轨迹方程的求解知识点
- 格式:doc
- 大小:13.00 KB
- 文档页数:2
轨迹方程的求解知识点
轨迹方程的求解知识点
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方。
怎么求轨迹方程求轨迹方程是解决数学问题的一种方法,它在物理学、工程学、计算机科学等领域都有广泛的应用。
本文将介绍如何求解轨迹方程的方法和技巧,希望能对读者有所帮助。
一、轨迹方程的定义轨迹方程是描述物体在运动过程中所经过的路径的数学函数。
它通常用一组参数表示,可以是时间、速度、加速度等。
在二维空间中,轨迹方程可以表示为x=f(t),y=g(t),其中t为时间参数,x和y分别表示物体在水平和垂直方向上的坐标。
在三维空间中,轨迹方程可以表示为x=f(t),y=g(t),z=h(t),其中x、y、z分别表示物体在三个方向上的坐标。
二、求解轨迹方程的方法1.解析法解析法是一种通过分析物体运动的规律,推导出轨迹方程的方法。
这种方法通常适用于简单的运动情况,如直线运动、匀加速运动等。
例如,对于一个匀加速运动的物体,可以通过运用物理学公式推导出它的轨迹方程。
2.几何法几何法是一种通过绘制物体运动的轨迹图像,从而推导出轨迹方程的方法。
这种方法适用于物体运动的轨迹比较规则的情况,如圆形运动、椭圆形运动等。
例如,对于一个绕着圆心旋转的物体,可以通过绘制其轨迹图像,推导出它的轨迹方程。
3.数值法数值法是一种通过数值计算的方法,求解轨迹方程的近似解。
这种方法通常适用于无法用解析法或几何法求解的复杂运动情况,如自由落体运动、抛体运动等。
例如,对于一个自由落体运动的物体,可以通过数值计算出其在每个时间点上的位置,从而近似地求解出它的轨迹方程。
三、求解轨迹方程的技巧1.选择合适的方法在求解轨迹方程时,需要根据具体的问题选择合适的方法。
如果物体运动比较简单,可以采用解析法或几何法;如果物体运动比较复杂,可以采用数值法。
不同的方法有不同的优缺点,需要根据具体情况选择。
2.确定参数在求解轨迹方程时,需要确定一组参数来表示物体的运动状态。
这些参数可以是时间、速度、加速度等。
需要根据具体问题选择合适的参数,并注意参数的物理意义。
3.运用数学工具在求解轨迹方程时,需要运用数学工具,如微积分、向量、矩阵等。
高考数学轨迹方程的求解知识点归纳整理|圆的轨迹方程例题符合一定条的动点所形成的图形,或者说,符合一定条的点的全体所组成的集合,叫做满足该条的点的轨迹.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条,也就是符合给定条的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条的动点轨迹方程。
高二上数学知识点轨迹方程高二上数学知识点——轨迹方程数学是一门抽象而精确的学科,其中轨迹方程是高中数学中一个非常重要的知识点。
通过学习轨迹方程,我们可以揭示事物运动的规律,并在实际问题中应用数学知识。
本文将详细介绍高二上数学中与轨迹方程相关的知识点,帮助读者全面理解该内容。
1. 直线的轨迹方程在平面几何中,直线是我们最常见的事物之一。
学习直线的轨迹方程,我们可以了解直线的运动规律和性质。
以直线y = kx + b为例,其中k是斜率,b是截距。
通过变化k和b的值,我们可以获得不同斜率和截距下的直线。
这样的轨迹方程可以描述一系列平行或相交的直线的运动轨迹。
2. 圆的轨迹方程圆是数学中一种特殊的曲线,由平面上到一定距离的点构成。
学习圆的轨迹方程,我们可以揭示圆的运动规律和特性。
以圆的标准方程x²+ y²= r²为例,其中r代表圆的半径。
通过改变r的值,我们可以绘制出不同半径的圆的轨迹方程。
同时,通过平移、旋转等变换操作,我们还可以得到其他形状的轨迹方程。
3. 抛物线的轨迹方程抛物线是一种常见的曲线,在物理学、工程领域都有广泛应用。
学习抛物线的轨迹方程,我们可以了解抛物线的形状和特性。
以抛物线的标准方程y = ax² + bx + c为例,其中a、b、c分别代表抛物线的形状参数。
通过改变a、b、c的值,我们可以得到不同形状的抛物线的轨迹方程。
同时,通过平移、缩放等变换操作,我们还可以获得其他变形的轨迹方程。
4. 椭圆的轨迹方程椭圆是一种很特殊的曲线,在天文学、机械制造等领域有广泛应用。
学习椭圆的轨迹方程,我们可以了解椭圆的运动规律和特性。
以椭圆的标准方程x²/a² + y²/b² = 1为例,其中a、b是椭圆的半长轴和半短轴。
通过改变a和b的值,我们可以绘制出不同形状和大小的椭圆的轨迹方程。
同时,通过平移、缩放等变换操作,我们还可以得到其他变形的轨迹方程。
轨道方程知识点归纳总结一、轨道方程的定义轨道方程又称为轨迹方程,是描述运动体在空间运动的轨迹的方程。
在物理学和数学中,轨道方程是描述运动体在空间中运动的方程,通常是一组参数方程或者方程组。
通过轨道方程,我们可以了解运动体在空间中的具体运动轨迹,对于物理学、工程学、航空航天等领域都有着重要的应用价值。
二、轨道方程的表示形式轨道方程可以有不同的表示形式,其中常见的有参数方程和直角坐标方程。
1. 参数方程:轨迹方程中的变量用参数 t 表示,通常表示时间。
