中考数学复习----数形结合
- 格式:ppt
- 大小:304.50 KB
- 文档页数:15
第九讲数形结合思想【中考热点分析】数形结合思想是数学中重要的思想方法,它根据数学问题中的条件和结论之间的内在联系,既分析其数量关系,又揭示其几何意义,使数量关系和几何图形巧妙的结合起来,并充分利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。
几何图形的形象直观,便于理解;代数方法的一般性,解题过程的操作性强,便于把握。
【经典考题讲练】例1.(2015衢州)如图,已知直线334y x =-+分别交x 轴、y 轴于点A 、B ,P 是抛物线21252y x x =-++的一个动点,其横坐标为a ,过点P 且平行于y 轴的直线交直线334y x =-+于点Q ,则当PQ =BQ 时,a 的值是 .例2.(2014•广州)已知平面直角坐标系中两定点A (-1,0),B (4,0),抛物线()过点A 、B ,顶点为C .点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式与顶点C 的坐标. (2)当∠APB 为钝角时,求m 的取值范围. (3)若,当∠APB 为直角时,将该抛物线向左或向右平移t ()个单位,点P 、C 移动后对应的点分别记为、,是否存在t ,使得首尾依次连接A 、B 、、所构成的多边形的周长最短?若存在,求t 值并说明抛物线平移的方向;若不存在,请说明理由.解析:(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB 为直径,所以当抛物线上的点P 在⊙C 的内部时,满足∠APB 为钝角,所以-1<m <0,或3<m <4.(3)左右平移时,使A ′D+DB ″最短即可,那么作出点C ′关于x 轴对称点的坐标为C ″,得到直线P ″C ″的解析式,然后把A 点的坐标代入即可.答案:(1)解:依题意把的坐标代入得: ;解得:抛物线解析式为顶点横坐标,将代入抛物线得(2)如图,当时,设,则过作直线轴,(注意用整体代入法)解得,当在之间时,或时,为钝角.(3)依题意,且设移动(向右,向左)连接则又的长度不变四边形周长最小,只需最小即可将沿轴向右平移5各单位到处沿轴对称为∴当且仅当、B、三点共线时,最小,且最小为,此时,设过的直线为,代入∴即将代入,得:,解得:∴当,P、C向左移动单位时,此时四边形ABP’C’周长最小。
中考专题48 中考专题数学数形结合思想数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。
中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。
“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等。
1.数形结合思想的含义数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。
2.数形结合思想应用常见的四种类型(1)实数与数轴。
实数与数轴上的点具有一一对应关系,借助数轴观察数的特点,直观明了。
(2)在解方程(组)或不等式(组)中的应用。
利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。
(3)在函数中的应用。
借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。
(4)在几何中的应用。
对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。
3.数形结合思想解题方法“数”和“形”是数学中两个最基本的概念, 每一个几何图形中都蕴含着与它们的形状、大小、位置密切相关的数量关系;反之,数量关系又常常可以通过几何图形做出直观地反映和描述.数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维结合起来,在解决代数问题时,想到它的图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的知识,解决几何的问题.实现了抽象概念与具体图形的联系和转化,化难为易,化抽象为直观.【经典例题1】(2020年•遵义)构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°=AC CD =12+√3=2−√3(2+√3)(2−√3)=2−√3.类比这种方法,计算tan22.5°的值为( )A .√2+1B .√2−1C .√2D .12 【标准答案】B【分析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,根据tan22.5°=AC CD 计算即可. 【答案剖析】在Rt △ACB 中,∠C =90°,∠ABC =45°,延长CB 使BD =AB ,连接AD ,得∠D =22.5°,设AC =BC =1,则AB =BD =√2,∴tan22.5°=AC CD =11+√2=√2−1 【知识点练习】(2019•湖北省仙桃市)不等式组的解集在数轴上表示正确的是( )A. B.C.D.【标准答案】C【解答】解:解不等式x﹣1>0得x>1,解不等式5﹣2x≥1得x≤2,则不等式组的解集为1<x≤2【经典例题2】(2020年•济宁)数形结合是解决数学问题常用的思想方法.