煤制合成气1
- 格式:pptx
- 大小:653.36 KB
- 文档页数:31
煤的应用基煤是一种重要的化石燃料,广泛应用于工业和生活领域。
本文将从能源、工业和生活三个方面介绍煤的应用基。
一、能源领域1. 电力发电:煤是世界上主要的电力发电燃料之一。
通过燃烧煤炭,产生的高温蒸汽可推动涡轮发电机转动,进而产生电能。
煤电厂在全球范围内提供了大量的电力供应。
2. 热能利用:煤也可以作为供热能源使用。
例如,煤炉、煤炭锅炉等设备可以将煤炭燃烧产生的热能用于取暖、烹饪等用途。
3. 工业燃料:煤可以作为工业生产过程中的燃料使用,如钢铁、水泥、化工等行业。
煤的高热值和廉价性质使其成为许多工业领域的首选能源。
二、工业领域1. 炼焦煤:炼焦煤是一种重要的冶金原料,用于高炉冶炼。
通过加热炼焦煤,可将其中的挥发分和杂质除去,留下高纯度的焦炭。
焦炭在冶金行业中用作还原剂和燃料,广泛应用于钢铁生产。
2. 煤制合成气:通过特殊工艺将煤转化为合成气,可用于合成液体燃料、化工原料等。
煤制合成气技术在化工工业中具有重要地位,可以实现煤的高效利用和资源转化。
3. 煤炭化工:煤炭化工是利用煤炭为原料生产化工产品的领域。
例如,通过煤制造煤焦油、煤焦油制得的苯、酚等可用于合成染料、医药、塑料等产品。
三、生活领域1. 燃料和燃气:在一些地区,煤仍然是生活燃料的重要来源。
例如,一些家庭仍然使用煤炉进行烹饪和取暖。
此外,煤炭还可以通过加工转化为煤气,供应民用燃气需求。
2. 煤焦油产品:煤焦油是煤炭的副产品,可用于制造沥青、润滑油、染料等产品。
这些产品在生活中广泛应用,如道路建设、机械润滑等。
3. 煤炭燃料添加剂:煤炭燃料添加剂是一种将煤炭进行精细加工后的产品,用于改善煤的燃烧性能和降低环境污染。
这些添加剂可以提高煤的燃烧效率和燃烧稳定性,减少煤炭燃烧产生的废气排放,对环境保护具有积极意义。
煤在能源、工业和生活领域都有着广泛的应用。
作为一种丰富的化石燃料资源,煤的应用基为社会经济发展提供了重要支撑。
然而,煤炭的燃烧也会产生大量的二氧化碳和污染物,对环境造成不良影响。
第五章合成气的生产过程5。
1 概述合成气是指一氧化碳和氢气的混和气,英文缩写是Syngas。
其H2/ CO(摩尔比)由1/2到3/1。
合成气在化学工业中有着重要作用。
5.1.1 合成气的生产方法(1)以煤为原料的生产方法:有间歇和连续两种操作方式。
煤制合成气中H2/ CO比值较低,适于合成有机化合物。
(2)以天然气为原料的生产方法:主要有转化法和部分氧化法.目前工业上多采用水蒸气转化法(steam reforming),该法制得的合成气中H2/ CO比值理论上是3,有利于用来制造合成氨或氢气。
(3) 以重油或渣油为原料的生产方法:主要采用部分氧化法(partial oxidation).5。
1。
2.1 工业化的主要产品(1)合成氨(2)合成甲醇(3)合成醋酸(4)烯烃的氢甲酰化产品(5)合成天然气、汽油和柴油5.1.2。
2 合成气应用新途径(1)直接合成乙烯等低碳烯烃(2)合成气经甲醇再转化为烃类(3)甲醇同系化制乙烯(4)合成低碳醇(5)合成乙二醇(6)合成气与烯烃衍生物羰基化产物5.2 由煤制合成气以煤或焦炭为原料,以氧气(空气、富氧或纯氧)、水蒸气等为气化剂,在高温条件下通过化学反应把煤或焦炭中的可燃部分转化为气体的过程,其有效成分包括一氧化碳、氢气和甲烷等。
5。
2.1。
1煤气化的基本反应煤气化过程的主要反应有:这些反应中,碳与水蒸气反应的意义最大,此反应为强吸热过程。
碳与二氧化碳的还原反应也是重要的气化反应。
气化生成的混合气称为水煤气.总过程为强吸热的。
提高反应温度对煤气化有利,但不利于甲烷的生成。
当温度高于900℃时,CH4和CO2的平衡浓度接近于零.低压有利于CO和H2生成,反之,增大压力有利于CH4生成。
