数字电子时钟设计原理
- 格式:doc
- 大小:552.50 KB
- 文档页数:20
《电子技术》课程设计报告-数字电子钟设计一、背景介绍数字电子钟是一个实时的计时器,它可以按照设定的时刻精确地表示时间。
它使用微处理器和时钟芯片来处理时间。
因此,它可以被视为一个微处理器系统,系统中含有存储器、计数器、报警功能等。
最新的电子时钟如石英钟使用特制石英晶片来制定时钟。
由于石英可以产生完美的电振动,因此可以更准确地检测时钟改变。
二、数字电子钟的设计原理1、时钟驱动电子时钟的操作需要一定的时间和精度,主要是依靠特殊的驱动器来实现的。
驱动器有石英、硅、力学和光学等多种。
其中石英芯片是电子时钟的核心部件并且最常用。
可以让电子时钟每秒产生32千分之一秒的精度。
2、晶振电路晶体振荡器电路是将电能转换成振荡信号和时钟信号的基础电路。
在电子时钟中,晶振电路可以将3.3V的DC电源转换成正弦波信号。
3、控制电路控制电路是接收电子时钟信号,并将其转换为可读取的数字信号的电路。
它通过检测当前的时钟值与它预设的标准值,来决定是否需要重新设定。
4、显示电路为了使时间显示准确,显示电路需要有一定的能力,它可以将控制电路经过变换后的数字转化为可视的数字或符号信号,比如LED。
我们首先使用PIC16F628A微控制器来控制数字电子钟,PIC16F628A是一款常用的单片机,在实现数字电子钟的最基本功能时天然的具有很多优势,即具有丰富的I/O口及高性能的CPU。
而在驱动这个数字电子时钟时,我们选择了普通的石英晶振,其工作电压为3.3V,频率为32.768kHz。
它的作用是将电源电压转换成正弦波信号,然后此信号可以被PIC单片机读取,从而实现全电子时钟功能。
在处理每秒钟走过的时间时,我们使用计数器根据晶振输入的时钟信号逐渐计数,而当计数器计数到一定值时,PIC单片机就知道一秒的时间已经过去,然后继续进行计算.最后,我们选用一个4位共阳极数码管来将这些数据转化为显示数字的动作,它从数据地址上读取数据,然后一次送到一位,就可以实时显示电子时钟的实时时间。
51单片机里电子时钟设计原理单片机是一种集成电路芯片,具有微处理器的所有功能。
电子时钟是一种通过数字化方式显示时间的装置,通常由时钟芯片、计时电路、显示电路、报警电路等组成。
在51单片机中设计电子时钟,主要包括以下几个方面的原理。
1.时钟芯片选择:选择一款适合的时钟芯片非常重要。
时钟芯片提供了计时的稳定性和精度,并且具有时间数据的存储功能。
在51单片机设计中,常常使用DS3231、DS1302等高性能的时钟芯片。
2.计时电路设计:计时电路是电子时钟的核心部分,它通过计数器实现时间的累加。
在51单片机设计中,可以使用定时器和计数器来实现计时功能。
通过设定定时器的工作模式和计数值,可以实现从1ms到秒、分、时的计时。
3.显示电路设计:显示电路用于将计时电路的计时结果以数字形式显示出来。
通常使用数码管或液晶显示屏作为显示装置。
在51单片机设计中,通过控制数码管或液晶显示屏的引脚,将对应的数字段点亮,实现数字的显示。
4.按键输入设计:电子时钟通常具有设置时间、调整时间、报警等功能。
这些功能需要通过按键来实现。
在51单片机设计中,可以使用矩阵按键,通过行列扫描的方式检测按键的按下,并根据按键的不同触发不同的功能。
5.报警电路设计:电子时钟通常具有报警功能,可通过蜂鸣器或其他音频输出装置实现。
在51单片机设计中,通过控制IO口的高低电平输出,控制蜂鸣器的工作状态,从而实现报警功能。
6.软件设计:单片机的设计离不开软件的支持。
在51单片机设计中,通常使用C语言编程,通过编写程序来实现各个功能的控制。
根据需求,设计相应的算法和逻辑,实现时间的计算、显示、设置和报警等功能。
以上是51单片机中设计电子时钟的一些原理。
通过合理的硬件设计和软件编程,可以实现功能齐全、稳定可靠的电子时钟。
基于单片机的数字电子时钟设计数字电子时钟是一种非常常见的电子产品,它可以帮助我们实现精确的时间显示,让我们的生活更加方便。
随着科技的不断发展,数字电子时钟也在不断更新和发展,基于单片机的数字电子时钟已经成为当前最先进的技术之一。
本文将介绍基于单片机的数字电子时钟的设计原理和实现方法。
一、数字电子时钟的设计原理数字电子时钟的实现原理就是把时间信号转换成数字信号,再通过计算机芯片来显示时间。
其中,时间信号可以是电缆信号或者无线信号,并且也可以通过外部的控制电路进行调节。
而计算机芯片可以采用单片机、PLC控制器等方案进行设计。
基于单片机的数字电子时钟,可以使用数字时钟芯片和定时器芯片来完成。
数字时钟芯片是一种能够实现数据的统计、时钟显示等功能的IC芯片,通过将其与定时器芯片相连,就能够实现精确的时间统计和显示。
此外,在设计时还需要进行软硬件电路的优化和调试。
二、基于单片机的数字电子时钟的实现方法1、硬件设计基于单片机的数字电子时钟的硬件设计,主要包含单片机控制电路、显示电路、外设接口电路、供电电路、时钟芯片和定时器芯片等部分。
其中,时钟芯片用于提供精准的时间信号,定时器芯片则用于进行计时,而单片机和外设接口电路则用于控制整个数字电子时钟的功能。
另外,数字电子时钟还需要进行外观设计,通常采用的是数码管或液晶屏幕显示时间。
通过优化电路布局和参数匹配,可以有效地提高整个数字电子时钟的稳定性和精度。
2、软件设计在数字电子时钟的软件设计中,主要包含固件设计和操作系统设计两部分。
固件设计是指对单片机系统进行程序编写、调试和优化,以实现时钟的各种功能;而操作系统设计,则是对固件进行封装,建立起一套完整的操作环境,方便用户进行操作。
