无线电导航原理和机载设备简介
- 格式:doc
- 大小:34.00 KB
- 文档页数:4
无线电导航的原理与应用一、导言无线电导航是一种利用无线电信号进行定位和导航的技术。
它广泛应用于航空、航海、车载导航和无人机系统等领域。
了解无线电导航的原理与应用对于理解现代导航系统的工作方式至关重要。
本文将深入介绍无线电导航的原理和其在不同领域的应用。
二、无线电导航原理无线电导航是基于无线电波传播的定位和导航技术。
其原理基于以下几个关键要素:1. 信号发射器无线电导航的系统中,会有一个或多个信号发射器,常用的是卫星导航系统中的卫星。
信号发射器会发送特定频率的无线电波信号。
2. 接收器接收器负责接收信号发射器发出的无线电波信号,并将其转化为导航系统能够识别和处理的信息。
3. 测距原理无线电导航中常用的测距原理包括时间测距、多普勒效应和信号强度测距等。
这些原理可以通过接收到的信号特征来确定位置和距离。
4. 三角定位法利用多个信号发射器和接收器,可以采用三角定位法来确定准确的位置。
通过测量不同信号到达接收器的时间差和距离,可以计算出接收器的位置。
三、无线电导航的应用1. 航空导航航空领域是无线电导航最常见的应用之一。
航空导航系统利用全球定位系统(GPS)等技术,能够实时、准确地定位飞机的位置。
无线电导航在航空领域中的应用使得飞行变得更加安全和高效。
2. 航海导航航海导航依赖于无线电导航系统来确定船只的位置和航向。
借助GPS和其他卫星导航系统,船只可以在海上定位和导航,避免撞船和迷航等危险情况。
3. 车载导航车载导航系统利用无线电导航原理来为驾驶员提供路线指引和实时导航。
通过全球定位系统和地图数据,驾驶员可以更好地规划行驶路线并避开交通拥堵。
4. 无人机导航无人机的导航是依赖于无线电导航技术实现的。
无人机可以利用GPS等定位系统精确导航,实现自主飞行和遥控飞行。
5. 军事应用无线电导航在军事领域也有广泛的应用。
军事导航系统能够为士兵和战机提供准确的定位和导航信息,提升军事行动的效率。
结论无线电导航作为一种基于无线电信号的定位和导航技术,广泛应用于航空、航海、车载导航和无人机等领域。
民航常用无线电导航设备简介第一节仪表着陆系统(Instrument Landing System — ILS)仪表着陆系统由地面设备和机载设备组成。
地面设备可以分为三个部分:航向信标台、下滑信标台、指点信标台或测距仪台。
当测距仪成为仪表着陆系统的一部分时,其通常安装在下滑信标台。
机载设备则包括相应的天线、接收机、控制器及指示器等。
1.地面设备的组成①航向信标:航向信标的主要作用是给进近和着陆的飞机提供对准跑道中心延长线航向道(方位)信息。
工作在VHF频段,频率范围为108.1~111.975MHz,每个频道之间的间隔为0.05MHz;并优先使用以MHz为单位的小数点后一位为奇数的那些频率点,例如109.7、110.3等;小数点后一位为偶数的那些频率点则分配给了全向信标。
因此,航向信标只有40个频道可使用。
②下滑信标:下滑信标的主要作用是给进近和着陆的飞机提供与地面成一定角度的下滑道(仰角)信息。
工作在UHF频段,频率范围为328.6~335.4MHz,每个频道之间的间隔为0.15MHz,其工作频道与航向信标的工作频道配对使用,因此也只有40个频道可供使用。
③指点信标:用于给进近和着陆的飞机提供距跑道入口固定点的距离信息。
工作在VHF 频段,固定频率为75MHz。
④测距仪:用测距仪代替指点信标时,能给进近和着陆的飞机提供至测距仪台或着陆点或跑道入口的连续距离。
工作在L波段,频率范围为962~1215MHz。
与ILS合用时,其工作频率与航向信标配对使用。
各台的典型位置如图1—1所示。
图1—1 ILS典型位置示意图2.ILS的基本定义和性能类别2.1.基本定义调制度差(ddm):较大音频信号对射频的调制度百分数减去较小音频信号对射频的调制度百分数的值。
航道线:在任何水平面内最靠近跑道中心线的ddm为零的各点的轨迹。