轨道方程可以表示为 x =f(t), y = g(t), z = h(t) 的形式。
2. 直角坐标方程:轨迹方程可以通过直角坐标系表示为 F(x, y, z) = 0 的形式。
不同的表示形式适用于不同的问题,具体选择何种表示形式需要根据具体问题进行分析。
三、轨道方程的求解方法在物理学和数学中,我们可以通过不同的方法来求解轨道方程。
1. 已知运动规律,求参数方程:如果我们已经知道了运动体的运动规律,例如位置、速度、加速度等与时间的函数关系,那么我们可以通过积分来求解参数方程。
2. 已知轨迹,求轨道方程:如果我们已经知道了运动体的轨迹,通过观察或者实验得到了轨迹方程,那么我们可以通过逆向推导的方法来求解轨道方程。
3. 根据运动体的物理性质,推导轨道方程:有时候,我们可以根据运动体所受的力、能量守恒等物理性质来推导轨道方程。
四、轨道方程的应用轨道方程在物理学、工程学、航空航天等领域有着广泛的应用。
1. 物理学:在物理学中,我们可以通过轨道方程来描述天体的运动轨迹、粒子在电磁场中的运动轨迹等。
2. 工程学:在工程学中,轨道方程可以用来描述机械运动体的运动轨迹,例如汽车行驶的轨迹、机械臂的运动轨迹等。
3. 航空航天:在航空航天领域,轨道方程可以用来描述飞行器的轨迹,例如卫星、飞船等的轨迹。
五、轨道方程的相关知识点在研究轨道方程的过程中,还涉及到一些相关的知识点。
轨迹方程的六种求法整理求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考.求轨迹方程的一般方法:1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。
设点。
列式。
化简。
说明等,圆锥曲线标准方程的推导。
1. 已知点(20)(30)A B -,,,,动点()P x y ,满足2PAPB x =·,求点P 的轨迹。
26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ⋅=⋅ (1)求点P 的轨迹C 对应的方程;(2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论.(3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点.解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-⋅=⋅化简得得代入二、定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件.1、 若动圆与圆4)2(22=++y x 外切且与直线x =2相切,则动圆圆心的轨迹方程是解:如图,设动圆圆心为M ,由题意,动点M 到定圆圆心(-2,0)的距离等于它到定直线x =4的距离,故所求轨迹是以(-2,0)为焦点,直线x =4为准线的抛物线,并且p =6,顶点是(1,0),开口向左,所以方程是)1(122--=x y .选(B ).2、一动圆与两圆122=+y x 和012822=+-+x y x 都外切,则动圆圆心轨迹为解:如图,设动圆圆心为M ,半径为r ,则有.1,2,1=-+=+=MO MC r MC r MO 动点M 到两定点的距离之差为1,由双曲线定义知,其轨迹是以O 、C 为焦点的双曲线的左支3、在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程.解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M为重心,则有239263BM CM +=⨯=.M ∴点的轨迹是以B C ,为焦点的椭圆,其中1213c a ==,.225b a c =-=∴.∴所求ABC △的重心的轨迹方程为221(0)16925x y y +=≠.注意:求轨迹方程时要注意轨迹的纯粹性与完备性.4、设Q 是圆x 2+y 2=4上动点另点A (3。
专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。
2023年4月上半月㊀学法指导㊀㊀㊀㊀求动点轨迹方程最简捷的四种方法◉安徽省全椒县城东中学㊀殷宏林㊀㊀摘要:求符合某种条件的动点轨迹方程,实际上就是利用已知的点的坐标之间的运动规律去寻找变量间的关系.求轨迹方程的常规思路,就是想方设法地把题目中的几何问题转化为代数方程问题来解决.关键词:参数法;复数法;交轨法;相关点法㊀㊀求动点的轨迹方程既是高中数学教学大纲要求掌握的主要内容,也是近年来高考考查的高频考点[1].这类题型由于涉及到的知识点多,综合性较强,考查的范围广,分值较高,因此学习和掌握求轨迹方程的方法与技巧,已成为考生在高考中夺取高分的必要条件.轨迹是指点的集合,而方程是实数对的集合.二者看似毫不相干,实则它们之间是可以沟通转化的,求轨迹方程运用的就是这种转化思想.由于动点运动规律所给出的条件不同,因此求动点轨迹方程的方法也就不同[2],但其中最简捷㊁最实用的有以下四种.1参数法当所求动点满足的几何条件不易得出,也看不出明显的相关性时,如果经过仔细观察,发现这个动点的运动常常会受到某个变量(时间㊁角度㊁斜率㊁比值等)的制约,那么我们就可以用这个变量作参数,建立轨迹的参数方程,这就是参数法.