在固件设计中,需要考虑到时钟的显示、调节、闹钟、定时等多种功能的实现。
通常,这些功能都会涉及到多个模块和数据结构的设计,需要通过循序渐进的方式逐步实现。
在操作系统设计中,需要对时钟的各种操作进行封装,形成一套完整的操作界面。
电子钟的工作原理电子钟是一种通过电子技术来实现时间显示的钟表。
它采用了数字显示方式,以数字形式显示小时和分钟。
下面将详细介绍电子钟的工作原理。
1. 时钟信号发生器电子钟的工作原理首先依赖于一个时钟信号发生器,它产生一个稳定的频率信号作为基准。
常见的时钟信号发生器可以采用晶体振荡器或者电子振荡器来产生一个固定的频率信号。
2. 分频器时钟信号发生器产生的频率信号通常非常高,需要通过分频器将其分频得到合适的时钟信号。
分频器可以将高频率信号分频为低频率信号,例如将1MHz的信号分频为1Hz的信号。
3. 时钟芯片分频后的时钟信号经过放大和处理,进入时钟芯片。
时钟芯片是电子钟的核心组成部分,它包含了时钟电路、计数器和显示控制电路。
4. 计数器时钟芯片中的计数器用来记录时钟信号的脉冲数,从而实现时间的计数。
计数器通常采用二进制计数方式,例如使用4位二进制计数器可以表示0-15的十进制数。
5. 显示控制电路计数器中的计数数值经过显示控制电路进行处理,将其转换为数字形式的小时和分钟数值。
显示控制电路通常包括数码管驱动电路,用来控制数码管的亮灭和显示内容。
6. 数码管电子钟的显示部分通常采用数码管来显示小时和分钟。
数码管是一种能够显示数字的显示器件,常见的有共阳极和共阴极两种类型。
数码管根据接收到的信号,通过控制对应的线路和段选信号,点亮相应的数字。
7. 供电电源电子钟需要一个稳定的供电电源来提供工作电压。
通常使用交流电源或者直流电源,通过适配器或者电池来提供所需的电压和电流。
总结:电子钟的工作原理是通过时钟信号发生器产生稳定的频率信号,经过分频器分频得到合适的时钟信号,然后经过时钟芯片的计数器和显示控制电路处理,最后通过数码管显示出小时和分钟。
电子钟的工作原理简单明了,通过电子技术实现了时间的准确显示。
做成时钟,并不难,把十进改成6进就行了如下:1,震荡电路的电容用晶震,记时准确.2, 时:用2块计数器,十位的用1和2(记时脚)两个脚.分:用2块计数器,十位的用1,2,3,4,5,6,(记时脚)6个脚.秒:同分.评论:74系列的集成块不如40系列的,如:用CD4069产生震荡,CD4017记数,译码外加.电压5V.比74LS160 74LS112 74LS00好的.而且CD4069外围元件及少.如有需要我可以做给你.首先需要产生1hz的信号,一般采用CD4060对32768hz进行14分频得到2hz,然后再进行一次分频。
(关于此类内容请参考数字电路书中同步计数器一章)(原文件名:4060.JPG)一种分频电路:(原文件名:秒信号1.JPG)采用cd4518进行第二次分频另一种可以采用cd4040进行第二次分频第三种比较麻烦,是对1mhz进行的分频(原文件名:秒信号2.JPG)介绍一下cd4518:CD4518,该IC是一种同步加计数器,在一个封装中含有两个可互换二/十进制计数器,其功能引脚分别为1~7和9~{15}。
该计数器是单路系列脉冲输入(1脚或2脚;9脚或10脚),4路BCD码信号输出(3脚~6脚;{11}脚~{14}脚)。
此外还必须掌握其控制功能,否则无法工作。
手册中给有控制功能的真值(又称功能表),即集成块的使用条件,如表2所示。
从表2看出,CD4518有两个时钟输入端CP和EN,若用时钟上升沿触发,信号由CP输入,此时EN端应接高电平“1”,若用时钟下降沿触发,信号由EN端输入,此时CP端应接低电平“0”,不仅如此,清零(又称复位)端Cr也应保持低电平“0”,只有满足了这些条件时,电路才会处于计数状态,若不满足则IC不工作。
计数时,其电路的输入输出状态如表3所示。
值得注意,因表3输出是二/十进制的BCD码,所以输入端的记数脉冲到第十个时,电路自动复位0000状态(参看连载五)。
另外,该CD4518无进位功能的引脚,但从表3看出,电路在第十个脉冲作用下,会自动复位,同时,第6脚或第{14}脚将输出下降沿的脉冲,利用该脉冲和EN端功能,就可作为计数的电路进位脉冲和进位功能端供多位数显用。
数字时钟的工作原理
数字时钟是一种通过数字显示时间的设备。
它的工作原理基于电子技术和计数原理。
下面是数字时钟的工作原理:
1. 音频信号处理:数字时钟会通过收音机或者其他方式接收到来自国家授时中心发出的准确时间信号。
这个信号是经过调制和编码处理的。
2. 信号解码:通过解码电路将接收到的时间信号转换为数字信号。
解码电路采用数字逻辑门电路,根据输入的不同的电信号状况,输出相应的电信号。
3. 计数:数字时钟中会有一个计数器电路,它接收来自解码电路的数字信号并进行计数。
计数器电路的设计可以是二进制,即通过几个存储单元分别计数0-9。
当计数达到9时,存储单元会归零并将进位信号发送到高位的计数单元。
4. 时钟控制:数字时钟还包括一个时钟电路,它通过一个稳定的时钟振荡器来提供稳定的时钟信号给计数器电路。
时钟信号控制计数器的计数速度,使其按照正确的时间间隔进行计数。
5. 数字显示:数字时钟使用数字显示器来显示时间。
常见的数字显示器有LED和LCD两种。
LED数字显示器通过控制发光二极管的亮暗显示数字,LCD数字显示器则是通过液晶屏幕来显示。
数字时钟将计数器电路的输出信号传送到数字显示器上,显示出时间。
通过以上步骤,数字时钟能够准确地计时并通过数字显示器向人们展示时间。
它具有显示清晰、精确度高的特点,适用于各种场景中的时间显示需求。