5.2。
1.2 煤气化的反应条件(1)温度一般操作温度在1100℃以上。
(2) 压力一般为2。
5~3。
2MPa。
(3)水蒸气和氧气的比例H2O/O2比值要视采用的煤气化生产方法来定。
二甲醚原料----合成气合成气的主要组分为CO和H2,可作为化学工业的基础原料,亦可作为制氢气和发电的原料。
经过多年的发展,目前以天然气、煤为原料的合成气制备工艺已很成熟,以合成气为原料的合成氨、含氧化物、烃类及碳一化工生产技术均已投入商业运行。
清洁高效的煤气化联合循环发电系统的成功开发,进一步促进了合成气制备技术的发展。
合成气的用途广泛,廉价、清洁的合成气制备过程是实现绿色化工、合成液体燃料和优质冶金产品的基础。
1合成气的制备工艺根据所用原料和设备的不同,合成气制备工艺可以分为不同的类型,目前大多数合成气制备工艺是以处理天然气和煤这2种原料的工艺为基础发展起来的。
1.1以天然气为原料的合成气制备工艺以天然气为原料制备合成气是一个复杂的反应过程,其主要的反应包括天然气的蒸汽转化反应(1)、部分氧化反应(2)、完全燃烧反应(3)、一氧化碳变换反应(4)和甲烷与二氧化碳重整反应(5)。
CH4+H2O CO+3H2+206 kJ/mol (1)CH4+0·5O2CO+2H2-36 kJ/mol (2)CH4+2O2CO2+2H2O -802 kJ/mol (3)CO+H2O CO2+H2-41 kJ/mol (4)CH4+CO22CO+2H2+247 kJ/mol (5)这几个主要反应的不同组合、不同的实施方式和生产装置,形成了天然气转化制备合成气的多种工艺。
从工艺特征上来讲,目前成熟的天然气转化制备合成气的工艺可分为管式炉蒸汽转化法、部分氧化法和两者的组合方法等三大类。
1.1.1甲烷蒸汽转化甲烷蒸汽转化的代表反应式为(1)。
工业上使用以Ni为活性组分,载体可用硅铝酸钙、铝酸钙以及难熔的耐火氧化物为催化剂,生成的合成气中H2/CO体积比约为3:0,适合于制备合成氨和氢气为主产品的工艺。
此工艺能耗高,燃料天然气约占天然气总用量的1/3,高温下催化剂易失活,设备庞大,投资和操作费用高。
1.1.2甲烷非催化部分氧化甲烷非催化部分氧化的代表反应式为(2)。
合成气的制备及应用研究一、概述合成气是由一定比例的一氧化碳和氢气组成的混合气体,可被广泛应用于化学工业、能源领域和合成化学等领域,因此,合成气的制备和应用一直备受关注。
二、合成气的制备技术1. 煤制气煤制气是最早用于制备合成气的技术之一。
该技术的原理是将煤通过高温气化反应,产生一氧化碳和氢气混合气体。
2. 天然气重整天然气重整是一种在高温和高压下,将天然气转化为一氧化碳和氢气混合气体的技术。
该技术需要大量的热量来提供反应所需的能量。
3. 生物质气化生物质气化是一种以生物质为原料制备合成气的技术。
该技术的原理是将生物质通过高温和压力下的气化作用,生成一氧化碳和氢气混合气体。
4. 液化石油气重整液化石油气重整是一种以液化石油气为原料制备合成气的技术。
该技术的原理与天然气重整相似,在高温和高压下将液化石油气转化为一氧化碳和氢气混合气体。
三、合成气的应用1. 化工行业合成气可以用于合成各种化学品,例如甲醇、合成氨、丙烯、乙二醇等。
2. 能源行业由于合成气可以被用作燃料,因此它被广泛地用于供热和发电等领域。
3. 合成化学合成气可以被用于合成化学品,例如合成蜡、合成尼龙、合成橡胶等。
4. 煤化工行业煤是制备合成气的主要原料之一,因此,合成气被广泛应用于煤化工行业。
例如,合成气可以被用于生产合成天然气、合成油等。
四、合成气的发展趋势目前,合成气在化学工业、能源领域和合成化学等领域中应用广泛。
随着技术的不断进步,合成气的制备技术将得到更好的发展和应用。
同时,随着石油资源的日益减少,对煤、天然气等非化石能源的需求将不断增加,因此合成气将会得到更广泛的应用。