图1例1㊀动直线l 与单位圆交于不同的两点A ,B ,当l 总保持平行于直线y =2x 的条件下移动时,求弦A B 中点轨迹的方程.解:由l 平行于直线y =2x ,可设l 的方程为y =2x +b (b 为参数),将其代入单位圆的方程x 2+y 2=1中,整理得5x 2+4b x +b 2-1=0.如图1,因为l 与单位圆有两个交点,所以Δ=16b 2-20b 2+20=20-4b 2>0,则-5<b <5.设弦A B 的中点为P (x ,y ),根据韦达定理可知x =x 1+x 22=-25b ,代入l 的方程中,得y =b5.所以中点P 的轨迹方程为x =-25b ,y =b 5,ìîíïïïï其中-5<b <5.消去参数b ,得x +2y =0(-255<x <255),此即为弦A B 中点轨迹的普通方程,其轨迹为单位圆中的一条线段.思路与方法:从本题的解题思路可以看出以下几点.①利用几何直观即可判断出动点轨迹为过原点且垂直于y =2x 的含于单位圆中的线段;②当动点位置随着直线的平行移动而变化时,常选择截距作为参数较方便;③在求轨迹方程时,只要参数选择得当,常能使问题获得更简捷的解法.2复数法有些问题可以由复数的几何意义将动点和已知点表示成复数式,然后经过复数运算转化为动点的轨迹,这就是复数法.当涉及有向线段绕定点旋转,长度伸缩变化,或可用复数模的形式给出坐标间关系等问题时,运用复数法求解最简捷.图2例2㊀如图2,以抛物线y 2=4x 的焦半径F B 为对角线作正方形F A B C (顶点按逆时针方向顺序排列).求顶点C 的轨迹方程.解:因为抛物线y 2=4x 中焦参数p =2,所以焦点坐标为F (1,0).设动点C (x ,y ),其相关点B (x ᶄ,yᶄ).把x 轴看作实轴,y 轴为虚轴,则在复平面上,有z C =x +y i ,z B =x ᶄ+y ᶄi ,z F =1,所以z F Cң=(x -1)+y i ,z F Bң=(x ᶄ-1)+y ᶄi .由øB F C =π4,F B =2F C ,得z F B ң=z F C ңˑ2c o s (-π4)+i s i n (-π4)éëêêùûúú,即(x ᶄ-1)+y ᶄi=[(x -1)+y i ] 2(22-22i )=[(x -1)+y ]+[y -(x -1)]i .所以x ᶄ-1=x -1+y ,y ᶄ=y -x +1,{即x ᶄ=x +y ,yᶄ=y -x +1.{因为点B 在y 2=4x 上,所以(yᶄ)2=4x ᶄ.故(y -x +1)2=4(x +y ).整理即得动点C 的轨迹方程为14Copyright ©博看网. All Rights Reserved.学法指导2023年4月上半月㊀㊀㊀x 2+y 2-2x y -6x -2y =0.思路与方法:本题通过建立复平面,利用复数加法和乘法的几何意义,求出动点对应的复数表达式,然后通过比较实部㊁虚部求得动点的轨迹方程.3交轨法在求动点轨迹时,有时会遇到求两动曲线交点的轨迹问题.这类问题可以通过解方程组求出含参数的交点坐标,再消去参数得出所求轨迹的方程,这就是交轨法.图3例3㊀在直角坐标系中,矩形O A B C 的边O A =a ,O C =b ,点D 在A O 的延长线上,D O =a ,设M ,N 分别是O C ,B C 上的动点,使O M ʒM C =B N ʒN C ʂ0,求直线DM 和A N 的交点P 的轨迹方程.解:如图3,建立平面直角坐标系,则各点的坐标分别为A (a ,0),C (0,b ),D (-a ,0),B (a ,b ),设P (x ,y ).设O M ʒM C =B N ʒN C =λ(ʂ0).由定比分点公式,得M (0,λb 1+λ),N (a1+λ,b ).根据两点式,可得直线DM ,A N 的方程分别为㊀㊀㊀㊀y =λba (1+λ)(x +a ),①㊀㊀㊀㊀y =-b (1+λ)λa(x -a ).②①ˑ②,得y 2=-b 2a 2(x 2-a2),即x 2a 2+y 2b2=1(0<x <a ,0<y <b ).故点P 的轨迹方程为x 2a 2+y 2b2=1其中0<x <a ,0<b <y .思路与方法:本题中由于动点P 为动直线DM ,A N 的交点,两动直线均有一定点(D ,A )一动点(M ,N ),而两动点又满足O M ʒM C =B N ʒN C 这一比值条件,所以设此比值为参数较为方便.从本题的求解过程我们发现,运用交轨法求解时,可以不用求交点的坐标,只要能消掉参数,得出点P 的坐标间的关系即可.这也充分展示了运用交轨法求轨迹方程的便捷性与实用性.4相关点法在求动点轨迹方程的过程中,有时动点满足的条件不方便用等式列出,但动点是随着另外相关点而运动的.如果相关点所满足的条件能够看出,或可分析出,这时就可以用动点的坐标来表示相关点的坐标,根据相关点所满足的方程就能够求得动点的轨迹方程,这就是相关点法.图4例4㊀已知定点O (0,0)和A (6,0),M 为O A 的中点,以O A为一边作菱形O A B C ,M B 与A C 交于点P ,当菱形变动时,求点P 的轨迹方程.解:如图4,设动点P (x ,y ),其相关点B (x ᶄ,yᶄ).