率的意义,是一道列举法求概率的问题,属于基础题,可以直接应用求概率的公式.9.(2分)如图是用杠杆撬石头的示意图,C是支点,当用力压杠杆的A端时,杠杆绕C 点转动,另一端B向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的B端必须向上翘起10cm,已知杠杆的动力臂AC与阻力臂BC之比为5:1,要使这块石头滚动,至少要将杠杆的A端向下压50cm.【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【解答】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴=,∵杠杆的动力臂AC与阻力臂BC之比为5:1,∴=,即AM=5BN;∴当BN≥10cm时,AM≥50cm;故要使这块石头滚动,至少要将杠杆的端点A向下压50cm.故答案为:50.【点评】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.10.(2分)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于﹣2.【分析】由题意输入x=1然后平方得x2,然后再﹣小于0,乘以1+,可得y的值.【解答】解:当x=1时,x2﹣=1﹣<0,∴y=(1﹣)(1+)=1﹣3=﹣2,故答案为:﹣2.【点评】此题是一道程序题,做题时要按照程序一步一步做,主要考查代数式求值,是一道常考的题型.11.(2分)如图在正方形ABCD中,点E是以AB为直径的半圆与对角线AC的交点,若圆的半径等于1,则图中阴影部分的面积为1.【分析】直接利用正方形的性质结合转化思想得出阴影部分面积=S△CEB,进而得出答案.【解答】解:如图所示:连接BE,可得,AE=BE,∠AEB=90°,且阴影部分面积=S△CEB=S△ABC=S正方形ABCD=×2×2=1故答案为1【点评】本题考查正方形的性质,扇形的面积等知识,解题的关键是学会把不规则图形转化为规则图形,属于中考常考题型.12.(4分)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有13个菱形……,第n个图中共有3n﹣2个菱形.【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n个图形中的菱形的个数的表达式;【解答】解:(1)第1个图形有菱形1个,第2个图形有菱形4=1+3个,第3个图形有菱形7=1+3×2个,第4个图形有菱形10=1+3×3个,…,第n个图形有菱形1+3(n﹣1)=(3n﹣2)个,当n=5时,3n﹣2=13,故答案为:13,(3n﹣2).【点评】此题考查图形的变化规律,通过观察图形,分析、归纳发现其中的规律,并应用规律解决问题.二、单项选择题(本大题共8小题,每小题3分,共24分,请将正确的选项序号填入下面相应题号的表格内)13.(3分)下面几何体中,俯视图为三角形的是()A.B.C.D.【分析】利用从上面看到的图叫做俯视图判断即可.【解答】解:A、俯视图为矩形;B、俯视图为圆(带有圆心);C、俯视图为圆;D、俯视图为三角形;故选:D.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.14.(3分)如图,将一副三角板和一张对边平行的纸条按下列方式摆放:两个三角板的一直角边重合,含30°角的三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.15°B.22.5°C.30°D.45°【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选:A.【点评】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.15.(3分)如图所示的两台天平保持平衡,已知每块巧克力的重量相等,且每个果冻的重量也相等,则每块巧克力和每个果冻的重量分别为()A.10g,40g B.15g,35g C.20g,30g D.30g,20g【分析】根据图可得:3块巧克力的重=2个果冻的重;1块巧克力的重+1个果冻的重=50克,由此可设出未知数,列出方程组.【解答】解:设每块巧克力的重x克,每个果冻的重y克,由题意得:,解得:.故选:C.【点评】此题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的相等关系,列出方程组.16.(3分)为了了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班50名学生进行了调查,有关数据如下表,这组数据的中位数和众数为()A.2.5和2.5B.2.25和3C.2.5和3D.10和13【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:表中数据为从小到大排列,第25个,第26个数都是2.5,故中位数是2.5;数据3小时出现了13次最多为众数.故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.17.