如图,直线y=x+5和直线y=ax+b 相交于点P,根据图象可知,方程x+5=ax+b的解是( )A.x=20 B.x=5 C.x=25 D.x=15【标准答案】A【分析】两直线的交点坐标为两直线答案剖析式所组成的方程组的解.【答案剖析】∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.【知识点练习】(2020年株洲模拟)直线y=k1x+b1(k1>0)与y=k2x+b2(k2<0)相交于点(﹣2,0),且两直线与y轴围城的三角形面积为4,那么b1﹣b2等于.【标准答案】4【答案剖析】本题考查了一次函数与坐标轴的交点以及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.如图,直线y=k1x+b1(k1>0)与y轴交于B点,则OB=b1,直线y=k2x+b2(k2<0)与y轴交于C,则OC=﹣b2,∵△ABC的面积为4,∴OA•OB+=4,∴+=4,解得:b1﹣b2=4.【经典例题3】(2020年通化模拟)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE 与△BHD面积之和的最大值,并简要说明理由.【标准答案】见答案剖析。
专题复习三数形结合I、专题精讲:数学家华罗庚说得好:“数形结合百般好,隔离分家万事休,几何代数统一体,永远联系莫分离".几何图形的形象直观,便于理解,代数方法的一般性,解题过程的机械化,可操作性强,便于把握,因此数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.II、典型例题剖析例1.某公司推销一种产品,设X(件)是推销产品的数量,y (元)是推销费,图3—3—1巳表示了公司每月付给推销员推销费的两种方案,看图解答下列问题:(1)求Y1与Y2的函数解析式;(2)解释图中表示的两种方案是如何付推销费的?(3)如果你是推销员,应如何选择付费方案?Y<兀)Y1 Y2-。
2。
」600500400300200100解:(1) y1=20x,y2=10x+300. 图3-3-1(2) Y1是不推销产品没有推销费,每推销10件产品得推销费200元,Y2是保底工资300元,每推销10件产品再提成100元.(3)若业务能力强,平均每月保证推销多于30件时,就选择Yi的付费方案;否则,选择Y2的付费方案.点拨:图象在上方的说明它的函数值较大,反之较小,当然,两图象相交时,说明在交点处的函数值是相等的.例2.某农场种植一种蔬菜,销售员平根据往年的销售t每于克销售价(元)情况,对今年这种蔬菜的销售价格进行了预测,预测 5情况如图3—3—2,图中的抛物线(部分)表示这种蔬菜销售价与月份之间的关系,观察图象,你能得到关于这种蔬菜销售情况的哪些信息?答题要求:(1)请提供四条信息;(2)不必求函数的解析.解:(1) 2月份每千克销售价是3.5元;7对月份每千克销售价是0.5元;(3) 1月到7月的销售价逐月下降;(4) 7月到12月的销售价逐月上升;4321o I 1 2 3 4 5 6 7 s 9 10 11 12月份图3-3-2(5) 2月与7月的销售差价是每千克3元;(6) 7月份销售价最低,1月份销售价最高;(7) 6月与8月、5月与9月、4月与10月、3月与11月,2月与12月的销售价分别相同.点拨:可以运用二次函数的性质:增减性、对称性.最大(小)值等,得出多个结论.例3.某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图3—3—3所示的条形统计图:个单位:人2000(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全如图3—3—4所示的扇形统计图(要求:第二版与第三版相邻,并说明这两福统计图各有什么特点?图3-3-3(3)请你根据上述数据,对该报社提出一条合理的建议。
中考冲刺:数形结合问题—巩固练习(提高)【巩固练习】一、选择题1.如图,某工厂有两个大小相同的蓄水池,且中间有管道连通.现要向甲池中注水,若单位时间内的注水量不变,那么,从注水开始,水池乙水面上升的高度h与注水时间t之间的函数关系的图象可能是()2.若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序.①小车从光滑的斜面上滑下(小车的速度与时间的关系)②一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系)③运动员推出去的铅球(铅球的高度与时间的关系)④小杨从A到B后,停留一段时间,然后按原速度返回(路程与时间的关系)正确的顺序是 ( )A.③④②① B.①②③④ C.②③①④ D.④①③②二填空题3. 如图,一种电子游戏,电子屏幕上有一正六边形ABCDEF,点P沿直线AB从右向左移动,当出现点P与正六边形六个顶点中的至少两个顶点距离相等时,就会发出警报,则直线AB上会发出警报的点P有个.4.如下图所示,按下列方法将数轴的正半轴绕在一个圆(该圆的周长为3个单位长,且在圆周的三等分点处分别标上了数字0,1,2)上:先让原点与圆周上数字0所对应的点重合,再将正半轴按顺时针方向绕在该圆周上,使数轴上1,2,3,4……所对应的点分别与圆周上1,2,0,1,……所对应的点重合,这样,正半轴上的整数就与圆周上的数字建立了一种对应关系.