由A (6,0),得M (3,0).易知M P P B =12.所以由x =3+12x ᶄ1+12,y =0+12y ᶄ1+12,ìîíïïïïïïïïïï得x ᶄ=3x -6,y ᶄ=3y .{由A B =O A =6,可得(x ᶄ-6)2+(yᶄ-0)2=6.即(3x -6-6)2+(3y -0)2=6.整理,得(x -4)2+y 2=4.因为点P 不可能在x 轴上,所以点P 的轨迹方程为(x -4)2+y 2=4(y ʂ0).思路与方法:本题分析已知点与动点间的关系时,找出相关点是关键的一步.在图4中,若连接O B ,则可知P 为әA B O 的重心,所以选B 为相关点更方便;当然也可由A C 平分øO A B ,推知|B P ||PM |=2.事实上,求已知曲线关于某定点(或定直线)的中心对称(或轴对称)的曲线方程时,通常选择相关点法较简捷[3].5结论从上述典型实例可以看出,求动点轨迹方程的方法虽然很多,但上述四种方法最简捷,也非常实用,值得学生借鉴.当然,在求轨迹方程的过程中,要注意以上方法的灵活运用.对同一问题,若几种方法都可解决时,应择优选用;对较复杂的问题,有时需将两种或两种以上的方法结合起来使用.参考文献:[1]钟载硕.求动点轨迹方程八法[J ].理科考试研究:高中版,2004(3):10G14.[2]张黎青.求动点轨迹方程的常用方法介绍[J ].新高考(高二语数外),2010(2):33G35.[3]陆钧.浅谈求动点轨迹方程[J ].理科考试研究:高中版,2006(11):12G13.Z 24Copyright ©博看网. All Rights Reserved.。
高中数学解析几何|求轨迹方程方法最全总结一、直接法若动点运动的条件是一些较为明确的几何量的等量关系,而这些条件易于表达成关于x,y的等量关系式,可以较为容易地得到轨迹方程(即遵循求轨迹方程的一般程序),这种方法我们一般称之为直接法.用直接发求轨迹方程一般都要经过建系、设点、列式、化简、验证这五个环节.二、定义法若动点轨迹的条件符合某一基本而常见轨迹的定义(如圆、椭圆、双曲线、抛物线等)已从定义来确定表示其几何特征的基本量而直接写出其轨迹方程,或从曲线定义来建立等量关系式从而求出轨迹方程.三、代入法若动点运动情况较为复杂,不易直接表述或求出,但是能够发现形成轨迹的动点P(x,y)随着另一动点Q (X,Y)的运动而有规律的运动,而且动点Q的运动轨迹方程已经给定或极为容易求出,故只要找出两动点P,Q之间的等量关系式,用x,y表示X,Y再代入Q的轨迹方程整理即得动点P的轨迹方程,称之为代入法,也叫相关点法.四、参数法若动点运动变化情况较为复杂,动点的纵坐标之间的等量关系式难以极快找到,可以适当引入参数,通过所设参数沟通动点横坐标之间的联系,从而得到轨迹的参数方程进而再消去所设参数得出轨迹的(普通)方程,称之为参数法.点悟:注意落实好图形特征信息提供的解题方向,前提是自信,实力是运算过关.本题还可有一些较为简捷的解法,不妨试试五、交轨法若所求轨迹可以看成是某两条曲线(包括直线)的交点轨迹时,可由方程直接消去参数,也可引入参数来建这两条动曲线之间的联系,再消参而得到轨迹方程,称之为交轨法.可以认为交轨法是参数法的一种特殊情况.点悟:交轨是一种动态解题策略,注意特殊或极限情况处理. 六、几何法认真分析动点运动变化规律,可以发现图形明显的几何特征,利用有关平面几何的知识将动点运动变化规律与动点满足的条件有机联系起来,再利用直接法得到动点的轨迹方程,称之为几何法.七、点差法涉及与圆锥曲线中点弦有关的轨迹问题时,常可以把两端点设为(x1,y1),(x2,y2),代入圆锥曲线方程,然后作差法求出曲线的轨迹方程,此法称之为点差法,也叫平方差法.运用此法要注意限制轨迹方程中变量可能的取值范围.点悟:上述方法是通过设直线AB的方程引入参数b得到动点M 轨迹的参数方程再消去参数得到普通方程,注意参数的取值范围,因而轨迹是一条线段.本题较为简捷的求法还可考虑点差法:。
两定点之积为定值的轨迹方程一、知识点回顾1. 距离公式- 在平面直角坐标系中,两点A(x_1,y_1),B(x_2,y_2)之间的距离d = √((x_2 - x_1)^2+(y_2 - y_1)^2)。
2. 设点的坐标- 设所求轨迹上的动点坐标为P(x,y),两定点坐标设为A(x_1,y_1),B(x_2,y_2)。
二、问题分析设两定点A(x_1,y_1),B(x_2,y_2),动点P(x,y),已知| PA|×| PB| = k(k为定值且k>0)。
1. 根据距离公式可得:- | PA|=√((x - x_1)^2+(y - y_1)^2),| PB|=√((x - x_2)^2+(y - y_2)^2)。
2. 因为| PA|×| PB| = k,所以√((x - x_1)^2+(y - y_1)^2)×√((x - x_2)^2+(y - y_2)^2)=k。
3. 两边平方可得:- ((x - x_1)^2+(y - y_1)^2)×((x - x_2)^2+(y - y_2)^2)=k^2。
- 展开式子:- (x^2 - 2x_1x+x_1^2 + y^2-2y_1y + y_1^2)×(x^2 - 2x_2x+x_2^2 + y^2-2y_2y + y_2^2)=k^2。
