六年级下册空间与图形练习题及答案
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
空间与图形一、填空。
1、直线上两点间的一段叫( ),线段有( )个端点,把线段的一端无限延长就得到一条( )。
2、1平角=( )直角 1周角=( )平角=( )直角3、观察一个长方体,一次最多能看到 ( )面。
4、等腰三角形有( )条对称轴;长方形有( )条对称轴;正方形有( )条对称轴;圆有( )条对称轴,扇形有( )条对称轴。
5、在平面上画圆,圆心决定圆的( ),半径决定圆的( )。
6、画圆时,圆规两脚张开的距离是所画圆的( )。
7、下列图形,能画几条对称轴?8、从正面、右面和上面看到的都是的物体,它一定是由()个小正方体摆成的。
9、观察下面用4个正方体搭成的图形,并填一填。
(1)从正面看到的图形是的有 。
(2)从侧面看到的图形是的有 。
10、工人叔叔把电线杆上的线架和自行车架子做成三角形,这是应用了三角形具有( )的特征,而推拉防盗门则是由许多小平行四边形组成的,这是应用平行四边形( )的特性。
11、等边三角形的每个内角都是( )度,等腰直角三角形的两个底角都是( )度。
12、把一根圆柱形木料截成3段,表面积增加了45.12cm 2,这根木料的底面积是( )cm 2。
13、一个圆锥体的底面半径是6cm ,高是1dm ,体积是( )cm 3。
14、把一个圆柱体钢坯削成一个最大的圆锥体,要削去 1.8 cm 3,未削前圆柱的体积是( )cm 3。
15、一个圆柱体的侧面展开后,正好得到一个边长25.12 cm 的正方形,圆柱体的高是( )cm ,底面半径是( )cm 。
16、等底等高的圆柱和圆锥,体积的和是72 dm 3,圆柱的体积是( ),圆锥的体积是( )。
17、三角形三个角度数的比是2:4:3,最大的角是( )。
18、一个三角形底是3dm ,高是4dm ,它的面积是( )。
19、一个平行四边形的底长18cm ,高是底的12,它的面积是( )。
20、一个直径4cm 的半圆形,它的周长是( ),它的面积是( )。
六年级下册总复习《空间与图形》测试卷一、填空(每空2分,共30分)1、通过一张纸上的一点能画条直线,通过一张纸上的两点能画条直线。
2、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线的线段。
3、圆的半径扩大2倍,它的周长扩大倍,面积扩大倍。
4、圆的周长与直径的比是。
5、一个圆环,外圆半径是6厘米,内圆半径是4厘米,这个圆环的面积是平方厘米。
6、把一个长10厘米,宽8厘米的长方形纸剪成一个最大的圆,这圆的周长是厘米,面积是平方厘米。
7、做一节底面直径为20厘米,长90厘米的烟囱,至少需要平方分米的铁皮。
8、一座台钟的时针长5厘米,经过6小时,时针尖端移动了厘米。
9、一个圆柱和一个圆锥等底等高,已知圆柱比圆锥的体积大2.6立方分米,这个圆柱的体积是立方分米,圆锥的体积是立方分米。
10、一张长方形纸上下对折,再左右对折,得到新图形的面积是原来正方形的,它的周长是原来正方形的。
二、判断(每题1分,共5分)1、在同一平面内,两条直线不相交就一定平行。
()2、一个正方形,边长增加3厘米,面积就增加9平方厘米。
()3、用10倍的放大镜看一个5°的角,看到的角是50°。
()4、用同样长的绳子在钉子板上绕出的正方形和长方形周长相等,面积也相等。
()5、圆柱的高一定,圆柱的侧面积与底面直径成正比例。
()三、选择(每题2分,共14分)1、大圆周长与小圆周长的比是3:2,大圆面积与小圆面积比()A3:2B2:3 C9:4D4:92、甲、乙两人各把一张长12厘米,宽8厘米的长方形纸用不同的方法围成一个圆筒(接头处不重叠),那么围成的两个圆筒()A侧面积一定相等B高一定相等C体积一定相等D侧面积和高都相等3、周长相等的正方形和圆,面积比较大的是()。
A、一样大B、正方形C、圆D、无法确定4、一个用立方块搭成的立体图形,贝贝从前面看到的图形是,从上面看到的是,那么搭成这样一个立体图形最少要()个小立方块。
六年级数学空间与图形试题答案及解析1.以小明家为观测点,根据下面条件在平面上标出各地的位置。
(1)学校在小明家北偏东30°的方向上,距离小明家2千米处。
(2)书店在小明家西偏南60°的方向上,距离小明家3千米处。
【答案】【解析】注意书店是在西偏南60度方向上,而不是南偏西60度方向上。
2.把棱长为6分米的正方体木块削成一个最大的圆锥,这个圆锥的体积是( )立方分米。
【答案】56.52【解析】本题考查圆锥体积公式的应用。
要先分析出圆锥体积最大时的底面直径与高,再作进一步计算,解决问题。
当圆锥的体积最大时,圆锥的底面直径与高分别与正方体的棱长相等。