电子钟的工作原理电子钟是一种通过电子技术来实现时间显示的钟表。
它采用了数字显示方式,通过内部的电子元件来驱动显示屏幕,以显示当前的时间。
电子钟的工作原理可以分为以下几个步骤:1. 时钟信号生成:电子钟内部会有一个时钟信号生成器,它负责产生一个稳定的高频信号,通常是晶体振荡器产生的。
这个时钟信号会作为电子钟的基准信号,用于计时和驱动显示。
2. 时间计算:电子钟内部有一个计时器电路,它会根据时钟信号进行时间的计算。
计时器电路会将时钟信号进行分频,得到不同的时间单位,如秒、分、时等。
通过这种方式,电子钟能够精确地计算出当前的时间。
3. 数字显示:电子钟通常使用LED或者LCD等显示屏幕来显示时间。
计时器电路会将计算得到的时间信息转换为数字信号,然后通过驱动电路将这些数字信号发送到显示屏幕上。
显示屏幕上的数字会根据这些信号进行相应的显示,从而呈现出当前的时间。
4. 时间设置:电子钟通常会提供时间设置功能,用户可以通过按键或者旋钮来设置时间。
当用户进行时间设置时,电子钟会根据用户的操作,将设置的时间信息传递给计时器电路,从而更新当前的时间。
5. 电源供电:电子钟需要外部电源来供电。
通常情况下,电子钟会使用直流电源,可以通过插座或者电池来提供电源。
电源会为电子元件提供所需的电能,使得电子钟能够正常工作。
总结:电子钟通过时钟信号生成、时间计算、数字显示、时间设置和电源供电等步骤来实现时间的显示。
它利用电子技术的优势,能够提供精确的时间显示,并且具有方便设置、易读、易操作等特点。
电子钟已经广泛应用于家庭、办公场所、公共场所等各种场合,成为现代人们日常生活中不可或者缺的时间工具。
数字电子时钟设计数字电子时钟是一种简单易用、精度高、使用方便的时钟仪器。
在现代化的生活中,数字电子时钟已经成为人们生活和工作中不可缺少的一部分。
本文将介绍数字电子时钟的设计及其原理。
1. 数字电子时钟的结构数字电子时钟一般由数字显示器、电源、时钟芯片、振荡电路和控制电路等几个部分组成。
数字显示器:数字电子时钟采用的是七段数码管作为显示器,显示出当前时刻的时间。
电源:数字电子时钟的电源一般采用直流电源,可以通过普通的插座或者电池供电。
时钟芯片:时钟芯片是数字电子时钟的核心部分,可以提供高精度的时钟信号,并且可以根据用户设置的时间来进行计时。
振荡电路:振荡电路是数字电子时钟的发挥器,用于产生一个稳定的高精度的时钟信号。
控制电路:控制电路主要用于对数字电子时钟进行各种设置,并且可以控制数字电子时钟的各种功能。
2. 数字电子时钟的操作原理数字电子时钟的操作原理是通过时钟芯片来实现的。
时钟芯片可以提供一个高精度的时钟信号,这个时钟信号可以被控制电路所接收,并且控制电路可以将这个信号转化为秒、分、时等时间单位。
随着科技的发展,数字电子时钟的精度越来越高,可以达到秒级甚至毫秒级的精度。
这些高精度的时钟芯片可以通过电子时钟所连接的振荡电路来产生非常稳定的时钟信号。
3. 数字电子时钟设计的技术要求数字电子时钟的设计需要考虑以下几个方面的技术要求:(1)高精度的时钟信号数字电子时钟的时钟信号需要具有高精度,通常要求时钟误差不超过几秒钟。
这就需要时钟芯片具有非常高的精度的时钟信号源,同时还需要连接高精度的振荡电路。
(2)显示效果清晰明了数字电子时钟的显示效果要求非常的清晰明了,这就需要采用高质量的七段数码管,并且数量要足够,以显示出完整的时间信息。
(3)快速响应、稳定性好由于数字电子时钟是人们生活和工作中不可缺少的一部分,因此数字电子时钟的响应速度和稳定性也非常的重要,需要在设计时特别注重。
4. 数字电子时钟的优点和缺点数字电子时钟有以下几个优点:(1)高精度稳定数字电子时钟可以提供高精度的时钟信号,并且可以保持这个时钟信号的稳定性,误差范围非常小。
数字钟的工作原理
数字钟的工作原理是基于电子技术的,主要分为三个部分:晶体振荡器、计数器和驱动器。
首先,晶体振荡器是数字钟的核心部件,它由一个特定频率的晶体振荡器组成,通常是一个石英晶体。
该晶体在加上外加电压后,会以固定的频率振荡,产生一个稳定的时钟信号。
接下来,计数器模块接收晶体振荡器产生的时钟信号。
计数器模块根据预设的计数方式,将时钟信号转换为相应的数字信号。
例如,对于24小时制的数字钟,计数器会将时钟信号每过1
秒钟进行一次计数,并以6位数的形式表示时间。
计数器还会通过进位和借位的操作,确保分钟、小时和日期等的正确计数和显示。
最后,驱动器模块将数字信号转换为人类可以理解的形式,即将数字信号转换成数字显示在显示屏上。
驱动器内部包含了数码管、液晶显示器或LED显示器等输出装置,通过控制不同
的显示单元,将数字信号转换为对应的数字字符显示在屏幕上。
综上所述,数字钟通过晶体振荡器产生稳定的时钟信号,计数器模块将时钟信号转换为数字信号进行计数,并通过驱动器模块将数字信号转换为可视化的数字字符显示在屏幕上,从而实现了数字钟的工作。
电子钟的工作原理
电子钟是一种利用电子技术来测量时间并显示时间的钟表。
它的工作原理主要
包括振荡器、计数器、分频器和显示器等几个主要部分。
首先,振荡器是电子钟的核心部件之一,它能够产生稳定的高频信号。
这个高
频信号经过计数器的计数后,可以得到精确的时间数据。
计数器会将高频信号进行计数,并将计数结果传递给分频器。
分频器则根据计数结果进行分频处理,将高频信号分频为秒、分、时等不同频率的信号。
接下来,分频器将分频后的信号传递给显示器。
显示器会根据分频后的信号来
显示时间。
在数字电子钟中,显示器通常采用LED或LCD来显示时间,而在模拟
电子钟中,则采用指针来指示时间。