(3分)如图,小莉从A点出发,沿直线前进10米后左转20°,再沿直线前进10米,又向左转20°,……,照这样走下去,她第一次回到出发点A时,一共走的路程是()A.150米B.160米C.180米D.200米【分析】多边形的外角和为360°,每一个外角都为20°,依此可求边数,再求多边形的周长.【解答】解:∵多边形的外角和为360°,而每一个外角为20°,∴多边形的边数为360°÷20°=18,∴小莉一共走了:18×10=180(米).故选:C.【点评】本题考查了多边形的外角与内角,利用多边形外角和除以一个外角得出多边形的边数是解题关键.18.(3分)如图,AD∥BE∥CF,直线l1、l2与这三条平行线分别交于点A、B、C和点D、E、F.已知AB=1,BC=3,DE=1.2,则DF的长为()A.3.6B.4.8C.5D.5.2【分析】根据平行线分线段成比例定理即可解决问题.【解答】解:∵AD∥BE∥CF,∴=,即=,∴EF=3.6,∴DF=EF+DE=3.6+1.2=4.8,故选:B.【点评】本题考查平行线分线段成比例定理,解题的关键是熟练掌握基本知识,属于中考常考题型.19.(3分)如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π【分析】连接OC,根据等边三角形的性质得到∠BOC=80°,根据弧长公式计算即可.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠BOC=∠AOB﹣∠AOC=140°﹣60°=80°,则的长==,故选:B.【点评】本题考查的是弧长的计算,等边三角形的判定和性质,掌握弧长公式:l=是解题的关键.20.(3分)大家知道乌鸦喝水的故事,如图,它看到一个水位较低的瓶子,喝不着水,沉思一会后聪明的乌鸦衔来一个个小石子放入瓶中,水位上升后,乌鸦喝到了水.从乌鸦看到瓶子的那刻起开始计时,设时间变量为x,水位高度变量为y,下列图象中最符合故事情景的大致图象是()A.B.C.D.【分析】由于原来水位较低,乌鸦沉思一会后才想出办法,说明将在沉思的这段时间内水位没有变化,乌鸦衔来一个个小石子放入瓶中,水位将会上升,乌鸦喝水后的水位应不低于一开始的水位,由此即可作出判断.【解答】解:∵乌鸦在沉思的这段时间内水位没有变化,∴排除C,∵乌鸦衔来一个个小石子放入瓶中,水位将会上升,∴排除A,∵乌鸦喝水后的水位应不低于一开始的水位,∴排除B,∴D正确.故选:D.【点评】本题考查动点问题的函数图象问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.三、(本大题共3小题,第21题5分,第2题5分,第23题8分,共18分)21.(5分)计算:(﹣1)0+(﹣)﹣1+|﹣1|﹣2cos45°【分析】直接利用零指数幂的性质以及负指数幂的性质、特殊角的三角函数值分别化简得出答案.【解答】解:原式=1﹣3+﹣1﹣2×=1﹣3+﹣1﹣=﹣3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.22.(5分)化简求值:(+m﹣2)÷;其中m=+1【分析】先化简分式,然后将m的值代入求值.【解答】解:原式=()÷=•=,当m=+1时,原式==.【点评】本题考查了分式的化简求值,熟练分解因式是解题的关键.23.(8分)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.【分析】(1)由“AAS”可证△AFE≌△DBE;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,即可得四边形ADCF是菱形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,,∴△AFE≌△DBE(AAS)(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD=CD是本题的关系.四、(本大题共3小题,第24题9分,第25题8分,第26题9分,共26分)24.(9分)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?【分析】(1)设安排x辆大型车,则安排(30﹣x)辆中型车,根据30辆车调拨不超过190吨蔬菜和162吨肉制品补充当地市场,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为整数即可得出各运输方案;(2)根据总运费=单辆车所需费用×租车辆车可分别求出三种租车方案所需费用,比较后即可得出结论.【解答】解:(1)设安排x辆大型车,则安排(30﹣x)辆中型车,依题意,得:,解得:18≤x≤20.∵x为整数,∴x=18,19,20.∴符合题意的运输方案有3种,方案1:安排18辆大型车,12辆中型车;方案2:安排19辆大型车,11辆中型车;方案3:安排20辆大型车,10辆中型车.(2)方案1所需费用为:900×18+600×12=23400(元),方案2所需费用为:900×19+600×11=23700(元),方案3所需费用为:900×20+600×10=24000(元).∵23400<23700<24000,∴方案1安排18辆大型车,12辆中型车所需费用最低,最低费用是23400元.【点评】本题考查了一元一次不等式组的应用,根据各数量之间的关系,正确列出一元一次不等式组是解题的关键.25.