底面半径:6÷2=3(分米),圆锥的体积:3.14×3×3×6×=56.52(立方分米)3.求下列阴影部分的面积。
(单位:厘米)(1)(2)(3)(4)【答案】48平方厘米,703.36平方厘米,21.5平方厘米,15.25平方厘米【解析】本题考查复杂图形面积的计算方法。
阴影部分若为规则图形,可利用规则图形的面积计算公式;若阴影不是规则图形或虽是规则图形,但相关量不易找出时,可把阴影部分的面积转化为其它图形面积的和差倍积关系来计算。
(1)图形中空白三角形与平行四边形等底等高,空白三角形面积占平行四边形面积一半,则阴影部分也占平行四边形面积的一半:12×8÷2=48(平方厘米);图形(2)中阴影部分面积可用大圆面积减去小圆面积计算得出:3.14×18×18-3.14×10×10=703.36(平方厘米);图形(3)中阴影部分面积可用正方形面积减去4个扇形面积,而4个扇形正好组成一个直径为10的圆,所以阴影面积可用正方形面积减去一个直径为10厘米的圆的面积:1010-3.14 44="21.5" (平方厘米);图形(4)中阴影部分面积可以表示成两个半圆的面积减去一个直角三角形的面积。
六年级下册数学空间与图形测试题人教版一、单选题(共5道,每道20分)1.如图,方格纸上每个小正方形的面积为1平方厘米,求方格纸上多边形的面积是平方厘米。
A.25.5B.19.25C.20D.25答案:A解题思路:如图所示,将多边形分成五部分:第一部分面积:5×1÷2=2.5第二部分面积:4×1÷2=2第三部分面积:4×4=16第四部分面积:4×1÷2=2第五部分面积:6×1÷2=32.5+2+16+2+3=25.5试题难度:三颗星知识点:平面图形的面积2.如图,ABCD是直角梯形,BC=12厘米,CD=7厘米,则阴影部分的面积的和为平方厘米。
A.42B.31C.21D.11答案:A解题思路:极端化考虑:E点与C点重合,则图中阴影部分面积与下图阴影部分面积相等因此阴影部分的面积为:12×7÷2=42(平方厘米)试题难度:三颗星知识点:平面图形的面积3.ABCD是长为8,宽为6的长方形,E,F分别是AD,BC的中点,P为长方形内任意一点,则阴影部分的面积是。
A.48B.24C.12D.6答案:C解题思路:如图所示,过P点做AD的平行线MN则△PAE的面积为长方形AMND的,△PFC的面积为长方形BMNC的,则阴影部分的面积是长方形ABCD的。
6×8×=12试题难度:三颗星知识点:平面图形的面积4.如图,OC=3厘米,则阴影部分面积为平方厘米(π取3.14)。
A.2.565B.3.276C.1.76D.4.76答案:A解题思路:×π×3²-×3×3=2.565试题难度:三颗星知识点:平面图形的面积5.有一块长方形土地,宽为10米,长是宽的2倍,中间有一块花坛,花坛是一个边长1米的正方形,周围是草坪,草坪的面积是平方米.A.199.5B.132C.199D.201答案:C解题思路:用长方形的面积减去正方形的面积即可:10×10×2-1×1=199试题难度:三颗星知识点:平面图形的面积。
2024年北师大版六年级下册数学暑假必刷专题:空间与图形一、单选题1.把一个棱长是6分米的实心正方体木块削成一个最大的圆柱,削去部分的体积是( )立方分米。
A.46.44B.100.48C.102.96D.169.562.一个立体图形,从上面看到的形状是,从正面看到的形状是,搭这个立体图形至少需要( )个小正方体。
A.5B.6C.7D.83.如图,小明从地铁站到学校,要向( )方向走。
A.西偏南30°B.北偏东30°C.东偏北30°D.西偏北30°4.一个圆柱与圆锥的体积相等,圆柱的半径与圆锥的半径相等,圆柱的高与圆锥的高的比是( )A.3:1B.1:3C.9:1D.1:95.如图,下面( )圆锥的体积与左边圆柱的体积相等。
A.A B.B C.C D.相等6.一个三角形的一条边为2cm,另一条边为4cm,那么这个三角形第三条边a的取值范围是( )A.2<a<4B.4<a<6C.2<a<6D.2<a<8二、填空题7.一个高10厘米的圆柱体,沿底面直径切拼成一个近似的长方体,表面积增加了200平方厘米。
原来圆柱体的体积是 立方厘米。
8.一个长方体、一个圆柱体和一个圆锥体,它们的底面积和体积分别相等,如果长方体的高是12厘米,那么圆柱体的高是 厘米,圆锥体的高是 厘米。
9.如图所示,把底面直径10厘米,侧面积62.8平方厘米的圆柱切成若干等份,拼成一个近似的长方体。
这个长方体的底面积是 平方厘米,体积是 立方厘米。
10.用5个大小相等的小正方体搭成下面三个立体图形,从 面看这三个立体图形所看到的形状是完全一样的。
11.把一个棱长是a厘米的正方体锯成两个相同的长方体,表面积增加了 cm2。
12.下图中圆和长方形面积相等,圆的半径等于长方形的宽.阴影部分面积是60cm2,圆的面积是 cm2。