航道扇区(航道宽度):从航道线向两边扩展,到ddm为0.155(150微安)的各点轨迹所限制的区域。
无线电导航设备与系统概述无线电导航是借助于载体上的电子设备接收和处理无线电波在空间传播时的无线电信号参量(如幅度、频率及相位等)获得载体相对导航台的导航参量(如方位、距离、速度等),从而获取载体的实时位置信息,以保障载体安全、准确、及时地到达目的地的一种导航手段。
无线电导航具有不受时间、天气的限制;精度高;定位时间短;设备简单、可靠等优点。
无线电导航的主要缺点在于它必须辐射和接收无线电波因而易被发现和干扰,且绝大多数无线电导航设备需要载体外的导航台支持工作,一旦导航台失效,将使与之相应的无线电导航设备在此期间无法使用。
航空导航系统所必备●确定所产生的信号特性的方法;●带有天线的发射机,用来产生和发射无线电波;●飞机接收设备和天线,用来截获信号并对接收到的信号进行选择和译码;●为驾驶员提供的适当的视觉显示装置,用来对接收到的信号进行适当的评价。
导航参量●用于描述载体的航行状态●载体航行状态指的是载体作为一个刚体在空间运动时所表现的物理状态,通常与一定的参照系(如载体坐标系、当地地理坐标系等)相联系,它们可以从不同的角度来进行描述,如方位、距离、位置、速度、姿态等,而狭义的航行状态通常仅仅局限于速度和姿态的描述。
●方位:以经线北端为基准,顺时针测量到水平面上某方向线的角度。
●相对方位:以飞机纵轴的前端与观测线在水平面上的夹角来表示目标的方向。
方位相对方位基本原理在二维或三维空间中,若导航台的位置已知,相对于该位置的某一导航参量相同的点的轨迹应为一条曲线或一个曲面,该曲线或曲面称为位置线或位置面;单值确定载体的位置,至少需要测定两条位置线(在二维空间内)或三个位置面(在三维空间内),根据相交定位法实现定位。
位置线(a)圆位置线;(b)直线位置线;(c) 等高线;(d)双曲线位置线相交定位 位置线定位原理☐ 如果通过无线电方式测量到了三个独立的几何参量,则可以得到,三个独立的位置面方程:⎪⎩⎪⎨⎧===),,(),,(),,(332111z y x f u z y x f u z y x f u☐ 因而可以得到载体在空间中的三维位置。
导航工程技术专业学习教程无线电导航原理与技术导航工程技术专业学习教程:无线电导航原理与技术无线电导航是现代导航系统中的重要组成部分,它利用无线电信号来确定目标位置和导航航行的技术。
本文将介绍无线电导航的原理及相关技术。
一、无线电导航原理无线电导航的原理基于无线电信号的传播和接收。
导航系统通过测量无线电信号的时间、频率和幅度等参数,来判断接收器与发射器之间的距离和方向,从而实现目标的定位和导航。
1. 无线电信号传播无线电信号在空间中传播时会受到衰减和干扰。
衰减是指信号在传播过程中损失能量,其程度与距离和介质特性有关。
干扰是指其他无线电信号或物体对信号传播造成的影响。
了解信号传播的特性对于设计和优化导航系统至关重要。
2. 接收信号处理导航系统的接收器通过接收信号并进行处理来获取目标的位置和导航信息。
接收信号处理的关键是信号的解调和解调。
解调是指恢复信号的调制特性,包括频率、幅度和相位等。
解调则是指从解调信号中提取目标信息,例如距离、速度和方向等。
二、无线电导航技术无线电导航技术应用广泛,包括卫星导航系统、无线电信标和无线电方位器等。
1. 卫星导航系统卫星导航系统是利用卫星发射无线电信号,通过接收卫星信号来确定目标位置和导航。
全球定位系统(GPS)是最常用的卫星导航系统之一,它由多颗卫星组成,可提供全球覆盖的导航服务。
其他卫星导航系统还包括伽利略导航系统和北斗导航系统等。
2. 无线电信标无线电信标是一种用于导航的无线电设备,它发射特定的无线电信号,标记着特定的位置。
航空器和船舶等可以通过接收和识别无线电信标的信号,来确定自身的位置和导航航行。
无线电信标的种类有很多,例如雷达信标、无线电信号灯和无线电浮标等。