总之,合成气的制备和应用是一个复杂而广泛的领域。
随着技术的不断进步和应用需求的不断扩大,合成气的发展前景将会更加广阔。
煤制烯烃的主要工艺流程
煤制烯烃的主要工艺流程如下:
1.煤气化:将煤转化为气体,产生合成气(一氧化碳和氢气)。
2.加氢裂解:将合成气经过加氢后进入加氢裂解反应器,使其裂解成烃类产品。
3.分离与精馏:将裂解产品进行粗分离和精馏,得到不同纯度的烯烃产品。
4.加氢脱硫:将烯烃产品进行加氢脱硫,去除其中的硫化物。
5.装箱与运输:将经过加工的烯烃产品装箱并运输至客户处。
以上就是煤制烯烃的主要工艺流程,其中加氢裂解是该生产过程的核心环节,可以将煤制气体转化为高质量的烯烃产品。
煤制合成气技术比较煤制合成气技术比较Texaco水煤浆气化、Shell粉煤加压气化和GSP气化技术都是典型的洁净煤气化技术,各有特点,各企业在改造或新建时应根据煤种、灰熔点、装置规模、产品链设定和投资情况进行合理选择。
下面就上述气化技术及其选择和使用情况进行分析和评价,供大家参考。
1、Shell气流床加压粉煤气化该工艺在国外还没有用于化肥生产的成功范例。
中石化巴陵分公司是第一家引进该技术用于化肥原料生产的厂家。
到目前为止,国内已先后有18家企业引进了此项技术(装置)。
但该工艺选择的是废锅流程,由于合成原料气含有的蒸汽较少,3.0MPa下仅为14%;因此用于生产合成氨后续变换工序要补充大量的水蒸气,用于甲醇生产也要补充一部分水蒸气于变换工序,工艺复杂,也使系统能量利用不合理。
湖北双环科技股份有限公司是第一家正式投运的厂家,于2006年5月开始试车。
据反映,试车期间曾发生烧嘴处水冷壁烧漏,输煤系统不畅引发氧煤比失调、炉温超温,渣口处水冷壁管严重腐蚀,水冷液管内异物堵塞和烧嘴保护罩烧坏等问题。
引进该技术的项目投资大。
2006年5月贵州天福与Shell签约,气化岛规模为每小时17.05万m3CO+H2,投资9.7亿元人民币,为同规模水煤浆气化岛投资的1.8倍。
气化装置设备结构复杂,制造周期长。
气化炉、导管、废锅内件定点西班牙、印度制造,加工周期14~18个月,海运3个月;压力壳可国内制造,但材料仍需进口,周期也较长;设备、仪表、材料的国产化率与水煤浆气化相比差距比较大。
建厂时间长(3~5a),将使企业还贷周期长,财务负担加重。
2001年与Shell签约的中石化巴陵分公司、湖北双环、柳州化工股份有限公司只有双环于2006年5月试车;2003年与Shell签约的中石化湖北化肥分公司、中石化安庆分公司、云天化集团公司、云维集团沾化分公司只有安庆于2006年10月开始煮炉。
Shell气化装置没有化工生产成熟应用为依托,消化掌握需要经历较长时间。
煤如何制成气体的原理
煤的气化是将煤在高温和适量氧气或蒸汽的作用下转化为气体的过程。
煤气化的原理可以简单概括为以下几个步骤:
1. 干燥和热解:煤在高温下被分解,产生挥发分。
在干燥过程中,煤中的水分被蒸发掉;在热解过程中,煤中的有机物质被分解为挥发分和焦炭。
2. 气化反应:煤中的挥发分在高温和适量氧气或蒸汽的作用下发生气化反应,生成氢气(H2)、一氧化碳(CO)、二氧化碳(CO2)等气体。
气化反应的主要反应类型有水气变换反应(CO+H2O ↔CO2+H2)、碳气化反应(C+H2O ↔CO+H2)等。
3. 温度控制:气化过程的温度是非常关键的,不同温度下反应会产生不同的气体组成。
一般来说,较低温度时更容易生成较多的甲烷(CH4),较高温度时更容易生成一氧化碳和氢气。
4. 催化剂:在一些气化过程中,催化剂的使用可以促进反应的进行。
催化剂可以提高气化反应的速率和选择性,同时降低反应的温度和能量消耗。
通过煤气化过程,煤可以转化为可再生能源气体,如合成气、天然气等。
这些气体可以用于发电、供热、制造化学品等多种应用。