13.一个长方体和一个正方体的棱长总和相等,已知长方体的长、宽、高分别是3dm、2dm、4dm,那么正方体的体积是 dm3。
新人教版六年级下册数学总复习专题五——空间与图形的试题及答案(个人整理)专题五——空间与图形(一) 一、填空。
(30分)1、一条10厘米长的线段,这条线段长()分米,是1米的()()。
2、经过两点可以画出()条直线;两条直线相交有()个交点。
3、如果等腰三角形的一个底角是53°,则它的顶角是().直角三角形的一个钝角是48°,另一个锐角是()。
4、上图是由()个棱长为1厘米的正方体搭成的。
将这个立体图形的表面涂上蓝色,其中只有三个面涂上蓝色的正方体有()个,只有四个面涂上蓝色正方体有()个。
5、在一块边长10cm的正方形硬纸板上剪下一个最大的圆,这个圆的面积是()cm2,剩下的边角料是()cm2。
6、一个长方形的周长是42cm,它的长与宽的比是4∶3,它的面积是()cm2。
7、用72cm长的铁丝焊成一个正方体框架(接口处不计),这个正方体框架的棱长是()cm,体积是()cm3,表面积是()cm2。
8、一个圆锥的体积是9.42立方分米,底面直径是6分米,它的高是()分米,和它等底等高的圆柱的体积是()立方分米。
9、从直线外一点到这条直线可以画无数条线段,其中最短的是和这条直线()的线段。
10、用百分数表示以下阴影部分是整个图形面积的百分之几。
11、把一个底面直径2分米的圆柱体截去一个高1分米的圆柱体,原来的圆柱体表面积减少()平方分米。
12、右图是由棱长1厘米的小正方体木块搭成的,这个几何体的表面积是()平方厘米。
至少还需要()块这样的小正方体才能搭成一个大正方体。
13、在一块边长是20厘米的正方形木板上锯下一个最大的圆,这个圆的面积是()平方厘米,剩下的边料是()平方厘米。
14、将一个大正方体切成大小相同的8个小正方体,每个小正方体的表面积是18平方厘米,原正方体的表面积是()平方厘米。
15、把一个棱长8cm的正方体切成棱长2cm的小正方体,可以得到()个小正方体,它们的表面积之和比原来增加了()c㎡。
空间与图形专项训练基础题一、选择题1.一个正方体的棱长是20厘米,那么它的表面积是()。
A.400平方厘米 B.1200平方厘米 C. 2400平方厘米【答案】C【解析】根据正方体的表面积=棱长×棱长×6,代入数据:20×20×6=2400;据此选择即可。
2.下面图形中是正方形的平面展开图的是()。
【答案】C【解析】看图分析可知,A不能围成正方体,所以不是正方体的平面展开图,B也不能围成正方体,所以也不是正方体的平面展开图,C能围成正方体,所以C是正方体的平面展开图;据此选择即可。
3.下列说法错误的是()。
A.正方体是长、宽、高都相等的长方体。
B.长方体与正方体都有12条棱。
C.长方体的6个面中至少有4个面是长方形。
D.长方体的6个面中最多有4个面是长方形。
【答案】D【解析】长方体的6个面一般情况下都是长方形,特殊的情况下,至少有4个面是长方形,所以D的说法是错误的;据此选择即可。
4.下列物体中,形状不是长方体的是()A. 墨水盒B. 烟盒C. 水杯D. 电冰箱[来源【答案】C【解析】根据生活经验可知,墨水盒的形状是长方体的,烟盒的形状也是长方体的,电冰箱的形状也是长方体的,而水杯一般都不是长方体的;判断即可。
5.长方体的12条棱中,高有()。
A.4条 B.6条 C.8条 D.12条【答案】A【解析】长方体的12条棱分成了3组,每组都有4条棱,即4个长、4个宽和4个高;据此解答即可。
6.下列现象中,()是旋转现象。
A. 我们用手拧水龙头。
B. 写字时笔尖的移动。
C. 小朋友们荡秋千。
D. 行驶中的车轮转动。
【答案】A、C、D【解析】A是旋转现象,是以中间为中心进行旋转的;B不是旋转现象;C是旋转现象,是以秋千的绳子和支架的交点为中心进行旋转的;D是旋转现象,是以车轮的轴为中心进行旋转的;据此选择即可。
7.如下图阴影部分,可以看作是一个菱形通过()得到的图形.A.平移 B.旋转 C.对称【答案】B【解析】看图可知,菱形ABCD以A为中心,逆时针旋转得到菱形AEFG;据此选择即可。
六年级数学空间与图形试题1.在平面图上通常确定的方位是:上北下()、左()右()。
【答案】南西东【解析】本题考查的是在平面图上如何确定方向。
一般来说, 在地图或平面图上,有一个统一的确定方向的标准。
通常是按上北、下南、左西、右东的规则来确定方向的。
为了标明方向,在地图和平面图上通常用箭头(板书:北)来表示方向。
这个符号叫指向标(板书:指向标),意思是说:箭头所指的方向是北面。
2.一个长方体,如果高增加2厘米,就成了正方体,而且表面积增加56平方厘米,原来这个长方体的体积是()立方厘米。
【答案】245【解析】本题考查正方体的形状特点及对表面积和体积的认识及计算。