总的来说,电子钟的工作原理就是通过振荡器产生高频信号,经过计数器和分
频器处理后,最终由显示器显示出精确的时间。
这种工作原理使得电子钟具有了高精度、稳定性好、易于制造和维护等优点,因此在现代社会中得到了广泛的应用。
除了基本的工作原理外,电子钟还有一些特殊的设计,比如无线接收时间信号
的电子钟。
这种电子钟可以通过接收无线信号来自动校准时间,保持时间的准确性。
另外,一些电子钟还具有闹钟、温湿度显示等功能,通过内置的传感器来实现更多的实用功能。
总的来说,电子钟的工作原理虽然简单,但是在实际应用中有着广泛的用途。
它不仅可以用于家用钟表,还可以用于各种计时设备、工业控制系统等领域。
随着科技的不断发展,电子钟的工作原理也在不断完善和创新,使得电子钟在时间测量和显示方面有着更加广阔的应用前景。
电子钟的工作原理电子钟的工作原理:电子钟是一种利用电子技术来实现时间显示的钟表装置。
它采用数字显示方式,通过内部的电子元件和电路来精确测量时间,并将其转化为数字形式进行显示。
下面将详细介绍电子钟的工作原理。
1. 时间基准:电子钟的时间基准通常采用晶体振荡器。
晶体振荡器是一种能够稳定振荡的电子元件,它在外界电压的驱动下,会以一定频率振荡。
晶体振荡器通常使用石英晶体,因为石英晶体具有稳定的振荡频率。
通过控制晶体振荡器的频率,可以实现精确的时间测量。
2. 频率分频:为了将晶体振荡器产生的高频信号转化为可用于显示的低频信号,电子钟通常会采用频率分频技术。
频率分频器可以将高频信号分频为较低频率的信号,以便于后续的处理和显示。
分频技术可以根据需要将高频信号分成不同的频率,比如分成秒、分、时等不同的频率信号。
3. 时钟电路:电子钟的时钟电路是整个电子钟的核心部份,它负责接收和处理频率分频器输出的信号,并将其转化为可用于显示的时间数据。
时钟电路通常包括计数器、存储器和控制电路等组件。
- 计数器:计数器用于记录经过的时间。
它接收频率分频器输出的信号,并进行计数。
根据不同的分频设置,计数器可以记录秒、分、时等不同的时间单位。
- 存储器:存储器用于存储时间数据。
它可以将计数器记录的时间数据暂时保存起来,以便后续的处理和显示。
- 控制电路:控制电路用于控制时钟的运行和显示。
它可以根据需要对计数器进行复位、暂停、调整等操作,以实现时间的精确测量和显示。
4. 数码显示:电子钟通常采用数码管来进行时间显示。
数码管是一种能够显示数字的电子元件,它由多个发光二极管(LED)组成。
每一个数码管可以显示一个数字,通过控制不同的数码管的亮灭状态,可以实现时间的数字显示。
5. 供电电路:电子钟需要稳定的电源来提供工作电压。
供电电路可以将外部电源的电压进行稳压和滤波处理,以确保电子钟正常工作。
综上所述,电子钟的工作原理是通过晶体振荡器产生稳定的高频信号,经过频率分频和时钟电路的处理,将时间数据转化为可用于显示的形式,并通过数码管进行数字显示。
EDA设计(II)实验报告-数字电子钟实验报告:数字电子钟一、实验目的本实验旨在通过使用EDA设计软件,设计并实现一个具有时、分、秒功能的数字电子钟。
通过学习使用EDA工具,掌握数字电路设计的基本步骤和技巧,培养实践能力和创新思维。
二、实验原理数字电子钟是一种以数字形式显示时间的装置,它利用了时、分、秒的计时原理。
核心部分包括一个时钟发生器,用于产生标准时间信号,以及一个计数器,用于对时间进行计数并显示。
此外,还需要一些控制逻辑来控制时、分、秒的进位和显示。
三、实验步骤1.设计准备:在开始设计之前,首先明确设计要求和功能。
考虑到实验的复杂性和可实现性,我们采用最简单的电路结构,即基于计数器和译码器的数字电子钟。
2.绘制电路图:使用EDA设计软件(如Quartus II)绘制电路图。
首先创建新项目,然后添加必要的元件(如74LS192计数器、74LS248译码器等),并根据设计要求连接元件。
3.编写程序:使用硬件描述语言(如VHDL或Verilog)编写计数器和译码器的程序。
确保程序能够实现所需的功能,并进行仿真测试。
4.编译和下载:将程序编译成可下载的配置文件,然后下载到FPGA开发板上。
5.硬件测试:连接开发板到PC,启动程序,观察数字电子钟的显示情况。
检查时间是否准确,各部分功能是否正常。
6.性能评估:对数字电子钟的性能进行评估,包括计时精度、稳定性等指标。
根据评估结果对设计进行优化。
四、实验结果与分析1.设计结果:经过上述步骤,我们成功地设计并实现了一个基于FPGA的数字电子钟。
通过EDA软件和硬件描述语言,我们实现了计数器和译码器的功能,并完成了程序的编写和下载。
2.性能分析:经过测试,我们的数字电子钟具有较高的计时精度和稳定性。
时间显示准确,各部分功能正常。
这表明我们的设计是成功的。
3.优化方向:虽然我们的数字电子钟已经具有较好的性能,但仍有一些方面可以优化。
例如,可以考虑添加更多的功能,如闹钟、温度显示等;也可以进一步优化电路结构,降低成本和提高性能。
数字钟原理
数字钟原理就是通过数字显示器来展示当前时间的一种钟表设备。
它的工作原理主要包括以下几方面:
1. 时钟信号源:数字钟使用一个稳定的时钟信号源,例如晶体振荡器,来提供一个准确、稳定的时钟信号。
2. 时钟信号处理:时钟信号经过处理电路,将其转换为可用于驱动数字显示器的电信号。
这些处理电路包括分频器、驱动器等。
3. 数字显示器:数字钟通常使用七段显示器来展示时间。
七段显示器由多个发光二极管(LED)或液晶显示单元(LCD)组成。
每个发光二极管或液晶显示单元代表一个数字的一部分(如竖线、横线、撇、捺等),通过亮灭与组合来显示数字和符号。