(8分)如图,在⊙O中,点C、D分别是半径OB、弦AB的中点,过点A作AE⊥CD 于点E.(1)求证:AE是⊙O的切线;(2)若AE=2,sin∠ADE=,求⊙O的半径.【分析】(1)连接OA,如图,利用△AOB的中位线得到CD∥OA.则可判断AO⊥AE,即可证得结论;(2)连接OD,如图,利用垂径定理得到OD⊥AB,再在Rt△AED中利用正弦定义计算出AD=3,接着证明∠OAD=∠ADE.从而在Rt△OAD中有sin∠OAD=,设OD =2x,则OA=3x,利用勾股定理可计算出AD=x,从而得到x=3,然后解方程求出x即可得到⊙O的半径长.【解答】(1)证明:连接OA,如图,∵点C、D分别是半径OB、弦AB的中点,∵DC∥OA,即EC∥OA,∵AE⊥CD,∴AE⊥AO,∴AE是⊙O的切线;(2)解:连接OD,如图,∵AD=CD,∴OD⊥AB,∴∠ODA=90°,在Rt△AED中,sin∠ADE==,∴AD=3,∵CD∥OA,∴∠OAD=∠ADE.在Rt△OAD中,sin∠OAD=,设OD=2x,则OA=3x,∴AD==x,即x=3,解得x=,∴OA=3x=,即⊙O的半径长为.【点评】本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定和性质,勾股定理的应用以及解直角三角形,熟练掌握性质定理是解题的关键.26.(9分)“只要人人献出一点爱,世界将变成美好的人间”.某大学利用“世界献血日”开展自愿义务献血活动,经过检测,献血者血型有“A、B、AB、O”四种类型,随机抽取部分献血结果进行统计,根据结果制作了如图两幅不完整统计图表(表,图):血型统计表(1)本次随机抽取献血者人数为50人,图中m=20;(2)补全表中的数据;(3)若这次活动中该校有1300人义务献血,估计大约有多少人是A型血?(4)现有4个自愿献血者,2人为O型,1人为A型,1人为B型,若在4人中随机挑选2人,利用树状图或列表法求两人血型均为O型的概率.【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后计算m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数;(4)画出树状图,根据概率公式即可得到结果.【解答】解:(1)这次随机抽取的献血者人数为5÷10%=50(人),所以m=×100=20;故答案为50,20;(2)O型献血的人数为46%×50=23(人),A型献血的人数为50﹣10﹣5﹣23=12(人),故答案为12,23;(3)从献血者人群中任抽取一人,其血型是A型的概率==,1300×=312,估计这1300人中大约有312人是A型血;(4)画树状图如图所示,所以P(两个O型)==.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了统计图.五、(本大题共2小题,第27题10分,第28题12分,共22分)27.(10分)我国南宋著名数学家秦九韶在他的著作《数书九章》中提出了“三斜求积术”,三斜即指三角形的三条边长,可以用该方法求三角形面积.若改用现代数学语言表示,其形式为:设a,b,c为三角形三边,S为面积,则S=①这是中国古代数学的瑰宝之一.而在文明古国古希腊,也有一个数学家海伦给出了求三角形面积的另一个公式,若设p=(周长的一半),则S=②(1)尝试验证.这两个公式在表面上形式很不一致,请你用以5,7,8为三边构成的三角形,分别验证它们的面积值;(2)问题探究.经过验证,你发现公式①和②等价吗?若等价,请给出一个一般性推导过程(可以从①⇒②或者②⇒①);(3)问题引申.三角形的面积是数学中非常重要的一个几何度量值,很多数学家给出了不同形式的计算公式.请你证明如下这个公式:如图,△ABC的内切圆半径为r,三角形三边长为a,b,c,仍记p=,S为三角形面积,则S=pr.【分析】(1)由公式①得:S==10,由②得:p。
2019年西宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.﹣2的相反数是()A.2B.C.D.12.下列计算正确的是()A.a•a2=a2B.(a2)2=a4C.3a+2a=5a2D.(a2b)3=a2•b33.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°5.已知y关于x成正比例,且当x=2时,y=﹣6,则当x=1时,y的值为()A.3B.﹣3C.12D.﹣126.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A.B.C.D.9.如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,AC=4,则OD的长为()A.1B.1.5C.2D.2.510.已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共10小题,每小题2分,共20分)11.不等式﹣9+3x≤0的非负整数解的和为.12.如果3tanα=,则∠α=.13.代数式中x的取值范围是.14.一次函数y=kx﹣2的函数值y随自变量x的增大而减小,则k的取值范围是.15.