3. 无线电方位器无线电方位器是一种利用无线电信号进行方位测量的设备,常用于航空和海洋导航中。
通过测量接收到的信号到达时间差异和信号强度,无线电方位器可以确定目标相对于其位置的角度和方向。
无线电方位器的应用包括无线电导航台和无线电方位查找器等。
飞机导航原理
飞机导航是指飞行器确定自身位置、航路和目标的过程。
导航系统通过使用各种技术和设备,包括地面导航站、无线电导航设备、惯导系统和卫星导航系统,来帮助飞行员准确地导航。
地面导航站是位于地面上的设施,用于发送无线电信号以帮助飞机确定自身位置和航向。
其中最常用的地面导航设备是非方向性无线电信标(NDB)和全向信标(VOR)。
非方向性无线电信标发送无干扰信号,飞机通过接收信号来确定自身距离信标的距离。
全向信标则发送带有方向信息的信号,飞机可以通过接收该信号来确定自身相对于信标的方向。
无线电导航设备是飞机上的导航设备,用于确定自身位置和航向。
最常见的无线电导航设备包括自动导航系统(INS)和惯性导航系统(IRS)。
这些系统使用陀螺仪和加速度计等惯性传感器来检测飞机的运动,并根据已知的起始位置和方向计算当前位置和航向。
卫星导航系统是一种使用卫星信号来确定位置和航向的导航系统。
其中最著名的卫星导航系统是全球定位系统(GPS)。
GPS系统使用一组卫星定位导航接收机的位置,并通过卫星信号来计算接收机的位置和航向。
飞机导航的原理是通过使用以上的技术和设备,将飞机的位置和航向信息传递给飞行员,以确保飞机沿着预定的航线安全地导航。
飞行员可以根据导航系统提供的信息进行航向调整和航路规划,以达到目标地点。
需要注意的是,飞机导航系统的精度和可靠性对于飞行安全至关重要。
因此,飞行员必须定期检查和校准导航设备,以确保其正常运行。
此外,飞行员还需要时刻关注导航设备的指示和警告信息,以及接收来自地面导航站的任何导航更新或通知。
如何使用无线电导航进行航海定位在现代导航中,无线电导航以其高效、准确的特点成为航海定位的重要工具。
它利用无线电技术,通过接收和处理无线电信号来确定船只的位置以及航向。
本文将探讨如何使用无线电导航进行航海定位。
一、无线电导航的原理和技术无线电导航主要依靠地面基站或卫星发射的信号。
常用的无线电导航系统包括全球定位系统(GPS)、超高频导航系统(VHF)和超外差超高频导航系统(V-OCEAN)等。
GPS系统以一组卫星向地表发射信号,并通过接收和处理这些信号来确定接收机的位置。
它的优点是精度高,可在全球范围内实现准确的定位。
VHF导航系统则通过地面基站向船只发送无线电信号,船只利用接收机接收信号并计算自身位置。
V-OCEAN系统则是在VHF基础上增加了超外差技术,进一步提高了导航精度。
二、选择适合的无线电导航设备在进行航海定位时,选择适合的无线电导航设备至关重要。
需要考虑的因素包括导航系统的覆盖范围、精度要求、设备价格和可靠性等。
具体而言,如果航行范围主要在陆地附近,GPS系统可能是最佳选择;如果航行范围广泛以及精度要求较高,可以考虑使用VHF或V-OCEAN系统。
此外,还应注意无线电导航设备的可靠性和安全性。
首先,选择正规品牌的设备,不要购买低质量、偷工减料的产品。
其次,定期进行设备维护,确保设备始终正常运行。
最后,了解设备的使用说明书,熟悉各种功能和操作方法,以充分利用无线电导航设备的优势。
三、航海定位中的无线电导航技巧在实际航海过程中,利用无线电导航设备进行定位需要一些技巧。
以下是一些建议:1. 多样化导航工具。
无线电导航是重要的工具之一,但不可完全依赖它。
在航行过程中,最好结合使用其他导航工具,如罗盘、雷达等。
这样可以提高定位的准确性和可靠性。
2. 定期校正导航设备。
无线电导航设备的准确性会受到外界环境的影响,如大气条件和地球磁场等。
因此,定期校正导航设备是必要的。
可以通过对比其他导航工具的信息,如航行图、测距仪等,来验证无线电导航设备的准确性。
无线电导航原理无线电导航呢,就像是有一群超级小的小精灵在空中飞舞着给你指路。