4. 数据转换和控制:数字钟需要将时间数据转换为对应的数字和符号,并通过控制电路将其显示在数字显示器上。
控制电路负责根据当前时间的信息,控制相应的发光二极管或液晶显示单元点亮或熄灭。
5. 电源供应:数字钟需要一个适当的电源供应来提供电能给各个部分。
通常采用交流电或直流电池作为电源。
通过以上原理,数字钟能够准确地展示当前的时间,并且由于
使用数字显示器,易读性较高。
同时,数字钟还可以具备其他功能,如闹钟、定时器等,以满足用户的需求。
电子技术课程设计报告设计题目:数字电子时钟班级:学生姓名:学号:指导老师:完成时间:一.设计题目:数字电子时钟二.设计目的:1.熟悉集成电路的引脚安排和各芯片的逻辑功能及使用方法;2.了解数字电子钟的组成及工作原理 ;3.熟悉数字电子钟的设计与制作;三、设计任务及要求用常用的数字芯片设计一个数字电子钟,具体要求如下:1、以24小时为一个计时周期;2、具有“时”、“分”、“秒”数字显示;3、数码管显示电路;4、具有校时功能;5、整点前10秒,数字钟会自动报时,以示提醒;6、用PROTEUS画出电路原理图并仿真验证;四、设计步骤:电路图可分解为:1.脉冲产生电路;2.计时电路;3.显示电路;4校时电路;5整点报时电路;1.脉冲电路是由一个555定时器构成的一秒脉冲,即频率为1HZ;电路图如下:2.计时电路即是计数电路,通过计数器集成芯片如:74LS192 、74LS161、74LS163等完成对秒脉冲的计数,考虑到计数的进制,本设计采用的是74LS192;秒钟个位计到9进10时,秒钟个位回0,秒钟十位进1,秒钟计到59,进60时,秒钟回00,分钟进1;分钟个位计到9进10时,分钟个位回0,分钟十位进1,分钟计到59,进60时,分钟回00,时钟进1;时钟个位记到9进10时,时钟个位回0,时钟十位进1,当时钟计数到23进24时,时钟回00.电路图如下:3.显示电路是完成各个计数器的计数结果的显示,由显示译码器和数码管组成,译码器选用的是4511七段显示译码器,LED数码管选用的是共阴极七段数码管,数码管要加限流电阻,本设计采用的是400欧姆的电阻;电路图如下:4.校时电路通过RS触发器及与非门和与门对时和分进行校准,电路图如下:5.整点报时电路即在时间出现整点的前几秒,数值时钟会自动提醒,本设计采用连续蜂鸣声;根据要求,电路应在整点前10秒开始整点报时,也就是每个小时的59分50秒开始报时,元器件有两个三输入一输出的与门,一个两输入一输出的与门,发生器件选择蜂鸣器;具体电路图如下:六.设计用到的元器件有:与非门74LS00,与门74LS08,74LS11,7段共阴极数码管,计数器芯片74LS192,555定时器,4511译码器,电阻,电容,二极管在电路开始工作时,对计数电路进行清零时会使用到,单刀双掷开关;设计电路图如报告夹纸;七.仿真测试:1.电路计时仿真电路开始计数时:计数从1秒到10秒的进位,从59秒到一分钟的进位,从1分到10分的进位,从59分到一小时的进位,从1小时到10小时的进位,从23小时到24小时的进位,然后重新开始由此循环,便完成了24小时循环计时功能,仿真结果如下:1. 7.2.8.3. 9.4. 10.5. 11.6. 12.13.2.电路报时仿真由电路图可知,U18:A和U18:B的6个输入引脚都为高电平时,蜂鸣器才会通电并发声,当计数器计数到59分50秒是,要求开始报时,而59分59秒时,还在报时,也就是说只需要检测分钟数和秒计数的十位,5的BCD码是4和1,9的BCD码是8和1,一共需要6个测端口,也就是上述的6个输入端口,开始报时时,报时电路状态如图:3.校时电路仿真正常计时校时U15:D和u15:C是一个选通电路,12角接的是秒的进位信号,9角接的是秒的脉冲信号,当SW1接到下引脚时,U15:D接通,u15:C关闭,进位信号通过,计数器的分技术正常计时;当SW1接到上引脚时,U15:D关闭,u15:C接通,校时的秒脉冲通过,便实现了分钟校时,时钟的校时与分钟校时大致相同;八.心得体会以及故障解决设计过程中遇到了一个问题,就是在校时电路开始工作时,校时的选择电路会给分钟和时钟的个位一个进位信号,也就是仿真开始时电路的分钟和时钟个位会有一个1;为了解决这个问题,我采用的是在电路开始工作时,同时给分钟和时钟的个位一个高电平的清零信号来解决,由于时钟的个位和十位的清零端是连在一起的,再加上分钟的个位,在校时小时的时候且当小时跳完24小时时,会给分钟的个位一个清零信号,这时在电路中加一个单向导通的二极管变解决了,具体加在那儿,请参考电路图;在设计过称中,我们也许遇到的问题不止一个两个,而我们要做的是通过努力去解决它;首先我们要具备丰富的基础知识,这是要在学习和实际生活中积累而成的;其次,我们还有身边的朋友同学老师可以请教,俗话说:三人行,必有我师;最后,我们还有网络,当今是个信息时代,网络承载信息的传递,而且信息量非常大,所以我们也可以适当的利用网络资源;通过这次对数字钟的设计与制作,让我了解了设计电路的步骤,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真,仿真成功之后才实际接线;但是仿真是在一个比较好的状态下工作,而电路在实际工作中需要考虑到一些驱动和限流电阻等等,因为,再实际接线中有着各种各样的条件制约和干扰;而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功;所以,在设计时应考虑两者的差异,从中找出最适合的设计方法;这次学习让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解,才能在实际生活和工作中应用起来;。