根据高增加2厘米成为正方体,得出原长方体的长、宽、高的关系,进一步根据表面积的增加情况,计算出长、宽、高,进一步计算出体积,解决问题。
表面积增加的部分是高增加2厘米后周围四个面的面积和,可表示为长×2×4,计算长:56÷4÷2=7(厘米),计算高:7-2=5(厘米),计算体积:7×7×5=245(立方厘米)。
3.小青坐在教室的第3排第4列,用(4,3)表示,那么小明坐在教室的第5排第2列应当表示为()。
【答案】(2,5)【解析】本题考查的是用数对表示物体的位置。
根据小青的位置可知,数对中第一个数表示小青所在的列数,第二个数表示小青所在的排数,两个数中间用逗号隔开,即(列,排)。
因为小明的位置是第5排第2列,所以小明的位置可表示为(2,5)。
4.—个长方体,如果高增加2厘米变成了正方体,而且表面积要增加56平方厘米,原来这个长方体的体积是()立方厘米。
【答案】245【解析】本题考查的是有关长方体的侧面积、表面积和体积的有关知识。
把长方体的高增加2厘米变成了正方体,增加的表面积是长方体的侧面积,本题根据长方体的侧面积求出长方体的长和宽,再推导出长方体的高,就可以求出长方体的体积。
长方体的高增加2厘米变成了正方体,增加的表面积是长方体的侧面积,由于底面积是正方形,因此长方体的长和宽相等,长方体的长(宽)=56÷4÷2=7厘米,长方体的高=7-2=5厘米,所以长方体的体积=7×7×5=245平方厘米。
六年级数学下册图形与几何练习题班级考号姓名总分一、填空题。
1. 3.5平方米=()平方分米2立方分米3立方厘米=()立方分米5.02升=()升()毫升公顷=()平方米2.在钟面上,6时的时候,分针和时针所夹的角的度数是(),是一个()角。
3.一个三角形中,∠1=∠2=35°,∠3=(),按边分是()三角形。
4.一个三角形与一个平行四边形等底等高,如果三角形的面积是3.6平方分米,那么平行四边形的面积是()平方分米。
5.一个圆柱的底面直径是8厘米,高是1分米,它的侧面积是()平方厘米。
把它沿着底面直径垂直切成两半,表面积会增加()平方厘米。
6.三个棱长为2厘米的正方体拼成一个长方体,这个长方体的体积是()立方厘米,表面积是()平方厘米。
7.一个长方体相交于同一个顶点的三条棱的长度之比是3∶2∶1,这个长方体的棱长总和是72厘米。
长方体的表面积是()平方厘米,体积是()立方厘米。
8.一个圆柱和一个圆锥等底等高,圆柱与圆锥的体积之和是60立方厘米,圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。
二、判断题。
(对的画“√”,错的画“✕”)1.平角是一条直线。
()2.三角形具有稳定性,四边形不具有稳定性。
()3.两个面积相等的梯形,可以拼成一个平行四边形。
()4.一个玻璃容器的体积与容积相等。
()5.一个棱长是6厘米的正方体的表面积和体积相等。
()三、选择题。
(把正确答案的序号填在括号里)1.射线()端点。
A.没有B.有一个C.有两个2.下面图形中对称轴最少的是()。
A.长方形B.正方形C.等腰梯形3.下面的立体图形从左边看到的图形是()。
4.下图中,甲和乙两部分面积的关系是()。
A.甲>乙B.甲<乙C.甲=乙5.一个圆柱的侧面展开图是一个正方形,这个圆柱的高与底面半径的比值是()。
A.πB.2πC.r四、计算题。
1.计算下面图形中阴影部分的面积。
(单位:厘米)2.计算以红色直线为轴旋转形成的立体图形的体积。
苏教版小学六年级(下)数学空间与图形单元试卷一、解答题(共16小题,满分48分)1. 钟上5时整,时针和分针组成________角,4时30分时针和分针组成________角,________时整,时针和分针组成平角,________时整或________时整,时针和分针组成直角。
2. 过一点能画________条直线,过两点能画________条直线。
3. 有________条线段。
4. 一个平面有4个不在同一直线上的点,连接其中任意两个点,最多能画________条直线。
5. 三角形的一个内角正好等于其余两个内角的和,这是一个________三角形。
6. 一个等腰三角形,它的顶角是72∘,它的底角是________度。
7. 用360厘米长的铁丝围成一个三角形,三条边长度的比是4:2:3,它的三条边的长度分别是________、________和________厘米。
8. 一个平行四边形的底是9分米,高是底的2倍,它的面积是________平方分米。
与它等底等高的三角形的面积是________平方厘米。
9. 一个梯形上底与下底的和是15厘米,高是8.8厘米,面积是________.10. 一个挂钟的时针长5厘米,一昼夜这根时针的尖端走了________厘米,针尖扫的面积是________平方厘米。