这些小精灵其实就是无线电波啦。
你知道吗,无线电波这东西可神奇了,它能在空气中到处跑,就像调皮的小娃娃在大街小巷乱窜。
我们先来说说最基本的一种无线电导航设备——无方向信标(NDB)。
这个NDB就像是一个超级大喇叭,一直在喊:“我在这儿呢,我在这儿呢!”它不停地向四周发射无线电波。
那飞机或者轮船上面的接收设备呢,就像一个超级灵敏的小耳朵,听到这个声音之后,就能知道这个“大喇叭”在哪个方向啦。
比如说,你在一片大雾的森林里迷路了,突然听到有个人在一个方向大喊,你是不是就大概能知道往哪边走啦?这NDB就是这么个道理。
然后呀,还有甚高频全向信标(VOR)。
这个VOR就更高级一点啦,它就像是一个会发光的灯塔,不过这个光不是我们肉眼能看到的光,而是无线电波组成的“光”。
它发射出的电波就像一圈一圈的光环一样,每个光环都代表着不同的方向。
飞机或者船上的设备接收到这些电波之后,就能精确地知道自己相对于这个VOR台的方向啦。
这就好比你在一个大圆盘中间,圆盘上有很多彩色的线条,你只要看自己站在哪个线条的方向上,就知道自己该往哪走了。
再来说说测距仪(DME)。
这东西就像是一把超级精确的尺子。
它是怎么量距离的呢?它也是通过无线电波来工作的。
飞机或者船向DME台发射一个信号,然后这个台再回一个信号,就像两个人互相扔球一样。
通过计算这个信号来回的时间,就能算出两者之间的距离啦。
你想啊,你大喊一声,然后听到回声,如果你知道声音传播的速度,是不是就能算出你和那个反射声音的东西之间的距离呢?这DME就是这么聪明。
全球定位系统(GPS)那可就是无线电导航里的超级明星啦。
GPS就像天上有好多好多小眼睛在看着你。
这些小眼睛就是卫星啦。
卫星不停地向地球发射无线电信号,然后你的GPS接收设备就接收这些信号。
通过接收好多颗卫星的信号,就能算出自己在地球上的位置,精确到很小很小的范围呢。
★无线电导航原理和机载设备简介★导航概述早期的飞行器在空中飞行仅依靠地标导航--飞行中盯着公路、铁路、河流等线状地标;山峰、灯塔、公路交汇点等点状地标;湖泊、城镇等面状地标。
后来,空勤人员利用航空地图、磁罗盘、计算尺、时钟等工具和他们的天文、地理、数学知识,根据风速、风向计算航线角,结合地标修正航线偏差,这种工作叫做“空中领航”。
这种方法虽然“原始”,但航空先驱林伯当年就是依靠这些东西驾驶一架活塞式单发动机飞机“圣路易斯精神号”独自由美国西海岸起程,直接飞越大西洋到达巴黎的,他飞越茫茫大西洋时还通过观察海上的洋流、夜空中的星座来辨别方向、确定位置。
空中领航学是飞行员的一门必修课,其核心是用矢量合成原理修正风对飞行航迹的影响。
随着无线电技术的发展,各式各样的电子设备为飞行器提供精确的导航信息:有用于洲际导航的奥米加导航系统(OMEGA)、适用于广阔海面的罗兰系统(LORAN-A,LORAN-C)、用于近距导航的甚高频全向无线电信标导航系统(VORTAC),另外还有一些专为军事用途开发的导航信标和雷达系统。
现在,利用同步卫星工作的全球定位系统(GPS)已开始广泛使用。
但 VORTAC 仍是近距导航的主流,绝大多数现代军民用飞机,包括民航客机、小型通用飞机都配备有VOR接收机(VOR,very high frequency ommi-directional range)。
VORTAC是VOR/DME和TACAN的统称。
VOR/DME是民用系统,TACAN是为适应舰载、移动台站而开发的军用战术空中导航系统(即塔康导航系统)。
两者的工作原理和技术规范都不同,但使用上它们是完全一样的。
事实上,有的VOR/DME和TACAN发射台站是建在一起、使用同一个频率的,对空勤人员来说,只是一个VOR信标。
VOR信标是世界上最多、最主要的无线电导航点。
许许多多的VOR台站相隔一定距离成网络状散点分布,当飞机上的接收机收到VOR信标的信号,飞行人员就可通过专用仪表判断飞机与该发射台站的相对位置,如果台站信号是带测距的(DME,distance measuring equitment),还可知道飞机与台站的距离,从而确定飞机当前的位置,并知道应以多少度的航线角飞抵目的地。