基于单片机的电子时钟的设计基于单片机的电子时钟是一种采用单片机作为主控芯片的数字显示时钟。
它能够准确显示时间,并可以通过编程实现其他功能,如闹钟、倒计时、温湿度显示等。
本文将介绍基于单片机的电子时钟的设计原理、硬件电路和软件编程等内容。
1.设计原理基于单片机的电子时钟的设计原理是通过单片机的计时器和定时器模块来实现时间的计数和显示。
单片机的计时器可以通过设定一个固定的时钟频率进行计数,而定时器可以设定一个固定的计数值,当计数到达设定值时,会触发一个中断,通过中断服务程序可以实现时间的更新和显示。
2.硬件电路基于单片机的电子时钟的硬件电路主要包括单片机、显示模块、按键模块和时钟模块。
其中,单片机作为主控芯片,负责控制整个电子时钟的运行;显示模块一般采用数字管或液晶屏,用于显示时间;按键模块用于设置和调整时间等功能;时钟模块用于提供稳定的时钟信号。
3.软件编程基于单片机的电子时钟的软件编程主要分为初始化和主程序两个部分。
初始化部分主要是对单片机进行相关寄存器的设置,包括计时器和定时器的初始化、中断的使能等;主程序部分是一个循环程序,不断地进行时间的计数和显示。
3.1初始化部分初始化部分首先要设置计时器模块的时钟源和计数模式,一般可以选择内部时钟或外部时钟作为时钟源,并设置计时器的计数模式,如自动重装载模式或单次模式;然后要设置定时器模块的计数值,一般可以通过设定一个固定的计数值和计数频率来计算出定时时间;最后要设置中断使能,使得当定时器计数器达到设定值时触发一个中断。
3.2主程序部分主程序部分主要是一个循环程序,通过不断地读取计时器的计数值,并计算得到对应的时间,然后将时间转换成显示的格式,并显示在显示模块上。
同时,还可以通过按键来实现时间的设置和调整功能,如增加和减少小时和分钟的值,并保存到相应的寄存器中。
4.功能扩展-闹钟功能:设置闹钟时间,并在设定的时间到达时触发报警;-温湿度显示:通过连接温湿度传感器,实时显示当前的温度和湿度数据;-倒计时功能:设置一个倒计时的时间,并在计时到达时触发相应的动作。
数字时钟的工作原理数字时钟是我们日常生活中常见的一种时间显示设备,它以数字的形式直观地显示时间,方便我们快速获取时间信息。
那么,数字时钟是如何工作的呢?接下来,我们将深入探讨数字时钟的工作原理。
数字时钟的核心部件是数字显示模块,它通常由数码管组成。
数码管是一种能够显示数字和部分字母的显示器件,它由七段发光二极管组成,每个发光二极管的发光区域可以组成数字0-9和部分字母的显示。
数字时钟通过控制数码管的发光状态来显示时间。
数字时钟的工作原理可以分为两个部分,时间信号的获取和数字显示模块的控制。
首先,数字时钟需要获取时间信号,一般来说,它会通过电子时钟芯片或者接收无线信号的方式获取当前的时间信息。
电子时钟芯片内部会有一个高精度的晶体振荡器,它能够稳定地产生一个固定频率的时钟信号,这个信号会被用来计时和显示时间。
一旦获取了时间信号,数字时钟就需要将时间信息转换成数码管可以显示的形式。
这个过程涉及到时间信号的分频和数码管的控制。
时间信号通常是一个固定频率的方波信号,通过分频电路可以将它转换成年、月、日、时、分、秒等不同的时间信号。
这些时间信号经过一定的逻辑运算和数码管的控制,就能够准确地显示在数码管上了。
数码管的控制通常采用多路复用技术,即通过控制数码管的阳极和阴极来选择需要显示的数字,并且以一定的频率进行刷新,从而实现数字时钟的显示。
在刷新的瞬间,我们看到的数字是稳定的,这是因为人眼对光线的适应性,使得我们看到的数字是稳定的,而不是在不停地闪烁。
除此之外,数字时钟还可能包含闹钟、计时器等功能,这些功能都是通过控制电路和逻辑电路来实现的。
比如,闹钟功能需要设定一个特定的时间,当时间信号与设定的时间相同时,就会触发闹钟的响铃。
计时器功能则需要通过按钮来控制计时的开始、暂停和复位。
总的来说,数字时钟的工作原理涉及到时间信号的获取、分频、数码管的控制和功能模块的实现。
通过这些过程,我们能够方便地获取时间信息,提高我们的生活效率。
数字电子钟的设计与制作一、设计概述1.设计任务➢时钟脉冲电路设计➢60进制计数器设计➢24进制计数器设计➢“秒”,“分”,“小时”脉冲逻辑电路设计➢“秒”,“分”,“小时”显示电路设计➢“分”,“小时”校时电路➢整点报时电路2.功能特性➢设计的数字钟能直接显示“时”,“分”,“秒”,并以24小时为一计时周期。
➢当电路发生走时误差时,要求电路具有校时功能。
➢要求电路具有整点报时功能,报时声响为四低一高,最后一响正好为整点。
3.原理框图图 1 原理框图二、设计原理数字钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒,另外应有校时功能和报时功能。
因此,一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器、校时电路、报时电路和振荡器组成。
干电路系统由秒信号发生器、“时、分、秒”计数器、译码器及显示器、校时电路、整点报时电路组成。
秒信号产生器是整个系统的时基信号,它直接决定计时系统的精度,一般用石英晶体振荡器加分频器来实现。
将标准秒信号送入“秒计数器”,“秒计数器”采用60进制计数器,每累计60秒发现胡一个“分脉冲”信号,该信号将作为“分计数器”的时钟脉冲。
“分计数器”也采用60进制计数器,每累计60分钟,发出一个“时脉冲”信号,该信号将被送到“时计数器”。
“时计数器”采用24进制计时器,可实现对一天24小时的累计。