- 这是一个比较复杂的四次方程。
三、特殊情况1. 当两定点在坐标轴上时- 例如A(a,0),B(-a,0)(a≠0),设P(x,y)。
- 则| PA|=√((x - a)^2+y^2),| PB|=√((x + a)^2+y^2)。
- 因为| PA|×| PB| = k,所以√((x - a)^2+y^2)×√((x + a)^2+y^2)=k。
- 两边平方得((x - a)^2+y^2)×((x + a)^2+y^2)=k^2。
- 展开(x^2 - a^2+y^2)^2=k^2,即x^4 - 2a^2x^2+a^4 + 2y^2(x^2 - a^2)+y^4=k^2。
高考数学知识点:动点的轨迹方程_知识点总结高考数学知识点:动点的轨迹方程动点的轨迹方程:在直角坐标系中,动点所经过的轨迹用一个二元方程f(x,y)=0表示出来。
求动点的轨迹方程的基本方法:直接法、定义法、相关点法、参数法、交轨法等。
1、直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直接法;用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
求轨迹方程一般只要求出方程即可,求轨迹却不仅要求出方程而且要说明轨迹是什么。
2、定义法:利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,高考生物,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件。
定义法的关键是条件的转化??转化成某一基本轨迹的定义条件;3、相关点法:动点所满足的条件不易表述或求出,但形成轨迹的动点P(x,y)却随另一动点Q(x′,y′)的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x′,y′表示为x,y 的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
一般地:定比分点问题,对称问题或能转化为这两类的轨迹问题,都可用相关点法。
4、参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
用什么变量为参数,要看动点随什么量的变化而变化,常见的参数有:斜率、截距、定比、角、点的坐标等。
要特别注意消参前后保持范围的等价性。
多参问题中,根据方程的观点,引入n 个参数,需建立n+1个方程,才能消参(特殊情况下,能整体处理时,方程个数可减少)。
5、交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
求轨迹方程的五种方法有五种方法可以求解轨迹方程,分别是:1.参数方程法2.一般方程法3.极坐标方程法4.隐函数方程法5.线性方程组法接下来将对这五种方法进行详细解释。
1.参数方程法:参数方程法是指将坐标轴上的点的位置用一个参数表示,通过参数的变化来表示轨迹。
例如,一个点在x轴上运动,其速度为v,经过时间t后的位置可以用参数方程表示为x = vt。
参数方程法可以很方便地描述物体的运动轨迹,特别适用于描述曲线的参数方程。
2.一般方程法:一般方程法是指将轨迹上的点的位置用一般方程表示。
例如,对于一个圆形轨迹x^2+y^2=r^2,其中r为半径,可以通过该一般方程来描述圆的轨迹。
一般方程法可以描述各种曲线轨迹,但是求解过程可能较为繁琐。
3.极坐标方程法:极坐标方程法是指将轨迹上的点的位置用极坐标系表示。
极坐标系由极径和极角两个参数组成,其中极径表示点到原点的距离,极角表示点在极坐标系中的方向角度。
通过给定极径和极角的值可以唯一确定一个点的位置。
例如,对于一个以原点为中心的圆形轨迹,可以用极坐标方程表示为r=R,其中R为圆的半径。
极坐标方程法适用于描述具有对称性的轨迹,如圆形、椭圆形等。
4.隐函数方程法:隐函数方程法是指将轨迹上的点的位置用隐函数方程表示。
隐函数方程是一个含有多个变量的方程,其中至少有一个变量无法用其他变量表示。
通过给定其他变量的值,可以计算出不能用其他变量表示的变量的值,从而确定轨迹上的点的位置。
例如,对于一个抛物线轨迹y = ax^2 + bx + c,其中a、b、c为常数,可以根据给定的x的值求解出y的值,从而确定轨迹上的点的位置。
5.线性方程组法:线性方程组法是指将轨迹上的点的位置用线性方程组表示。
线性方程组是由多个线性方程组成的方程组,其中每个方程的未知数是轨迹上的点的坐标。
通过求解线性方程组可以得到轨迹上的点的坐标。
线性方程组法适用于描述由多个轨迹组成的复杂图形,如多边形等。
以上就是求解轨迹方程的五种方法,分别是参数方程法、一般方程法、极坐标方程法、隐函数方程法和线性方程组法。
轨迹方程的求法及典型例题(含答案) 轨迹方程是描述一条曲线在平面上的运动轨迹的方程。
在二维平面上,轨迹方程通常由一元二次方程、三角函数方程等形式表示。
在三维空间中,轨迹方程可能会更加复杂,可以由参数方程或参数化表示。
一、轨迹方程的求解方法:1. 根据题目给出的条件,确定轨迹上的点的特点或特殊性质。
2. 将轨迹上的点的坐标表示为一般形式。