一组数据2,7,x,y,4中,唯一众数是2,平均数是4,这组数据的方差是.16.如图,在平面直角坐标系中,直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为.17.已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、y轴的正半轴上滑动,点C在第四象限,连结OC,则线段OC长的最小值是.18.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出△AOB的位似△CDE,则位似中心的坐标为.19.如图是按以下步骤作图:(1)在△ABC中,分别以点B,C为圆心,大于BC长为半径作弧,两弧相交于点M,N;(2)作直线MN交AB于点D;(3)连接CD,若∠BCA =90°,AB=4,则CD的长为.20.如图,分别以正六边形ABCDEF的顶点A,D为圆心,以AB长为半径画弧BF,弧CE,若AB=1,则阴影部分的面积为.三、解答题(本大题共8小题,共70分)21.计算:+tan60°﹣(sin45°)﹣1﹣|1﹣|22.先化简,再求值:(1﹣x+)÷,其中x=tan45°+()﹣1.23.如图,在□CBCD中,E是对角线BD上的一点,过点C作CF∥DB,且CF=DE,连接AE,BF,EF.(1)求证:△ADE≌△BCF;(2)若∠ABE+∠BFC=180°,则四边形ABFE是什么特殊四边形?说明理由.24.如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?25.某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.26.如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.27. 如图1,已知矩形ABED ,点C 是边DE 的中点,且AB=2AD 。
(1) 判断△ABC 的形状,并说明理由;(2) 保持图1中ABC 固定不变,绕点C 旋转DE 所在的直线MN 到图2中的位置(当垂线段 AD 、BE 在直线MN 的同侧)。
试探究线段AD 、BE 、DE 长度之间有什么关系?并给予证明;(3) 保持图2中△ABC 固定不变,继续绕点C 旋转DE 所在的直线MN 到图3中的位置(当 垂线段AD 、BE 在直线MN 的异侧)。
试探究线段AD 、BE 、DE 长度之间有什么关系? 并给予证明。
(11分)A B C D E 图1 M N A B C D E 图2 A B C D E M N图328.在平面直角坐标系xOy中抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).(1)求抛物线的表达式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BCD的面积最大时,求点P的坐标;(3)如图2,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90°,直接写出实数m的取值范围.2019年西宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.【分析】根据相反数的概念,可得答案.【解答】解:﹣2的相反数是2﹣.故选:A.【点评】本题考查了实数的性质,差的绝对值是大数减小数.2.【分析】根据同底数幂的乘法底数不变指数相加,幂的乘方底数不变指数相乘,合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、合并同类项系数相加字母及指数不变,故C错误;D、积的乘方等于乘方的积,故D错误;故选:B.【点评】本题考查了幂的乘方与积的乘方,熟记法则并根据法则计算是解题关键.3.【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.【解答】解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.【分析】先根据三角形外角的性质求出∠BEF的度数,再根据平行线的性质得到∠2的度数.【解答】解:如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.【点评】本题主要考查了平行线的性质,解题的关键是掌握三角形外角的性质.5.【分析】先利用待定系数法求出y=﹣3x,然后计算x=1对应的函数值.【解答】解:设y=kx,∵当x=2时,y=﹣6,∴2k=﹣6,解得k=﹣3,∴y=﹣3x,∴当x=1时,y=﹣3×1=﹣3.故选:B.【点评】本题考查了待定系数法求正比例函数的解析式:设正比例函数解析式为y=kx(k≠0),然后把一个已知点的坐标代入求出k即可.6.【分析】根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB,根据三角形内角和定理求出∠ACB,根据角平分线的定义计算即可.【解答】解:∵AB=AC,AD是△ABC的中线,∴∠BAD=∠CAD=20°,∠ABC=∠ACB,∴∠ACB==70°,∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°,故选:B.