译码显示电路将“时”、“分”、“秒”计数器的输出状态菁七段显示译码器译码,通过六位LED七段显示器显示出来。
整点报时电路时根据计时系统的输出状态产生一脉冲信号,然后去触发一音频发生器实现报时。
校时电路时用来对“时”、“分”、“秒”显示数字进行校对调整的。
三、设计步骤1.计数器电路根据计数周期分别组成两个60进制(秒、分)和一个24进制(时)的计数器。
把它们适当连接就可以构成秒、分、时的计数,实现计时功能。
CC4518的符号如图,一个芯片集成了两个完全相同的十进制计数器,其异步清零信号CR是高电平有效。
毕业设计论文论文题目:数字电子时钟设计原理某职业技术学院电气工程系毕业设计任务书1.能够利用软件设计数字电子钟电路原理图。
2.要求熟悉集成芯片功能。
3.具有时、分、秒显示功能。
三、毕业设计进程表毕业设计进程表起止日期设计内容备注第1周资料准备,查阅相关文献第2周设计电路第3-4周编写说明书,交指导老师审阅第5周整理资料,准备答辩前言目前市场上提供的无论是机械钟还是石英钟在晚上无照明的情况下都是不可见的。
要知道当前的时间,必须先开灯,故较为不便。
现在市场上出现了这样一类的电子钟,它以六只LED数码管来显示时分秒,与传统的以指针显示秒的方式不同,超越了人们传统的习惯与理念。
数字电子钟是一种用数字显示秒、分、时的计时装置,与传统的机械钟相比,具有走时准确、显示直观、无机械传动装置等优点,因而得到广泛的应用。
如,日常生活中的电子手表,车站、码头、机场等公共场所的大型数显电子钟。
要实现数字电子钟的设计可以由单片机控制或者由数字IC构成。
这里我们要做的是一个由数字IC构成的数字电子钟设计。
目录1 设计功能要求 (1)2 设计方案 (1)3设计中所用到的元器件 (2)3.1译码器 (2)3.2计数器 (4)3.3显示器 (4)3.4振荡器 (5)4 电路设计 (6)4.1时分秒计数器 (6)4.1.1秒计数器的设计 (6)4.1.2分计数器的设计 (8)4.1.3时计数器的设计 (8)4.2校时电路 (8)4.3译码显示电路 (10)4.4总体电路 (11)5器件清单 (13)结束语 (14)致谢 (15)参考文献 (16)附录A 数字电子钟整体体电路图 (17)1 设计功能要求设计一数字钟,该数字钟能够准确计时,以数字形式显示时、分、秒的时间和校时功能。
在电路中,振荡电路提供的1Hz脉冲信号。
在计时出现误差时电路还可以进行校时、校分和校秒的功能。
并且要用数码管显示时、分、秒,各位均为两位显示。
具体要求如下:1.时的计时要求为“23置0”,分和秒的计时要求为60进制。
2.准确计时,以数字形式显示时,分,秒的时间。
3.校正时间。
2 设计方案根据设计要求首先建立了一个多功能数字钟电路系统的组成框图,框图如图2.1所示。
由图2.1可知,电路的工作原理是:多功能数字钟电路主要由振荡器、计数器、译码器和显示器构成。
图2.1 电路框图主体电路由基准频率源、计数器、译码显示驱动器、数字显示器和校准电路等五部分组成。
其中:(1)基准频率源是数字电子钟的核心,它产生一个矩形波时间基准源信号,其稳定性和频率精确度决定了计时的准确度。
(2)译码器采用BCD码-七段显示译码驱动器。
显示器采用LED七段数码管。
(3)校准电路可采用按键及门电路组成。
系统工作原理:振荡器产生的稳定高频脉冲信号作为数字钟的时间基准。
秒计数器计满60后向分计数器进位,分计数器计满60后向小时计数器进位,小时计数器按照“23置0”规律计数。
计数器的输出经译码器送显示器,计时出现误差可以用校时电路进行校时、分、秒。
3设计中所用到的元器件3.1译码器显示译码器,一般是将一种编码译成十进制码或特定的编码,并通过显示器件将译码器的状态显示出来。
发光二极管点亮只须使其正向导通即可,根据LED的公共极是阳极还是阴极分为两类译码器,即针对共阳极的低电平有效的译码器和针对共阴极LED的高电平输出有效。
这里我选用CD4511,它是一个用于驱动共阴极LED(数码管)显示器的BCD码—七段显示译码器,其特点为:具有BCD转换,信号锁存控制,能提供较大的拉电流。
可直接驱动LED显示器。
它的引脚图如图3.1所示:图3.1 CD4511的引脚图其功能介绍如下:BI:4脚是消隐输入控制端,当BI=0 时,不管其它输入端状态如何,七段数码管均处于熄灭(消隐)状态,不显示数字。
LT:3脚是测试输入端,当BI=1,LT=0 时,译码输出全为1,不管输入 DCBA 状态如何,七段均发亮,显示“8”。
它主要用来检测数码管是否损坏。
LE:锁定控制端,当LE=0时,允许译码输出。
LE=1时译码器是锁定保持状态,译码器输出被保持在LE=0时的数值。
A1、A2、A3、A4、为8421BCD码输入端。
a、b、c、d、e、f、g:为译码输出端,输出为高电平1有效。
左边的引脚表示输入,右边表示输出,还有两个引脚8、16分别表示的是GND、Vcc。
CD4511的逻辑功能如表3.1所示。