11. 在长20厘米,宽1.8分米的长方形里画一个最大的圆,圆的周长是________面积是________.12. 一圆形水池,直径为30米,沿着池边每隔5米栽一棵树,最多能栽________棵。
13. 把一平行四边形的框架拉成一长方形,面积________,周长________.把一平行四边形通过剪、移、拼的方法拼成一长方形,面积________,周长________.14. 一个圆的半径扩大3倍,周长就扩大________倍,面积就扩大________倍。
15. 第________幅画是下面这个正方体图形的展开图?二、火眼金睛.半径是2厘米的圆,它的周长和面积相等。
六年级数学空间与图形试题答案及解析1.你有多少种方法将任意一个三角形分成:⑴ 3个面积相等的三角形;⑵ 4个面积相等的三角形;⑶6个面积相等的三角形.【答案】(1)(2)(3)【解析】⑴如下图,D、E是BC的三等分点,F、G分别是对应线段的中点,答案不唯一:⑵如下图,答案不唯一,以下仅供参考:⑶如下图,答案不唯一,以下仅供参考:2.如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形的面积;⑵?【答案】6;1:3【解析】⑴根据蝴蝶定理,,那么;⑵根据蝴蝶定理,.=1,求:梯3.(北京)如图:梯形ABCD中,AD∥BC,AC、BD交于M,,若S△ADM形的面积.【答案】梯形的面积是16【解析】分析:根据题意知道△AMD 与△BMC 相似,由此得出△BMC 的面积,再根据,知道△ADM 与△ADB 高的比是1:4,进而求出△ABD 的面积,用△ADB 的面积乘2再减去△ADM 的面积,再计算△BMC 的面积就是梯形的面积.解答:解:因为,, 因为△ADM 和△ABM 共高,△ADM 和△CDM 共高,△CDM 和△CBM 共高, 所以S △ADM :S △ABM ==, S △ADM :S CDM ==, S △CDM :S CBM ==, 因为S △ADM =1,所以S △ABM =3,S △CDM =3,S △CBM =9,所以梯形的面积为:1+3+3+9=16,答:梯形的面积是16.点评:此题考查了相似三角形的面积比等于相似比的平方的性质及底一定时,三角形的面积与高成正比的关系的灵活应用.4. (丰都县)画出周长是12厘米,面积恰好是整数平方厘米的平面图形.至少画出3个不同的图形,并在图上标出数据.【答案】【解析】分析:根据题意:可画长方形的长为4厘米宽为2厘米则周长为(4+2)×2=12厘米,面积为4×2=8平方厘米;正方形的边长为3厘米,周长则为3×4=12厘米,面积为3×3=9平方厘米;直角三角形的直角边分别为3厘米、4厘米,斜边为5厘米,这个三角形的周长为3+4+5=12厘米,面积为3×4÷2=6平方厘米,据此解答即可得到答案.解答:解:根据分析作图即可:点评:此题主要考查的是如何画指定面积和周长的图形.5. (2013•成都)将如图所示的三角形沿虚线折叠,得到如图所示的多边形,这个多边形的面积是原三角形面积的,已知图中阴影部分的面积和为6平方厘米,求原来三角形的面积.【答案】求原来三角形的面积是14平方厘米【解析】观察图可知:形成的多边形的面积比原来三角形的面积减少一个重叠部分的面积,所以重叠部分的面积就是原来三角形面积的(1﹣),阴影部分的面积和为6平方厘米所对应的是1﹣2(1﹣),用除法就可以求出原来三角形的面积.解答:解:6÷[1﹣2(1﹣)]=6÷[1﹣2×]=6÷[1﹣]=6÷=14(平方厘米)答:求原来三角形的面积是14平方厘米.点评:解决本题关键是理解“多边形的面积比原来三角形的面积减少一个重叠部分的面积”,6平方厘米所对应的是原三角形面积的减去2个重叠部分面积.6.(南山区)量出需要的数据,计算梯形的周长和面积.【答案】梯形的周长是10厘米,面积是5.1平方厘米【解析】测量出梯形的各个腰和底以及高的长度,使用梯形的周长和面积公式可直接进行计算.解答:解:由测量得知,梯形的上底是2厘米,腰是2厘米,下底是4厘米,高是1.7厘米.周长:2+2+2+4=10(厘米);面积:(2+4)×1.7÷2,=6×1.7÷2,=5.1(平方厘米);答:梯形的周长是10厘米,面积是5.1平方厘米.点评:准确测量梯形的上下底、腰、高的长度,正确使用梯形的周长和面积公式.7.(东莞)两个面积相等的三角形一定能拼成一个平行四边形..(判断对错)【答案】×【解析】分析:因为只有完全一样的三角形才可以,面积相等的三角形,未必底边和高分别相等,据此举例说明即可判断.解答:解:例如:底边长为4,高为3和底边长为2,高为6的两个三角形,面积相等,但是不能拼成平行四边形.面积相等的两个三角形一定能拼成平行四边形,说法错误.故答案为:×.点评:此题应认真进行分析,通过举例进行验证,故而得出问题答案.8.