(1)圆周上的数字a与数轴上的数5对应,则a= ;(2)数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是(用含n的代数式表示).5.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的_________点.三、解答题6.将如图所示的长方体石块(a>b>c)放入一圆柱形水槽内,并向水槽内匀速注水,速度为v cm3/s,直至注满水槽为止.石块可以用三种不同的方式完全放入水槽内,如图所示.在这三种情况下,水槽内的水深h (cm )与注水时间 t ( s )的函数关系如上图1-6所示.根据图象完成下列问题:(1)请分别将三种放置方式的示意图和与之相对应的函数关系图象用线连接起来;(2)水槽的高h= cm ;石块的长a= cm ;宽b= cm ;高c= cm ; (3)求图5中直线CD 的函数关系式; (4)求圆柱形水槽的底面积S .7.在数学活动中,小明为了求23411111+++++22222n …的值(结果用n 表示),设计如图1所示的几何图形.(1)请你利用这个几何图形求23411111+++++22222n …的值为_______; (2)请你利用图2,再设计一个能求23411111+++++22222n …的值的几何图形.8.探索研究:如图,在直角坐标系xOy 中,点P 为函数y =14x 2在第一象限内的图象上的任一点,点A 的坐标为12 122 123124 … (图1)(图2)(0,1),直线l 过B (0,-1)且与x 轴平行,过P 作y 轴的平行线分别交x 轴,l 于C ,Q ,连结AQ 交x 轴于H ,直线PH 交y 轴于R . (1)求证:H 点为线段AQ 的中点;(2)求证:①四边形APQR 为平行四边形;②平行四边形APQR 为菱形; (3)除P 点外,直线PH 与抛物线y =14x 2有无其它公共点?并说明理由.9.阅读材料,解答问题.利用图象法解一元二次不等式:x 2﹣2x ﹣3>0.解:设y=x 2﹣2x ﹣3,则y 是x 的二次函数.∵a=1>0,∴抛物线开口向上.又∵当y=0时,x 2﹣2x ﹣3=0,解得x 1=﹣1,x 2=3.∴由此得抛物线y=x 2﹣2x ﹣3的大致图象如图所示. 观察函数图象可知:当x <﹣1或x >3时,y >0.∴x 2﹣2x ﹣3>0的解集是:x <﹣1或x >3.(1)观察图象,直接写出一元二次不等式:x 2﹣2x ﹣3<0的解集是 _________ ;(2)仿照上例,用图象法解一元二次不等式:x 2﹣1>0(画出草图).10.(1)夜晚,小明在路灯下散步.已知小明身高1.5米,路灯的灯柱高4.5米. ①如图1,若小明在相距10米的两路灯AB 、CD 之间行走(不含两端),他前后的两个影子长分别为 FM=x 米,FN=y 米,试求y 与x 之间的函数关系式,并指出自变量x 的取值范围?x lQC PA OB HRy②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离.但在灯光下,人的速度与影子的速度却不是一样的!如图2,若小明在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度.(2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,于是单挑乌龟再来另一场比赛,不过这次路线由乌龟确定…比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办.过了许久,乌龟一路跚跚而来,跳入河中,以比在陆地上更快的速度游到对岸,抵达终点,再次获胜.根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图(实线表示乌龟,虚线表示兔子).【答案与解析】一、选择题1.【答案】C;2.【答案】A;二、填空题3.【答案】5.【解析】如图,分别以一顶点为定点,连接其与另一顶点的连线,在此图形中根据平行线分线段成比例定理可知,CD∥BE∥AF,ED∥FC∥AB,EF∥AD∥BC,EC∥FB,AE∥BD,AC∥FD,根据垂直平分线的性质及正六边形的性质可知,相互平行的一组线段的垂直平分线相等,在这五组平行线段中,AE、BD与AB垂直,其中垂直平分线必与AB平行,故无交点.故直线AB上会发出警报的点P有:CD、ED、EF、EC、AC的垂直平分线与直线AB的交点,共五个.4.【答案】(1)2 (2)3n+1;【解析】(1)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上数字a与数轴上的数5对应时a=2;(2)∵数轴上1,2,3,4,…所对应的点分别与圆周上1,2,0,1,…所对应的点重合,∴圆周上了数字0、1、2与正半轴上的整数每3个一组0、1、2,3、4、5,6、7、8,…分别对应,∴数轴上的一个整数点刚刚绕过圆周n圈(n为正整数)后,并落在圆周上数字1所对应的位置,这个整数是3n+1.故答案为:a=2;3n+1.5.【答案】点Q.三、解答题6.【答案与解析】(1)(1)图1与图4相对应,图2与图6相对应,图3与图5相对应;(2)10; a=10; b=9; c=6.