如何利用无线电导航进行测绘无线电导航是一种利用电波传输和接收信号来确定位置和测量地理数据的技术。
它广泛应用于测绘领域,提供精确的地理信息和地图制作。
本文将探讨如何利用无线电导航进行测绘,并介绍其中的原理、设备和应用场景。
一、无线电导航的基本原理无线电导航主要依靠卫星信号和接收设备来实现。
全球定位系统(GPS)是最常用的无线电导航技术之一。
GPS系统由一组地球轨道卫星和地面接收设备组成。
卫星发射精确的信号,并传输到地面接收器。
接收器通过计算信号到达的时间差来确定位置。
这种技术不仅可以确定位置,还可以提供高度、速度和方向等信息。
二、无线电导航设备无线电导航设备由接收器和天线组成。
接收器可以是手持设备、车载设备或者是安装在航空器中的设备。
天线用于接收卫星信号,并将其传输到接收器。
接收器通过解码信号以获取位置信息。
现代的无线电导航设备不仅支持GPS系统,还可以与其他导航系统(如GLONASS、Galileo等)兼容,提高定位的准确性和可用性。
三、测绘应用无线电导航在测绘领域具有广泛的应用。
首先,无线电导航可以用于地图制作。
通过在地面上安装接收设备,调查员可以收集卫星信号并精确测量地理坐标。
这些测量数据用于地图制作,提供准确的地理信息。
其次,无线电导航可以用于测量地形和地物高度。
接收设备可以通过接收卫星信号来计算高度差,从而提供地物和地形的高度信息。
这对于城市规划、土地开发和环境管理等领域至关重要。
此外,无线电导航还可以用于测量海洋和大洋的深度和水位,为海洋测绘和航海提供关键数据。
四、无线电导航的发展趋势随着科技的进步,无线电导航技术正不断发展和完善。
一方面,无线电导航系统将不断增加卫星数量和覆盖范围,提供更好的定位准确性和可用性。
另一方面,无线电导航设备将进一步小型化和智能化,使其更易于携带和使用。
此外,无线电导航还将与其他技术相结合,如惯性测量单元(IMU)和地理信息系统(GIS),提供更多的功能和应用。
无线电导航原理和机载设备简介导航概述早期的飞行器在空中飞行仅依靠地标导航--飞行中盯着公路、铁路、河流等线状地标;山峰、灯塔、公路交汇点等点状地标;湖泊、城镇等面状地标。
后来,空勤人员利用航空地图、磁罗盘、计算尺、时钟等工具和他们的天文、地理、数学知识,根据风速、风向计算航线角,结合地标修正航线偏差,这种工作叫做“空中领航”。
这种方法虽然“原始”,但航空先驱林伯当年就是依靠这些东西驾驶一架活塞式单发动机飞机“圣路易斯精神号”独自由美国西海岸起程,直接飞越大西洋到达巴黎的,他飞越茫茫大西洋时还通过观察海上的洋流、夜空中的星座来辨别方向、确定位置。
空中领航学是飞行员的一门必修课,其核心是用矢量合成原理修正风对飞行航迹的影响。
随着无线电技术的发展,各式各样的电子设备为飞行器提供精确的导航信息:有用于洲际导航的奥米加导航系统(OMEGA)、适用于广阔海面的罗兰系统(LORAN-A,LORAN-C)、用于近距导航的甚高频全向无线电信标导航系统(VORTAC),另外还有一些专为军事用途开发的导航信标和雷达系统。
现在,利用同步卫星工作的全球定位系统(GPS)已开始广泛使用。
但VORTAC 仍是近距导航的主流,绝大多数现代军民用飞机,包括民航客机、小型通用飞机都配备有VOR接收机(VOR,very high frequency ommi-directional range)。
VORTAC是VOR/DME和TACAN的统称。
VOR/DME是民用系统,TACAN是为适应舰载、移动台站而开发的军用战术空中导航系统(即塔康导航系统)。
两者的工作原理和技术规范都不同,但使用上它们是完全一样的。
事实上,有的VOR/DME和TACAN发射台站是建在一起、使用同一个频率的,对空勤人员来说,只是一个VOR信标。
VOR信标是世界上最多、最主要的无线电导航点。