【点评】本题考查的是等腰三角形的性质,三角形的中线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.7.【分析】根据直线y=2x+3与y=2x﹣5中的k都等于2,于是得到结论.【解答】解:∵直线y=2x+3与y=2x﹣5的k值相等,∴直线y=2x+3与y=2x﹣5的位置关系是平行,故选:A.【点评】本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【分析】根据全等三角形的性质得到BF=DF,根据矩形的性质得到∠A=90°,根据勾股定理得到AF =4,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,根据相似三角形的性质得到OH=,根据勾股定理列方程即可得到结论.【解答】解:∵△ABF与△DFG全等,∴BF=DF,∵AD=9,∴BF=9﹣AF,∵四边形ABCD是矩形,∴∠A=90°,∴AB2+AF2=BF2,即32+AF2=(9﹣AF)2,解得:AF=4,∵AE=1,∴EF=3,DE=8,连接OE,OD,则OE=OD,过O作OH⊥AD于H,则HE=HD=4,∴FH=1,∵∠A=∠OHF=90°,∠AFB=∠OFH,∴△ABF∽△HOF,∴,即,∴OH=,在Rt△ODH中,OD==,故选:B.【点评】本题考查了矩形的性质,全等三角形的性质,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.9.【分析】由OD⊥BC,根据垂径定理,可得CD=BD,即可得OD是△ABC的中位线,则可求得OD 的长.【解答】解:∵OD⊥BC,∴CD=BD,∵OA=OB,AC=4∴OD=AC=2.故选:C.【点评】此题考查了垂径定理以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.10.【分析】利用题意画出二次函数的大致图象,利用对称轴的位置得到﹣>,则可对①进行判断;利用a<0,b>0,c>0可对②进行判断;由a﹣b+c=0,即b=a+c,则4a+2(b+c)+c>0,所以2a+c >0,变形b2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),则可对③进行判断.【解答】解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.【点评】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共10小题,每小题2分,共20分)11.【分析】根据不等式的性质求出不等式的解集,找出不等式的非负整数解相加即可.【解答】解:﹣9+3x≤0,3x≤9,∴x≤3,∴不等式﹣9+3x≤0的非负整数解有0,1,2,3,即0+1+2+3=6.故答案为:6.【点评】本题主要考查对解一元一次不等式,不等式的性质,一元一次不等式的整数解等知识点的理解和掌握,能根据不等式的解集找出不等式的非负整数解是解此题的关键.12.【解答】解:∵3tanα=,∴tanα=/3,解得,∠α=30°,故答案为:30°.【点评】本题考查三角函数,解答本题的关键是会用求三角函数的值.13.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.14.【分析】根据一次函数的图象与系数的关系,利用一次函数的性质可知:当一次函数的系数小于零时,一次函数的函数值y随着自变量x的增大而减小,即可得到答案.【解答】解:∵一次函数y=kx﹣2,y随x的增大而减小,所以一次函数的系数k<0,故答案为:k<0.【点评】此题主要考查了一次函数图象与系数的关系,正确记忆一次函数的性质是解题关键.15.【分析】根据众数、平均数的概念,确定x、y的值,再求该组数据的方差.【解答】解:因为一组数据2,7,x,y,4中,唯一众数是2,平均数是4,可得x,y中一个是2,另一个为5,取x=2,则y=5,所以S2=[2×(2﹣4)2+(5﹣4)2+(4﹣4)2+(7﹣4)2]=3.6,故答案为:3.6【点评】本题考查了平均数、众数、方差的意义.①平均数平均数表示一组数据的平均程度;②众数是一组数据中出现次数最多的数值,叫众数,有时众数在一组数中有好几个;③方差是用来衡量一组数据波动大小的量.16.【分析】根据“直线y=x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B”,得到BC的解析式,根据“OD=4,OC=2,BC∥AO”,得到△BCD~△AOD,结合点A和点B的坐标,根据点A和点B都在双曲线上,得到关于m的方程,解之,得到点A的坐标,即可得到k的值.【解答】解:∵OA的解析式为:y=,又∵AO∥BC,点C的坐标为:(0,2),∴BC的解析式为:y=,设点B的坐标为:(m,m+2),∵OD=4,OC=2,BC∥AO,∴△BCD~△AOD,∴点A的坐标为:(2m,m),∵点A和点B都在y=上,∴m()=2m•m,解得:m=2,即点A的坐标为:(4,),k=4×=,故答案为:.【点评】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和三角形相似的判定定理是解题的关键.17.