同时,煤气化过程也可以捕集
和处理煤的二氧化碳排放,降低温室气体排放量,减少对环境的影响。
煤制天然气-甲烷化1. 简介煤制天然气(Coal-to-Natural-Gas,简称CTG)是一种将煤炭转化为天然气的技术,主要过程是甲烷化,即将煤炭中的有机化合物转化为甲烷气体。
煤制天然气是一项重要的能源转化技术,可以将煤炭资源转化为更清洁的天然气,从而减少对传统石油和天然气资源的依赖。
2. 煤制天然气的步骤煤制天然气的主要步骤包括煤气化和甲烷化两个过程。
2.1 煤气化煤气化是指将煤炭在高温和高压条件下,在缺氧或有限氧气条件下进行化学反应,使煤炭转化为合成气。
合成气由一氧化碳(CO)、二氧化碳(CO2)和氢气(H2)组成,其中一氧化碳和氢气是后续甲烷化反应的主要原料。
2.2 甲烷化甲烷化是将合成气转化为甲烷气体的过程。
在高温和催化剂的作用下,合成气中的一氧化碳和氢气发生反应生成甲烷气体。
甲烷气体是主要成分,其含量通常达到90%以上,可以直接作为燃料供应给城市燃气系统或工业领域使用。
3. 煤制天然气的优势和挑战3.1 优势•利用煤炭资源:煤炭是一种丰富的能源资源,通过煤制天然气技术可以有效利用这些资源,减缓传统石油和天然气的供需矛盾。
•降低碳排放:相比燃烧煤炭产生的二氧化碳排放,煤制天然气技术可以显著降低碳排放量,对环境更加友好。
•提高能源利用效率:煤制天然气技术可以实现高效能源利用,将煤炭中的有机物质转化为更高价值的甲烷气体。
3.2 挑战•能源转化效率:煤制天然气技术在转化过程中会产生一定的能量损失,需要进一步提高转化效率,减少能源浪费。
•环境影响:煤制天然气过程中会产生一定的副产物和废弃物,对环境造成一定的影响和压力,需要合理处理和减少环境污染。
•经济可行性:煤制天然气技术的投资和运营成本较高,需要找到经济上可行的路径和模式,以实现可持续发展。
4. 煤制天然气在全球的应用和发展煤制天然气技术在许多国家得到了广泛应用和快速发展。
其中,中国是全球最大的煤制天然气生产国之一。
中国在煤制天然气领域进行了大规模的投资和研发,建设了多个煤制天然气项目。
煤制合成天然气生成流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!煤制合成天然气是一种将煤炭转化为天然气的技术,其生成流程主要包括以下几个步骤:1. 煤气化。
以煤为原料的合成氨工艺煤合成氨工艺的核心问题是制备纯净的氢气,而制备纯净的氢气,就涉及到脱硫脱碳工序!含硫、含碳的气体,都是酸性气体!C+H2O(水蒸气)=CO+H2(水煤气法) CO+H2O=CO2+H2拥有氢气与氮气,即可制得氨.氨与二氧化碳作用生成氨基甲酸铵(简称甲铵),进一步脱水生成尿素!2NH3+CO2==COONH2NH4(放热),COONH2NH4==CO(NH2)2+H2O(吸热)。
尿素加热分解可以制成三聚氰胺6CO(NH2)2==C3N3(NH2)3(三聚氰胺)+3CO2+6NH3.工艺流程(1)原料气制备将煤和天然气等原料制成含氢和氮的粗原料气.对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程.①一氧化碳变换过程在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%到40%。
合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。
变换反是: CO+H2O→H2+CO2=-41.2kJ/mol 0298HΔ由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。