(诸暨市)图中的两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积.【答案】阴影部分的面积是30平方厘米【解析】由题意得,阴影部分面积=大三角形面积﹣大三角形里空白小三角形的面积,代数计算.解答:解:大三角形面积:10×(10+6)÷2=80(平方厘米),小三角形面积:10×10÷2=50(平方厘米),阴影部分三角形面积:80﹣50=30(平方厘米).答:阴影部分的面积是30平方厘米.点评:解决本题的关键是明确阴影部分面积=红色大三角形面积﹣红色大三角形里空白小三角形的面积.9.(2009•资中县)如图,在平行四边形中,甲的面积是46平方厘米,乙的面积是73平方厘米,则丙的面积是平方厘米.【答案】27【解析】连接EF,因为三角形ABF的面积=三角形BFE的面积(等底等高),三角形EFC的面积=三角形DFC的面积,所以丙的面积=乙的面积﹣甲的面积=73﹣46=27(平方厘米);继而得出结论.解答:解:连接EF,因为三角形ABF面积=三角形BFE面积(等底等高),所以三角形EFC面积=三角形DFC的面积,因为丙的面积=三角形EFC的面积=三角形BEC的面积﹣三角形BEF的面积=73﹣46=27(平方厘米);答:丙的面积是27平方厘米;故答案为:27.点评:解答此题的关键是根据三角形等底等高的性质,进行分析,把所求问题进行等量代换,进而得出结论.10.(旅顺口区)在如图中按要求操作.(1)画出梯形的高,测量高cm(精确到0.1cm);(2)画一条线段,把梯形变成一个平行四边形和一个三角形;(3)测量∠A=.【答案】(1)2.1;(2)(3)115°【解析】(1)过梯形上底的一个顶点向下底作垂线,顶点和垂足之间的线段就是梯形形的一条高;用刻度尺即可度量出这条高的长度.(2)过三角形上底的一个顶点,作另一腰的平行线,交梯形下底于一点,即可把梯形变成一个平行四边形和一个三角形.(3)把量角器的0°刻度线与∠A的一边重合,顶点与量角器的中心重合,另一边与量角器的刻度线重合,量角器的读数就是这个角的度数.解答:解:(1)画梯形的高如下图,经测量,高是2.1cm;(2)画线如下图,线段BE把梯形ABCD分成平行四边ADEB和三角形BEC;(3)经测量,∠A=115°;故答案为: 2.1,115°.点评:本题是考查作梯形的高、线段的度量、角的度量等.注意,画图形的高时要有虚线;度量角时,注意“三重合”.11.(2013•广州)如图所示,求甲比乙的面积少多少平方厘米?【答案】甲比乙的面积少3平方厘米【解析】根据图形可知,甲加上空白梯形的面积是长6厘米,宽4厘米的长方形的面积,乙加上空白梯形的面积是一个底6厘米,高(4+5)厘米的三角形,而甲与乙的面积差即是大三角形与长方形的面积差.据此解答.解答:解:6×(4+5)÷2﹣6×4=6×9÷2﹣24=27﹣24=3(平方厘米);答:甲比乙的面积少3平方厘米.点评:本题考查了几何问题中的等量代换,即根据两个面积同时加上或减去相同的面积,差不变.12.(2014•长沙)如图,三角形一共有个.【答案】6【解析】试题分许:因为所有的三角形都有一个公共的顶点,所以只要看斜边有几条线段就有几个三角形.解答:解:斜边上线段一共有:3+2+1=6(条),所以一共有6个三角形.故答案为:6.点评:解决本题的关键是根据三角形的边的关系将三角形的个数转化成线段的条数来解答.13.如图,长方形内有两个三角形①和②,那么①的面积()②的面积.A.< B.> C. =【答案】C【解析】如图所示,三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,据此即可判断.解答:解:三角形ABC和三角形DBC等底等高,则二者的面积相等,二者分别减去公共部分三角形BOC,则剩余的部分仍然相等,即三角形①和三角形②的面积相等,故选:C.点评:解答此题的主要依据是:等底等高的三角形面积相等.14.用a表示梯形的上底,b表示下底,h表示高,S表示面积.梯形面积的计算公式是.【答案】S=(a+b)h÷2【解析】梯形的面积=(上底+下底)×高÷2,进而把对应的字母代入等式即可.解答:解:因为梯形的面积=(上底+下底)×高÷2,所以S=(a+b)h÷2.故答案为:S=(a+b)h÷2.点评:此题考查用字母表示计算公式,熟记梯形的面积计算公式,是解决此题的关键.15.下图平行四边形中(单位:厘米),长为30厘米的底边所应的高是10厘米,阴影部分面积是()平方厘米.A.300B.150C.120D.无法确定【答案】B【解析】观察图形可知,阴影部分的面积正好等于这个平行四边形的面积的一半,据此计算即可解答问题.解答:解:30×10÷2=150(平方厘米)答:阴影部分的面积是150平方厘米.故选:B.点评:此题考查了组合图形的面积的计算方法,一般都是转化到规则图形中利用面积公式进行计算解答.16.