许许多多的VOR台站相隔一定距离成网络状散点分布,当飞机上的接收机收到VOR信标的信号,飞行人员就可通过专用仪表判断飞机与该发射台站的相对位置,如果台站信号是带测距的(DME,distance measuring equitment),还可知道飞机与台站的距离,从而确定飞机当前的位置,并知道应以多少度的航线角飞抵目的地。
无线电导航原理与系统无线电导航是一种通过使用无线电技术来确定位置和导航的方法。
它通过接收和处理从地面或者卫星发射的信号来确定接收器的位置和方向。
无线电导航系统的原理涉及到以下几个方面。
首先,无线电导航依赖于距离和方向的测量。
无线电导航系统通常使用三角测量原理来确定位置。
接收器同时接收到至少三个信号,并测量每一个信号到达接收器的时间差。
通过测量这些时间差,接收器可以计算出到每个信号源的距离。
而通过将这些距离和信号源的位置进行三角测量,接收器可以得出自身的位置。
其次,无线电导航还依赖于卫星。
全球定位系统(GPS)是无线电导航系统中应用最广泛的卫星导航系统之一。
GPS系统由多颗卫星组成,这些卫星都在地球轨道上运行。
接收器接收到这些卫星发射的信号,并使用这些信号来计算出自己的位置。
通过接收到多颗卫星的信号,接收器可以通过三角测量计算出自身的位置。
此外,无线电导航还涉及到信号处理和解调。
当接收器接收到从地面或卫星发射的信号时,它需要将这些信号进行处理和解调,以便得到有用的信息。
信号处理涉及到去除噪音、增强信号等操作,以保证接收到的信号的质量。
解调则是将信号转化为数字信息,从而可以进行位置和导航计算。
最后,无线电导航还依赖于地面设备。
除了卫星之外,无线电导航系统还依赖于地面设备,如基站和测量站。
这些设备用来发射信号,并与接收器进行通信。
地面设备的准确性和稳定性直接影响到无线电导航系统的精确度和可靠性。
综上所述,无线电导航系统的原理涉及到距离和方向的测量、卫星导航、信号处理和解调以及地面设备。
通过利用这些原理,无线电导航系统能够准确地确定位置和导航。
无线电导航在航空、航海、军事等领域有着广泛的应用,为人们的出行和导航提供了重要的帮助。
无线电导航原理和机载设备简介早期的飞行器在空中飞行仅依靠地标导航--飞行中盯着公路、铁路、河流等线状地标;山峰、灯塔、公路交汇点等点状地标;湖泊、城镇等面状地标。
后来,空勤人员利用航空地图、磁罗盘、计算尺、时钟等工具和他们的天文、地理、数学知识,根据风速、风向计算航线角,结合地标修正航线偏差,这种工作叫做“空中领航”。
这种方法虽然“原始”,但航空先驱林伯当年就是依靠这些东西驾驶一架活塞式单发动机飞机“圣路易斯精神号”独自由美国西海岸起程,直接飞越大西洋到达巴黎的,他飞越茫茫大西洋时还通过观察海上的洋流、夜空中的星座来辨别方向、确定位置。
空中领航学是飞行员的一门必修课,其核心是用矢量合成原理修正风对飞行航迹的影响。
随着无线电技术的发展,各式各样的电子设备为飞行器提供精确的导航信息:有用于洲际导航的奥米加导航系统(OMEGA)、适用于广阔海面的罗兰系统(LORAN-A,LORAN-C)、用于近距导航的甚高频全向无线电信标导航系统(VORTAC),另外还有一些专为军事用途开发的导航信标和雷达系统。
现在,利用同步卫星工作的全球定位系统(GPS)已开始广泛使用。
但 VORTAC 仍是近距导航的主流,绝大多数现代军民用飞机,包括民航客机、小型通用飞机都配备有VOR接收机(VOR,very high frequency ommi-directional range)。
VORTAC是VOR/DME和TACAN的统称。
VOR/DME是民用系统,TACAN是为适应舰载、移动台站而开发的军用战术空中导航系统(即塔康导航系统)。
两者的工作原理和技术规范都不同,但使用上它们是完全一样的。
事实上,有的VOR/DME 和TACAN发射台站是建在一起、使用同一个频率的,对空勤人员来说,只是一个VOR信标。
VOR信标是世界上最多、最主要的无线电导航点。