3. 将坐标表示代入到方程中,消去多余的变量,得到轨迹方程。
二、典型例题及其解答:【例题1】已知点P(x,y)到坐标原点O的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,根据勾股定理,可以得到点P到原点O的距离公式:d = √(x^2 + y^2)3. 将坐标表示代入到距离公式中,得到轨迹方程:d^2 = x^2 + y^2【例题2】已知点P(x,y)到直线Ax+By+C=0的距离为定值d,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,点P到直线Ax+By+C=0的距离公式为:d = |Ax+By+C| / √(A^2 + B^2)3. 将点P的坐标表示代入到距离公式中,得到轨迹方程:(Ax+By+C)^2 = d^2(A^2 + B^2)【例题3】已知点P(x,y)满足|x|+|y|=a,求点P的轨迹方程。
解答:1. 设点P(x,y)的坐标表示为一般形式。
2. 根据题目给出的条件,可以得到两种情况下的轨迹方程:当x≥0,y≥0时,有x+y=a,即y=a-x;当x≥0,y<0时,有x-y=a,即y=x-a;当x<0,y≥0时,有-x+y=a,即y=a+x;当x<0,y<0时,有-x-y=a,即y=-a-x。
3. 将上述四种情况合并,得到轨迹方程:|x|+|y|=a【例题4】已知点P(x,y)满足y = a(x^2 + b),求点P的轨迹方程。
轨迹方程知识点总结一、轨迹方程的概念轨迹方程是指在平面直角坐标系中,描述某一特定几何对象的运动过程中所有可能位置点的集合的方程。
它是描述物体或点在运动中所遵循的规律和路径的数学工具。
轨迹方程是一种抽象的数学概念,通过它可以描述所有可能的位置点的集合,从而揭示几何对象的运动轨迹规律。
二、轨迹方程的表示1. 参数方程表示法轨迹方程可以使用参数方程来表示。
参数方程的形式通常为x=f(t),y=g(t),其中t为参数,x和y是时间t的函数。
通过变化参数t的取值范围,就可以得到轨迹上的所有点的坐标。
2. 极坐标方程表示法轨迹方程也可以使用极坐标来表示。
极坐标方程的形式通常为r=f(θ),其中r是极坐标系下到原点的距离,θ是到x轴正向的角度。
通过变化θ的取值范围,就可以得到轨迹上的所有点的极坐标表示。
3. 一般方程表示法轨迹方程还可以用一般方程来表示。
一般方程的形式通常为F(x,y)=0,其中F是一个关于x和y的函数。
通过解一般方程,就可以得到轨迹上的所有点的坐标。
三、轨迹方程的应用1. 描述物体的运动轨迹轨迹方程可以被用来描述物体在运动中所遵循的路径规律。
通过物体的运动速度和加速度等信息,可以推导出物体的轨迹方程,从而预测物体的位置和运动状态。
2. 分析几何对象的性质轨迹方程可以被用来分析几何对象的性质。
通过对轨迹方程的分析,可以得到几何对象的面积、周长、对称性等性质,从而深入理解几何对象的结构和特点。
3. 解决实际问题轨迹方程也可以被用来解决实际问题。
例如,通过轨迹方程可以计算物体的轨迹长度、运动时间、最大速度、最大加速度等参数,从而为实际问题的分析和解决提供数学工具和方法。
四、轨迹方程的求解方法1. 参数方程的求解对于参数方程表示的轨迹方程,可以通过分离变量、积分等方法求解。
例如,对于一条直线的参数方程x=at,y=bt,可以求解出轨迹方程为y=ax/b。
2. 极坐标方程的求解对于极坐标方程表示的轨迹方程,可以通过代入坐标变换、积分等方法求解。
高考数学重要知识点轨迹方程的求解高考数学中,轨迹方程是一个非常重要的知识点。
轨迹方程主要讲述了一个点随着一些条件的变化而形成的轨迹。
在解题过程中,我们常常需要根据给定的条件,确定点的坐标,并通过数学方法得出其轨迹方程。
下面我将详细介绍一下轨迹方程的求解方法。
轨迹方程的求解方法主要分为以下几种情况:1.直线轨迹:在数学中,直线是一种常见的轨迹形式。
当我们需要求解一些点在直线上的轨迹方程时,一般需要两个条件来限定点的坐标。
通过解方程可以得到轨迹方程。
例如,设点P(x,y)在直线l上,且满足条件2x-3y=6,那么可以通过解方程2x-3y=6得到轨迹方程。
2.抛物线轨迹:另一个常见的轨迹形式是抛物线。
对于求解抛物线上一点的轨迹方程,我们一般需要给出点的横坐标或纵坐标,并通过一定条件和关系推导出轨迹方程。
例如,设点P(x,y)在抛物线y = ax^2 + bx + c上,且满足条件P(1,2),那么可以通过代入条件,解出a、b、c,并得到轨迹方程。
3.圆轨迹:圆是另一种常见的轨迹形式。
当我们需要求解点在圆上的轨迹方程时,一般需要给出点到圆心的距离或者给出边缘点的坐标,通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在圆上,且与圆心A(a,b)的距离等于r,那么可以通过点到圆心的距离公式,得到轨迹方程(x-a)^2+(y-b)^2=r^24.椭圆和双曲线轨迹:椭圆和双曲线也是常见的轨迹形式。
当我们需要求解点在椭圆或双曲线上的轨迹方程时,一般需要给出点到中心的距离或者给出边缘点的坐标,并通过数学关系来求解出轨迹方程。