要求如图图形的面积,请先画出相关的线段;量取某些数据(保留整厘米数),再计算出面积.【答案】三角形的面积为5平方厘米.【解析】依据过直线外一点作已知直线的垂线的方法,即可作出底上的高;再据量得底和高的值,利用三角形的面积公式即可求其面积.解答:解:如图所示,即为所要求画的三角形的底和高的长度:量得三角形的底约为5厘米,高约为2厘米,则三角形的面积为:5×2÷2=5(平方厘米);答:三角形的面积为5平方厘米.点评:此题主要考查:过直线外一点作已知直线的垂线的方法,以及三角形面积的计算方法.17.求阴影部分面积.【答案】阴影部分的面积是12.56平方厘米【解析】如图可把阴影分为①、②两部分,图①和图③的面积相等,所以阴影部分的面积是圆面积的四分之一.据此解答.解答:解:3.14×(8÷2)2÷4=3.14×16÷4=12.56(平方厘米)答:阴影部分的面积是12.56平方厘米.点评:在求不规则图形的面积时,一般要通过转化,把图形转化为规则图形的面积来进行解答.18.在右图中,三角形DEF比三角形ABF面积小15平方厘米,求DE的长。
空间与图形学生姓名年级学科授课教师日期时段核心内容平面图形和立体图形的拓展应用课型一对一/一对N教学目标1、能灵活运用计算公式求较复杂的平面图的周长或面积;2、能灵活运用计算公式求较复杂的立体图形的表面积或体积。
重、难点1、平面图形的特征、周长和面积公式的应用;2、立体图形的特征、表面积和体积公式的应用。
课首沟通1.回顾小学所学平面图形的特征、周长和面积公式。
2.回顾小学所学立体图形的特征、表面积和体积公式。
知识导图课首小测1.如右图,正方形的面积是5平方厘米,圆的面积是()平方厘米。
2.(黄埔区单元试题)用多种方法计算下面图形的面积。
3.下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
4.(广州市第二外国语学校面试真题)一个由27块小正方体组合而成的大正方体,表面被涂为黑色。
测量后发现,这个大正方体的棱长为2,那么所有小正方体未被涂黑部分的表面之和是多少?5.(省实天河面谈题)一个半圆里有一个小圆,求谁的面积大。
导学一:平面图形知识点讲解 1:求组合图形周长的方法。
组合图形的周长:围成组合图形的所有线段的长度和。
例 1. 如图所示,圆的周长是16.4厘米,圆的面积与长方形的面积正好相等,图中阴影部分的周长是多少厘米?【学有所获】当发现无法用求半径或直径的方法去求阴影部分的周长时,要转换思考方向,考虑用其它方法来解答。
我爱展示1.计算下列图形的周长2.如右图为某楼梯的形状及长度(单位:米),要在楼梯表面铺地毯,地毯的长度至少需要()米.3.如图,用一根铁丝将四根直径2dm的管子紧紧捆住(接头处不计),至少需要铁丝多少分米?知识点讲解 2:求组合图形面积的常用方法。
1.平移法:将一个组合图形中的一部分平移,与另一部分组合成一个新的图形,再求出它的面积。
2.分割法:把一个组合图形分割成几个学过的规则图形,分别求出它们的面积后,再求它们的面积和。
3.割补法:把一个不规则图形的空缺部分补上一块或从其它地方割下一块补上,组成一个学过的规则图形,再求出其面积。
空间与图形专项训练基础题一、选择题1.一个长方体的长、宽、高都扩大2倍,它的体积扩大()倍。
A、2B、6C、8【答案】C【解析】长方体的体积=长×宽×高,长、宽和高都扩大2倍,则体积就扩大了2×2×2=8倍,根据此选择即可。
2.正方体的棱长扩大2倍,它的表面积就()。
A.扩大2倍B.扩大4倍C.扩大6倍【答案】B【解析】根据正方体的表面积计算公式,棱长扩大2倍,则表面积扩大:2×2=4倍,根据此选择即可。
3.用两个棱长是1分米的正方体小木块拼成一个长方体,拼成的长方体的表面积是()。
A.增加了B.减少了C.没有变【答案】B【解析】把小正方体拼成一个长方体后,减少了2个小正方形的面积,因此拼成的长方体的表面积比原来减少了。
4.做一个长方体抽屉,需要()块长方形木板。
A.4 B.5 C.6【答案】B【解析】长方体抽屉没有上面一个面,因此一共有5个面,需要5块长方形木板,根据此选择即可。
5.用一根长()铁丝正好可以做一个长6厘米、宽5厘米、高3厘米的长方体框架。
A.28厘米 B.126平方厘米 C.56厘米 D.90立方厘米【答案】C。
【解析】长方体有4条长,4条宽和4条高,求出棱长之和,即可求出需要多少铁丝,即:(6+5+3)×4=56厘米,根据此选择即可。
6.我们在画长方体时一般只画出三个面,这是因为长方体()。
A.只有三个面 B.只能看到三个面 C.最多只能看到三个面【答案】C【解析】把长方体放在桌面上,最多可以看到3个面。
根据此选择。
7.将一个正方体钢坯锻造成长方体,正方体和长方体()。