表3.1 CD4511的逻辑功能输入输出LE BI LI D C B A a b c d e f g 显示X X 0 X X X X 1 1 1 1 1 1 1 8X 0 1 X X X X 0 0 0 0 0 0 0 消隐0 1 1 0 0 0 0 1 1 1 1 1 1 0 00 1 1 0 0 0 1 0 1 1 0 0 0 0 10 1 1 0 0 1 0 1 1 0 1 1 0 1 20 1 1 0 0 1 1 1 1 1 1 0 0 1 30 1 1 0 1 0 0 0 1 1 0 0 1 1 40 1 1 0 1 0 1 1 0 1 1 0 1 1 50 1 1 0 1 1 0 0 0 1 1 1 1 1 60 1 1 0 1 1 1 1 1 1 0 0 0 0 70 1 1 1 0 0 0 1 1 1 1 1 1 1 80 1 1 1 0 0 1 1 1 1 0 0 1 1 90 1 1 1 0 1 0 0 0 0 0 0 0 0 消隐0 1 1 1 0 1 1 0 0 0 0 0 0 0 消隐0 1 1 1 1 0 0 0 0 0 0 0 0 0 消隐0 1 1 1 1 0 1 0 0 0 0 0 0 0 消隐0 1 1 1 1 1 0 0 0 0 0 0 0 0 消隐0 1 1 1 1 1 1 0 0 0 0 0 0 0 消隐1 1 1 X X X X 锁存锁存3.2计数器在数字电子技术中应用的最多的时序逻辑电路中,计数器不仅能用于对时钟脉冲计数,还可以用于分频、定时以及进行数字运算等。
按照计数器中的触发器是否同时翻转分类,可将计数器分为同步计数器和异步计数器。
常见的同步计数器有74160系列,74LS290系列。
这里选用74LS160。
它是一个具有异步清零、同步置数的集成四位同步十进制加法计数器。
它的引脚图如图3.2所示。
图3 .2 74LS160的引脚图它的工作真值表如表3.2所示表3.2 74LS160工作真值表输入变量输出变量工作模式MR PE CEP CET CLK P3 P2 P1 P0 Q3 Q2 Q1 Q00 X X X X X X X X 0 0 0 0 异步清零1 0 X X ↑d3 d2 d1 d0 d3 d2 d1 d0 同步置数1 1 1 1 ↑X X X X 计数加法计数1 1 0 X X X X X X 保持数据保持1 1 X 0 X X X X X 保持数据保持3.3显示器常用的数字显示器有多种类型。
按接法分有两种:共阳极显示器或共阴极显示器。
按发光物质分,有半导体显示器【又称发光二极管(LED)显示器】、荧光显示器(VFD)、液晶显示器(LCD)、等。
我所选用用的是LED显示器。
因为选用的CD4511译码器对应的显示器是共阴极显示器,所以它的结构和共阴极接法如图3.3所示。
图a LED结构图b LED共阴极接法图3.3七段显示器3.4振荡器振荡器有石英晶体震荡和多谐振荡器两种。
石英晶体震荡较多谐振荡器昂贵,我们对精度要求不高所以选择由集成555定时器与R、C组成的多谐振荡器。
555构成的多谐振荡器,输出振荡频率f=1Hz的脉冲。
555定时器的引脚排列如图3.4所示。
图3.4 555引脚排列图由它组成的多谢振荡器电路图如图3.5。
图3.5 555构成的多谐振荡器图中,C是外接定时电容,R1、R2是充电电阻,R2又是放电电阻。
C1用于防干扰。
当接通电源后,Vcc要通过电阻对C充电,充至当THOLD=2/3Ucc时, A1输出为1,比较器A2输出高电平,输出端3输出低电平,放电三极管T导通,电容C又要通过R2、T放电,Vcc下降,当Vcc下降至1/3Ucc时,VT截止,C又重新充电,以后恢复以上过程。
其震荡周期为T=T1+T2=0.7(R1+R2)C (式3.1)因为f=1Hz,所以T=1s。
根据公式3.1选择R1、R2、C即可。
4 电路设计4.1时分秒计数器4.1.1秒计数器的设计秒的个位部分为逢十进一,十位部分为逢六进一,从而共同完成60进制计数器。
74LS160实现60进制的方式有两种:异步清零、同步置数。
我选择的是同步置数功能,即当计数到59时清零并重新开始计数,所以MR应设置为1。
因为单片74LS160所能实现的最大记数模数M=10,构成N=60进制计数器,M<N<M*M=100,故需两片74LS160.而且S N-1状态只能用8421BCD码,而不能用二进制码.N=60, S N-1=01011001用74LS160构成六十计数所示, 低位片(1)实现十进制,时位片(2)实现六进制。
其工作原理如下:十进制加法计数:将低位片的MR和CEP、CET并联,即MR=CEP=CET=1,当秒输出的输出信号≠59时,低位片和高位片的输出信号通过与非门74LS20后使低位片和高位片的PE=1,在CLK端输入计数脉冲,此时低位片进行十进制加法计数。
低位片每计数到第十次时,进位输出信号TC=1,将低位片的TC端接高位片的CEP和CET,即CEP=CET=TC=1, 高位片的MR=1=PE,此时高位片进行十进制加法计数。
保持:当低位片没有进位输出信号时,即TC=0,高位片的CET=CEP=0,MR=PE=1,高位片保持状态不变。
同步置数:当低位片输出为9且高位片输出为5时置零。
所以将低位片和高位片的输出信号连接与非门74LS20。
当高位片低位片输出信号为59时,低位片和高位片的输出信号通过与非门74LS20使低位片和高位片的PE=0,又因为MR=1,在输入时钟脉冲CLR上升沿作用下,并行输入端的数据P0P1P2P3被置入计数器的输出端,即低位片和高位片的Q0Q1Q2Q3= P0P1P2P3,所以把P0P1P2P3接地,使得Q0Q1Q2Q3=0。
从而完成低位片(1)、高位片(2)的同步置数。
电路图如4.1所示。
图4.1 秒部分设计图4.1.2分计数器的设计分的设计与秒的设计原理基本相同,不再阐述。
4.1.3时计数器的设计根据设计要求,时计数器设计必须为24进制技术,(5)片为是时信号低位片,(6)片为时信号高位片。
当高位片为0,1时,低位片为十进制计数,当高位片为2时,低位片为4进制记数。
因此,要实现数字电子时钟时信号24小时制的功能,只需要加入与非门进行条件判断,在按照4.1的内容,同理易得二十四进制记数即24计数电路如图4.2所示。