许许多多的VOR台站相隔一定距离成网络状散点分布,当飞机上的接收机收到VOR信标的信号,飞行人员就可通过专用仪表判断飞机与该发射台站的相对位置,如果台站信号是带测距的(DME,distance measuring equitment),还可知道飞机与台站的距离,从而确定飞机当前的位置,并知道应以多少度的航线角飞抵目的地。
VOR/DME/NDB基本原理VOR:very high frequency ommi-directional range,甚高频全向无线电信标VOR信号发射机和接收机的工作频率在108.0-117.95 MHz之间。
VOR台站发射机发送的信号有两个:一个是相位固定的基准信号;另一个信号的相位是变化的,同时象灯塔的旋转探照灯一样向360度的每一个角度发射,而向各个角度发射的信号的相位都是不同的,它们与基准信号的相位差自然就互不相同。
向360度发射的信号(指向磁北极)与基准信号是同相的,而向 180度发射的信号(指向磁南极)与基准信号相位差180度。
飞机上的VOR接收机根据所收到的两个信号的相位差就可判断飞机处于台站向哪一个角度发射的信号上。
也就是说,可以判断飞机在以台站发射机为圆心的哪一条“半径”上。
VOR台站发送的信号形成360条“半径”,辐射状向各个方向传送,每条“半径”就是一条航道,称为“Radial”。
假如:飞机位于平州VOR台站(该台站代号为POU)的正东南方,朝台站飞去,飞越台站时即改航向,往正西南方飞去。
用导航术语来说就是:飞机沿POU的 135 Radial(R-135),飞向(inbound)台站,即其磁航向为315度,到达POU后,沿R-225,飞离(outbound)台站,即其磁航向为225度。
注意:当飞机沿某条Radial飞离台站,其磁航向就是该条Radial号数;但当飞机沿某条Radial飞向台站,其磁航向就与该条 Radial 的号数差180。
由于VOR的无线电信号与电视广播、收音机的FM广播一样,是直线传播的,会被山峰等障碍物阻隔,所以即使距离很近,在地面也很少能接收到VOR信号,通常要飞高至离地2000-3000英尺才收到信号,飞得越高,接收的距离就越远。
在18000英尺(5486米)以下,VOR最大接收距离约在40到 130海里(1海里=1.852公里)之间,视障碍物等因素而定。
在18000ft以上,最大接收距离约为130海里。
DME:distance measuring equitment,测距装置前面提过,有的VOR台站是带有DME的,DME工作在UHF频段,但空勤人员不必理会它的频率,只要调好VOR的频率,接收到信号,过一会,距离数字就会计算出来显示在仪表板上。
简单工作原理是这样的:机载DME发射信号给地面台站上的DME,并接收地面DME应答回来的信号,测量发射信号与应签信号的时间差,取时间差的一半,就可计算出飞机与地面台站的直线距离。
但应注意,仪表板上显示的距离是飞机与地面台站的斜边距离,单位为海里。
由勾股定理可知,飞机在地面的投影与台站的距离应略小于这个斜边距离的。
同样道理,DME仪表板上显示的速度也是“斜”的,表示飞机与台站的“距离缩短率”,单位是节,它既不等于地速,也不等于表速。
根据DME显示的距离、速度,可大致估算飞机的地速和到达台站所需时间。
NDB:non-directional beacon,无方向性信标,或称“归航台”NDB是现今仍在使用中,最古老的电子导航设备,在一些没有仪表着陆系统的小机场附近,常建有廉价的NDB台站,用作导航、着陆指引。
其名称“无方向性”是指台站向各个方向发射的信号都是一样的,不象VOR那样互相有(相位)差别。
飞机上的NDB信号接收机叫做ADF(automatic direction finder,方位角指示器)。
ADF的仪表头只有一支指针,当接收到NDB信号,ADF的指针就指向NDB台站所在的方向。
如果飞机径直朝台站飞去,指针就指着前方,当飞机飞过台站并继续往前飞,指针会转过180度指向后方。