例如,设点P(x,y)在椭圆上,且与中心O(0,0)之间的距离的和恒定为d,那么可以通过代入条件,解得轨迹方程。
在实际的解题过程中,我们需要根据题目给出的具体条件,选择合适的方法和数学工具来求解轨迹方程。
另外,我们还需要注意数学推导过程的准确性和严密性,避免漏解或者得出错误的轨迹方程。
除了上面介绍的常见情况,还有一些其他的轨迹形式,例如双曲线的渐近线、追踪问题等,都需要根据具体情况进行推导和求解。
求轨迹方程方法总结轨迹方程是描述物体运动路径的数学表达式。
当我们了解物体的运动规律时,可以使用轨迹方程来描述其运动轨迹,从而帮助我们更好地理解和预测物体的运动。
下面将总结几种常用的推导轨迹方程的方法。
一、基础几何方法:1. 直线运动:对于直线运动,轨迹方程可以通过位移与时间的关系来推导。
如果物体的初始位置为(x0, y0),速度为v,则物体在时间t后的位置(x,y)可以表示为 x = x0 + vt,y = y0。
从而得到轨迹方程 y = y0 + vt。
2.曲线运动:对于曲线运动,可以通过几何关系来推导轨迹方程。
例如,对于抛体运动,可以通过重力加速度和初速度的关系,推导出位置关于时间的二次方程,从而得到轨迹方程。
二、解微分方程方法:1.一阶微分方程:对于一阶微分方程,可以通过求解微分方程得到轨迹方程。
例如,对于匀加速直线运动,可以得到速度关于时间的一阶微分方程,通过求解得到速度与时间的表达式,再通过积分得到位移与时间的表达式,从而得到轨迹方程。
2.二阶微分方程:对于二阶微分方程,可以通过推导得到物体的运动规律,并进一步得到轨迹方程。
例如,对于单摆运动,可以通过考虑受力平衡和受力大小的关系,推导出物体的运动方程,从而得到轨迹方程。
三、向量方法:1.位矢法:对于具有速度和加速度的运动,可以通过位矢法推导轨迹方程。
位矢是一个描述位置和方向的向量,通过将速度积分得到位矢,再通过对位矢微分得到速度,通过对速度微分得到加速度,从而得到物体的位矢关于时间的表达式。
2.矢量投影法:对于运动方向发生变化的运动,可以利用矢量投影法推导轨迹方程。
将位矢投影到坐标轴上,得到物体在各个坐标轴上的分量,从而得到轨迹方程。
四、参数方程方法:1.参数方程是一种用参数表示物体运动轨迹的方法。
可以将物体的运动分解为水平方向与竖直方向上的分量,再通过参数来表示时间的变化。
将水平和竖直方向的分量分别定义为x(t)和y(t),则轨迹方程可以表示为(x(t),y(t))。
轨迹方程求法汇总轨迹方程是描述物体运动轨迹的数学表达式。
在不同情况下,轨迹方程的求法也会有所不同。
下面将对一些常见的情况下的轨迹方程求法进行汇总。
1.直线运动:当物体做直线运动时,轨迹方程可以使用直线的一般方程来表示。
直线的一般方程是y = kx + b,其中k表示直线的斜率,b表示直线在y轴上的截距。
根据物体的运动情况和给定的初始条件,可以求解出k和b的值,从而得到轨迹方程。
2.圆周运动:当物体做圆周运动时,轨迹方程可以使用圆的标准方程来表示。
圆的标准方程是(x-a)²+(y-b)²=r²,其中(a,b)表示圆心的坐标,r表示圆的半径。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)和r的值,从而得到轨迹方程。
3.椭圆运动:当物体做椭圆运动时,轨迹方程可以使用椭圆的标准方程来表示。
椭圆的标准方程是(x-a)²/a²+(y-b)²/b²=1,其中(a,b)表示椭圆心的坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
4.抛物线运动:当物体做抛物线运动时,轨迹方程可以使用抛物线的标准方程来表示。
抛物线的标准方程是y = ax² + bx + c,其中a, b, c为常数。
根据物体的运动情况和给定的初始条件,可以求解出a, b, c的值,从而得到轨迹方程。
5.双曲线运动:当物体做双曲线运动时,轨迹方程可以使用双曲线的标准方程来表示。
双曲线的标准方程是(x-a)²/a²-(y-b)²/b²=1,其中(a,b)表示双曲线的中心坐标。
根据物体的运动情况和给定的初始条件,可以求解出(a,b)的值,从而得到轨迹方程。
6.螺旋线运动:当物体做螺旋线运动时,轨迹方程可以使用极坐标方程来表示。
极坐标方程是r=aθ,其中r表示到原点的距离,θ表示与x轴的夹角,a为常数。
平面几何中的轨迹问题例题和知识点总结在平面几何的世界里,轨迹问题是一个既有趣又具有挑战性的领域。
它不仅要求我们对几何图形的性质有深入的理解,还需要我们具备灵活的思维和解题技巧。
接下来,让我们通过一些具体的例题来深入探讨平面几何中的轨迹问题,并对相关的知识点进行总结。
一、轨迹问题的基本概念轨迹,简单来说,就是一个动点在平面内按照一定的条件运动所形成的图形。
要确定一个轨迹,需要明确两个关键要素:动点满足的条件和动点运动的范围。
例如,一个点到定点的距离等于定长,那么这个点的轨迹就是一个圆。
这就是根据点的运动条件来确定轨迹的典型例子。
二、常见的轨迹类型1、直线型轨迹到两定点距离之和为定值的点的轨迹是椭圆(当定值大于两定点间的距离时)。
到两定点距离之差的绝对值为定值的点的轨迹是双曲线(当定值小于两定点间的距离时)。