【分析】利用等边三角形的性质得出C点位置,进而求出OC的长.【解答】解:如图所示:过点C作CE⊥AB于点E,当点C,O,E在一条直线上,此时OC最短,∴△ABC是等边三角形,∴CE过点O,E为BD中点,则此时EO=AB=1,故OC的最小值为:OC=CE﹣EO=BC sin60°﹣×AB=﹣1.故答案为:﹣1.【点评】此题主要考查了勾股定理以及等边三角形的性质,得出当点C,O,E在一条直线上,此时OC 最短是解题关键.18.【分析】直接利用位似图形的性质得出位似中心.【解答】解:如图所示,点P即为位似中点,其坐标为(2,2),故答案为:(2,2).【点评】此题主要考查了位似变换,正确掌握位似中心的定义是解题关键.19.【分析】利用基本作图可判断MN垂直平分BC,根据线段垂直平分线的性质得到DB=DC,再证明DA=DC,从而得到CD=AB=2.【解答】解:由作法得MN垂直平分BC,∴DB=DC,∴∠B=∠BCD,∵∠B+∠A=90°,∠BCD+∠ACD=90°,∴∠ACD=∠A,∴DA=DC,∴CD=AB=×4=2.故答案为2.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).20.【分析】连接OB、OC,根据正六边形的性质、扇形面积公式计算.【解答】解:连接OB、OC,∵六边形ABCDEF是正六边形,∴∠A=∠D==120°,∠BOC=60°,∴△OBC为等边三角形,∴OB=BC=AB=1,∴阴影部分的面积=×1××6﹣×2=﹣π,故答案为:﹣π.【点评】本题考查了正多边形和圆、扇形面积公式,解决此题的关键是熟练运用扇形面积公式S=.三、解答题(本大题共8小题,共70分)21.【分析】将特殊锐角的三角函数值代入,同时化简二次根式、计算绝对值,再进一步计算可得.【解答】解:原式=3+﹣()﹣1﹣(﹣1)=3+﹣﹣+1=2+1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及特殊锐角的三角函数值.22.【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x的值,最后代入计算可得.【解答】解:原式=(+)÷=•=,当x=tan45°+()﹣1=1+2=3时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式的化简求值的方法.23.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的性质和全等三角形的判定以及菱形的判定解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CF∥DB,∴∠BCF=∠DBC,∴∠ADB=∠BCF在△ADE与△BCF中,∴△ADE≌△BCF(SAS).(2)四边形ABFE是菱形理由:∵CF∥DB,且CF=DE,∴四边形CFED是平行四边形,∴CD=EF,CD∥EF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠AED+∠AEB=180°,∴∠ABE=∠AEB,∴AB=AE,∴四边形ABFE是菱形.【点评】此题考查平行四边形的性质,关键是根据平行四边形的性质和全等三角形的判定以及菱形的判定解答.24.【分析】(1)如图1,先证明△APM∽△ABD,利用相似比可得AP=AB,再证明△BQN∽△BAC,利用相似比可得BQ=AB,则AB+12+AB=AB,解得AB=18(m);(2)如图1,他在路灯A下的影子为BN,证明△NBM∽△NAC,利用相似三角形的性质得=,然后利用比例性质求出BN即可.【解答】解:(1)如图1,∵PM∥BD,∴△APM∽△ABD,=,即=,∴AP=AB,∵NQ∥AC,∴△BNQ∽△BCA,∴=,即=,∴BQ=AB,而AP+PQ+BQ=AB,∴AB+12+AB=AB,∴AB=18.答:两路灯的距离为18m;(2)如图1,他在路灯A下的影子为BN,∵BM∥AC,∴△NBM∽△NAC,∴=,即=,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点评】本题考查了相似三角形的应用:通常利用相似三角形的性质即相似三角形的对应边的比相等和“在同一时刻物高与影长的比相等”的原理解决.25.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.26.【分析】连接AC,如图所示,由AT与圆O相切,得到BA垂直于AT,在直角三角形ABT中,利用锐角三角函数定义求出AB的长,根据AB为圆O的直径,利用直径所对的圆周角为直角得到∠ACB=90°,在直角三角形ABC中,利用锐角三角函数定义即可求出BC的长.【解答】解:连接AC,如图所示:∵直线AT切⊙O于点A,∴∠BAT=90°,在Rt△ABT中,∠B=30°,AT=,∴tan30°=,即AB==3;∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,AB=3,∴cos30°=,则BC=AB•cos30°=.【点评】此题考查了切线的性质,锐角三角函数定义,以及圆周角定理,熟练掌握切线的性质是解本题的关键.27. [解] (1) △ABC为等腰直角三角形。