第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右.因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件.②脱硫脱碳过程各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。
工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法(Rectisol)、聚乙二醇二甲醚法(Selexol)等。
合成气的制备方法合成气是一种混合气体,主要由一氧化碳(CO)和氢气(H2)组成,常用于工业生产中的化学反应和能源转化。
下面将介绍几种常见的合成气制备方法:1.煤气化法:煤气化法是一种以煤作为原料,通过煤的气化反应生成合成气的方法。
煤气化反应可以使用氧、水蒸汽或二氧化碳等作为氧化剂,在高温(1000~1300℃)和高压(10~30MPa)条件下进行。
氧化剂与煤反应生成一氧化碳和氢气,同时伴随生成一些其他气体和固体产物。
该方法具有原料丰富、适用于大规模生产的优点,但同时也伴随着环境污染和生产成本较高的问题。
2.重油催化裂解法:重油催化裂解法是一种以石油重质馏分为原料,通过催化反应生成合成气的方法。
在催化剂的作用下,重油中的大分子化合物被裂解为轻质烃类,并在高温(600~800℃)和中等压力条件下生成一氧化碳和氢气。
该方法具有操作灵活、反应速度快的优点,但由于原料资源较为有限,所以在生产规模方面存在一定的限制。
3.天然气重整法:天然气重整法是一种以天然气为原料,通过催化反应生成合成气的方法。
首先将天然气中的烷烃类通过催化剂催化反应重整为较小分子量的烃类,然后在高温(700~900℃)和中等压力条件下通过水蒸汽重整反应生成一氧化碳和氢气。
该方法具有废气少、纯度高的优点,适用于小规模生产和移动式装置。
4.生物质气化法:生物质气化法是一种以生物质(如木材、秸秆等)为原料,通过热解反应生成合成气的方法。
生物质在高温(600~900℃)和缺氧条件下发生热解反应,生成可燃性气体,其中包括一氧化碳、二氧化碳、氢气和甲烷等。
该方法具有可再生、环保、资源丰富的优点,但由于原料质量不一、成分复杂,所以需要进行前处理,以提高合成气的纯度。
这些方法各有优劣,根据不同的应用领域和经济条件可以选择合适的方法进行合成气的制备。
同时,未来随着技术的不断进步,可能会涌现出更多的新型合成气制备方法。
煤制气工艺流程图
煤制气是一种常见的煤炭转化技术,通过将煤炭加热至高温,使煤炭产生热解反应,生成可燃气体。
下面是一份简要的煤制气工艺流程图,它包括了主要的步骤和设备。
煤制气的工艺流程主要包括煤炭预处理、煤气化、气体清洗和气体利用几个主要环节。
第一步是煤炭预处理。
原煤在这一步骤中经过破碎和粉碎,以便提高煤炭的可燃性和气化效果。
预处理后的煤炭通常需要进行干燥,去除多余的水分。
接下来是煤气化。
这是整个工艺流程的核心步骤。
预处理后的煤炭经过加热,加入适量的气化剂(通常是蒸汽和空气),进入煤气化炉。
在高温和高压的条件下,煤炭发生热解反应,产生可燃气体(主要是一氧化碳和氢气)和其他化合物。
煤气化产生的气体需要经过一定的处理才能得到高品质的煤制气。
气体清洗是对气体进行处理的环节。
在气体清洗中,主要采用物理和化学方法,去除气体中的固体颗粒、硫化物、氨和重金属等杂质。
清洗后的气体质量更高,可以用于发电、燃料和化工等领域。
最后是气体的利用。
经过清洗后的气体可以用于多种用途。
一种常见的利用方式是将气体运送到燃气炉或锅炉中燃烧,产生热能,供给工业生产或居民生活用途。
气体还可以进一步处理,提取单一的成分,如甲醇、合成天然气等。
以上是一份简要的煤制气工艺流程图。
实际的煤制气工艺流程可能更加复杂,涉及更多的步骤和设备。
不同的工艺流程也存在一定的差异。
但总体来说,煤制气是一种重要的煤炭转化技术,能够有效利用煤炭资源,提供清洁能源。