机载电子导航设备简介这里先明确一下:VOR和NDB都是地面的台站,分别发射VOR信号和NDB信号给飞机上的Nav1、Nav2和ADF接收机,在FS98里面,飞 Cessna182S时按键Shift-2 或用Mouse点击仪表板下方的“航空电子设备总开关”就可见到这些接收机的控制面板(同时还见到机载DME、自动驾驶仪等设备的控制面板)。
Nav1、Nav2和ADF这三台接收机除有控制面板外,还各有一个圆形仪表头安装在飞机主仪表板的右侧,指示具体的导航信息。
与Nav1和Nav2接收机连接的仪表头都称为OBI,分别为OBI1和OBI2。
机载DME也连接一个长方形的数字表头,安装在这三个圆形表头上方。
COM1和Nav1面板COM1:甚高频无线通讯电台,频率范围118.0-136.975MHz。
Nav1:可接收VOR信号和完整的ILS信号,频率范围108.0-117.95MHz。
Nav2面板Nav2只用于接收VOR信号。
用Mouse点击数字以改变接收频率。
ADF面板接收NDB信号,频率范围200-400KHz机载DME面板左边数字为计算出的距离和速度。
右边R1/R2开关用来切换显示Nav1和Nav2的DME计算结果。
应答器面板(transponder)接收空中交通管制雷达的信号,并回应发射四位数字信号给空中交通管制雷达,让空管员在雷达上看到飞机的位置,甚至高度。
自动驾驶仪控制面板(autopilot)DME表头从左到右显示距离、速度和到达所选VOR台站所需时间,下方还带有Nav1、Nav2的显示切换关。
OBI2Omni-Bearing Indicator,与Nav2接收机连接的仪表,显示VOR信息。
OBS旋钮Omni-Bearing Selector,使刻度盘转动以选定航线(Radial)CDI指针Course Deviation Indicator,航线偏差指针,指示飞机当前位置在OBS所选的航线(Radial)上、偏向左边或偏向右边。
To/From/Off 标志三角形向上表示To;三角形向下表示From;红白间条表示Off--未接收到OBS 所选的Radial信号OBI1Omni-Bearing Indicator,与Nav1接收机连接的仪表,除具OBI2的功能外,还显示仪表着陆系统(ILS)的进近航路的水平及垂直位置信息。
GS标志To/From/Off标志移到下方。
增加GS标志,表示是否接收到ILS的下滑道(Glide Slope)信号。
红白间条表示接收不到信号,此时下滑道指针未被激活,不起作用。
下滑道指针指示飞机当前高度与ILS下滑道规定高度的偏差。
ADFAutomatic Direction Finder,与NDB接收机连接的表头,称为“方位角指示器”。
接收到信号后指针直接指向台站所在方位。
旋钮和刻度盘是纯机械的辅助显示装置,与指针指向、信号接收无关。
旋钮和刻度盘的作用是:指示飞向台站应取的航向与当前飞机航向相差的度数。
左图所示,台站在飞机的左前方,角度偏差在20-25度之间。
总结:1、VOR是地面发射台站,Nav是机载接收机。
2、接收机Nav有控制面板,按Shift-2打开的就是控制面板,在上面可调节Nav的接收频率。
3、接收机Nav还有仪表头,叫OBI,它装在飞机的主仪表板右侧,显示具体的导航信息。
4、整个OBI(仪表头)由四部分组成:CDI指针、To/From/Off 标志、OBS 旋钮、刻度盘。
5、Nav1所接的仪表头OBI1本身可指示VOR信息(与OBI2一样)。
6、为了指示仪表着陆系统的ILS信息,OBI1比OBI2多了一个GS标志和一支下滑道指针。
GS标志表示是否接收到信号,下滑道指针和CDI共两支指针,分别指ILS的水平、垂直方向的位置信息。
下一篇开始将具体讲述如何使用VOR/DME、NDB、ILS信号和机载电子设备进行导航和着陆。
但首先必须理解上面提到原理,熟记有关概念及其英文缩写。
Redstar (CFSO002)。