到一条定直线的距离等于定长的点的轨迹是两条平行于该直线且与直线距离为定长的直线。
2、圆型轨迹到定点的距离等于定长的点的轨迹是圆。
3、抛物线型轨迹到定点和定直线的距离相等的点的轨迹是抛物线。
三、例题解析例 1:已知点 A(-2,0),B(2,0),动点 P 满足|PA| |PB| = 2,求点 P 的轨迹方程。
解:因为|PA| |PB| = 2 <|AB| = 4,所以点 P 的轨迹是以 A、B 为焦点的双曲线的右支。
2a = 2,a = 1,c = 2,b²= c² a²= 3所以点 P 的轨迹方程为 x² y²/3 = 1(x ≥ 1)例 2:一动点到直线 x = 4 的距离等于它到点 A(1,0)的距离,求动点的轨迹方程。
解:设动点坐标为(x,y),则动点到直线 x = 4 的距离为|x 4|,动点到点 A(1,0)的距离为√(x 1)²+ y²由题意可得:|x 4| =√(x 1)²+ y²两边平方得:(x 4)²=(x 1)²+ y²展开化简得:y²= 6x 15所以动点的轨迹方程为 y²= 6x 15例 3:在平面直角坐标系中,点 P 到点 F(1,0)的距离比它到 y 轴的距离大 1,求点 P 的轨迹方程。
轨迹方程求解方法例题讲解王先生一、【高考地位】求曲线的轨迹方程是解析几何最基本、最重要的问题之一,是用代数方法研究几何问题的基础。
这类题目把基本知识、方法技巧、逻辑思维能力、解题能力融为一体。
因而也是历年高考所要考查的重要内容之一。
方法一直接法万能模板内容使用场景可以直接列出等量关系式解题模板第一步根据已知条件及一些基本公式(两点间距离公式、点到直线的距离公式、直线斜率公式等。
)第二步根据公式直接列出动点满足的等量关系式,从而得到轨迹方程。
1.在平面直角坐标系xOy 中,动点P x ,y 与两点A -1,0 ,B 1,0 的连线PA ,PB 的斜率之积为1y,则点P 的轨迹方程为()A.x 2-y 3=1y ≠0B.x 2+y 3=1x 2≠1C.x 2-y 3=1D.x 2+y 3=12.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若BP =2PA ,且OQ ·AB =1,则点P 的轨迹方程是()A.32x 2+3y 2=1(x >0,y >0)B.32x 2-3y 2=1(x >0,y >0)C.3x 2-32y 2=1(x >0,y >0) D.3x 2+32y 2=1(x >0,y >0)方法二定义法万能模板内容使用场景轨迹符合某一基本轨迹的定义解题模板第一步根据已知条件判断动点轨迹的条件符合哪个基本轨迹(如圆、椭圆、双曲线、抛物线等)第二步直接根据定义写出动点的轨迹方程。
3.已知两圆C1:x-42+y2=169,C2:x+42+y2=9,动圆在圆C1内部且和圆C1相内切,和圆C2相外切,则动圆圆心M的轨迹方程为()A.x264-y248=1 B.x248+y264=1 C.x264+y248=1 D.x248-y264=1方法三相关点法(代入法)万能模板内容使用场景动点依赖于已知曲线上的另一个动点运动解题模板第一步判断动点P x,y随着已知曲线上的一个动点Q x ,y的运动而运动第二步求出关系式x =f x,y,y =g x,y第三步将Q点的坐标表达式代入已知曲线方程4.已知AB =3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP =13OA +23OB ,点P 的轨迹方程为().A.x 24+y 2=1B.x 2+y 24=1C.x 29+y 2=1D.x 2+y 29=15.如图,梯形ABCD 的底边AB 在y 轴上,原点O 为AB 的中点,|AB |=423,|CD |=2-423,AC ⊥BD ,M 为CD 的中点.(Ⅰ)求点M 的轨迹方程;(Ⅱ)过M 作AB 的垂线,垂足为N ,若存在正常数λ0,使MP =λ0PN ,且P 点到A 、B 的距离和为定值,求点P 的轨迹E 的方程;方法四参数法万能模板内容使用场景动点的运动受另一个变量的制约时解题模板第一步引入参数,用此参数分别表示动点的横纵坐标x,y;第二步消去参数,得到关于x,y的方程,即为所求轨迹方程。
轨迹方程的求解知识点
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).
【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤
⒈建立适当的坐标系,设出动点M的坐标;
⒉写出点M的集合;
⒊列出方程=0;
⒋化简方程为最简形式;
⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方
法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤
①建系——建立适当的坐标系;
②设点——设轨迹上的任一点P(x,y);
③列式——列出动点p所满足的关系式;
④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;
⑤证明——证明所求方程即为符合条件的动点轨迹方程。
视频解析:轨迹方程的求解(1) (2) (3) (4)。