(3)由题意可知C点的坐标为(45,9),D点的坐标为(53,10),设直线CD的函数关系式为h=kt+b,∴945, 1053k bk b =+⎧⎨=+⎩解得1,8.278 kb⎧=⎪⎪⎨⎪=⎪⎩∴直线CD的函数关系式为h=127 88t+;(4)石块的体积为abc=540cm3,根据图4和图6可得:10540(106)535321s s--=-. 解得S=160(cm ).7.【答案与解析】(1)设总面积为:1,最后余下的面积为:12n , 故几何图形的值为:23411111+++++22222n …的值为112n -.故答案为:112n -.8.【答案与解析】(1)证明:∵A(0,1),B (0,﹣1),∴OA=OB. 又BQ∥x 轴, ∴HA=HQ;(2)证明:①由(1)可知AH=QH ,∠AHR=∠QHP,∵AR∥PQ,∴∠RAH=∠PQH, ∴△RAH≌△PQH. ∴AR=PQ, 又AR∥PQ,∴四边形APQR 为平行四边形; ②设P (m ,m 2),∵PQ∥y 轴,则Q (m ,﹣1),则PQ=1+m 2. 过P 作PG⊥y 轴,垂足为G .在Rt△APG中,AP=+1=PQ,∴平行四边形APQR为菱形;(3)解:设直线PR为y=kx+b,由OH=CH,得H(,0),P(m,m2).代入得:,∴,∴直线PR为.设直线PR与抛物线的公共点为(x,x2),代入直线PR关系式得:x2﹣x+m2=0,(x﹣m)2=0,解得x=m.得公共点为(m,m2).所以直线PH与抛物线y=x2只有一个公共点P.9.【答案与解析】解:(1)-1<x<3;(2)设y=x2-1,则y是x的二次函数,∵a=1>0,∴抛物线开口向上.又∵当y=0时,x2-1=0,解得x1=-1,x2=1.∴由此得抛物线y=x2-1的大致图象如图所示.观察函数图象可知:当x<-1或x>1时,y>0.∴x2-1>0的解集是:x<-1或x>1.10.【答案与解析】解:(1)∵EF∥AB,∴∠MEF=∠A,∠MFE=∠B.∴△MEF∽△MAB.①===.∴=,MB=3x BF=3x-x=2x.同理,DF=2y.∵BD=10,∴2x+2y=10,∴y=-x+5,∵当EF接近AB时,影长FM接近0;当EF接近CD时,影长FM接近5,∴0<x<,②如图2所示,设运动时间为t秒,则EE′=FF′=0.8t, ∵EF∥PQ,∴∠REF=∠RPQ,∠RFE=∠RQP,∴△REF∽△RPQ,∴∴∵EE′∥RR′,∴∠PEE'=∠PRR',∠PE′E=∠PR′R,∴△PEE′∽△PRR′,∴∴∴RR'=1.2t∴1.2t= 1.2(Vt=影子米/秒)1.2t= 1.2(Vt=影子米/秒).(2)如图3所示.。
中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。
数形结合思想一、选择题1、已知点M(1-a ,a+2)在第二象限,则a 的取值范围是( )(A )a>-2 (B)-2<a<1 (C)a<-2 (D)a>1 2、在频率分布直方图中,小长方形的面积等于( )(A )相应各组的频数 (B )组数 (C )相应各组的频率 (D )组距 3、已知一次函数y kx b =+的图象如图所示,当y <0时,x 的取值范围是( )A .x >0B .x <0C .-2<x <0D .x <1 4、过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm . 则OM 的长为( )A.3cmB .5cmC .2cmD .3cm5、一个圆锥的侧面积是底面积的2倍,则这个圆锥的侧面展开图(扇形)的圆心角的度数为( ) A .600B .1800C .300D .9006、若用(a)、(b)、(c)、(d)四幅图像分别表示变量之间的关系,请按图像所给顺序,将下面的①、②、③、④对应顺序。
① 小车从光滑的斜面上滑下(小车的速度与时间的关系)② 一个弹簧不挂重物到逐渐挂重物(弹簧长度与所挂重物的重量的关系) ③ 运动员推出去的铅球(铅球的高度与时间的关系)④ 小杨从A 到B 后,停留一段时间,然后按原速度返回(路程与时间的关系) 正确的顺序是A .③④②①B .①②③④C .②③①④D .④①③②7、小圆圈是网络的结点,结点之间的边线表示它们之间的网线相联,边线标注的数字表示该网线单位时间内可以通过的最大信息量,现在的结O 1-2点A向结点B传递信息,可以分开沿不同的路线同时传递,单位时间内传递的最大信息量为:A.19B.20C.24D.268、如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果这个蓄水池以固定的流量注水,下面能大致表示水的最大深度h与时间t之间的关系的图像是( )9、如图,周长为68的矩形ABCD被分成7个全等的矩形,则矩形ABCD面积为()(A)98 (B)196 (C)280 (D) 28410、如图,在□ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,则图中面积相等的平行四边形有()(A)0对(B)1对(C)2对(D)3对二、填空题:1、把正方形ABCD沿着对角线AC的方向移动到正方形A'B'C'D'的位置,它们的重叠部分(图中的阴影部分)的面积是正方形ABCD面积的一半,若AC=2,则正方形移动的距离AA'是2、如图,在直角坐标系中,矩形ABCD的顶点B的坐标为(4,2),直线12y x b=+恰好将矩形OACB分成面积相等的两部分,则b= 。