A.体积相等,表面积不相等B.体积和表面积都不相等.C.表面积相等,体积不相等.【答案】A【解析】将一个正方体钢坯锻造成长方体,形状改变,体积不变。
8.一个正方体的棱长之和是12a厘米,它的棱长是()厘米。
A.6aB.aC.2aD.12a【答案】B【解析】棱长之和÷12=棱长9.一个正方体的棱长是8分米,它的棱长总和是()分米。
北师大版六年级数学下册总复习《空间与图形》之“平面图形”培优检测卷学校:___________姓名:___________班级:___________成绩:___________一、填空题(每小题2分,共20分)1.一个直角三角形,三条边分别为6厘米、8厘米、10厘米,它斜边上的高是(______).2.一个三角形面积是9平方分米,底是4分米,高是(______)分米。
3.一块长方形纸板长25米,宽是长的14。
这块纸板的面积是(______)平方米。
4.在一个三角形中,有两个角分别是36°和75°,则该三角形的第三个角是_____度,这个三角形是_____三角形.5.一个正方形的周长是24厘米,它的边长是(______)厘米,面积是(______)平方厘米。
6.有两根小棒分别是7厘米和5厘米,请你再添上一根_____厘米的小棒,就能围成一个三角形。
7.用一根长18厘米的铁丝围成一个三角形,在围成的三角形中,最长的一条边的长度要小于(______)厘米。
(填整厘米数)8.下图平行四边形的面积是15cm2,阴影部分的面积是(______).9.一个圆形展台(如图)的半径是3m,每平方米的租金是0.5万元,租这个圆形展台需要(______)钱。
10.左图有(____)条对称轴,如果每个圆的周长是25.12cm,长方形的面积是(____)cm2.二、选择题(20分)1.大圆的半径6cm,小圆的半径3cm,大圆和小圆面积的比是()。
A.2:1 B.4:1 C.1:22.将周长25.12厘米的圆形纸片剪成两个半圆,每个半圆的周长是()A.12.56厘米B.16.56厘米C.20.56厘米3.从7:00到7:30,分针旋转了()。
A.30°B.90°C.180°4.梯形的上、下底之和一定,它的面积和高()A.成正比例B.成反比例C.不成比例D.无法确定5.一块长方形草地,长10m,宽6m,在草地里有一条宽1m的曲折小路,如图所示,草坪的面积是()2m。
新人教版六年级下册《空间与图形》小学数学-有答案-单元测试卷一、填空1. 直线上两点间的一段叫________,把线段的一端无限延长就得到一条________.2. 1平角=________直角,1周角=________平角。
3. 工人叔叔把电线杆上的线架和自行车架子做成三角形,这是应用了三角三具有________的特征,而推拉或防盗门则是由许多小平边四边形组成的,这是应用平行四边形________的特性。
4. 一个等边三角形,它的每个内角都是________度,等腰直角三角形的两个底角都是________度。
5. 三角形三个角度数的比是2:4:3,最大的角是________.6. 一个三角形底是3分米,高是4分米,它的面积是________.7. 一个平行四边形的底长18厘米,高是底的1,它的面积是________.28. 一个直径4厘米的半圆形,它的周长是________,它的面积是________.9. 课本的宽为X厘米,长比宽多2厘米,课本的面积是________平方厘米。
10. 六个边长为2厘米的正方形拼成一个长方形,拼成的长方形的周长可能是________,也可能是________,拼成的长方形的面积是________平方厘米。
二、判断:对的打“√”,错的打“×”角的两边越长,角就越大。
________.(判断对错)两端都在圆上的线段是圆的直径。
________.(判断对错)一条直线也可看成一个平角。
________.(判断对错)一个边长是5分米的正方形,它的面积比周长大。
________.(判断对错)在一个长方形内画一个面积最大的三角形,这个三角形的面积一定是长方形面积的一半。
________.长方形、正方形、圆的周长都是12.56厘米,圆的面积最小。
________.圆锥体积是圆柱体积的三分之一。
________.(判断对错)半径是2厘米的圆,它的周长和面积相等。
________.(判断对错)三、解决问题(30分)一盒饼干长20cm,宽15cm,高30cm,要在它的四周贴上商标纸,这张商标纸的面积至少是多少平方厘米?在一个长10米、宽3.5米的长方形客厅的地面上铺设2厘米厚的木地板,至少需要木材多少立方米?铺好要在地板上涂上油漆,油漆面积是多少?要制作50块棱长6厘米的正方体木块,至少需要多少立方分米的木材?一个没有盖的圆柱形不锈钢茶杯,它的底面直径和高都是10厘米,做这样一个茶杯,至少要多少不锈钢板?(不考虑接头)它的容积是多少?(铁皮厚度不计)在棱长为90cm的正方体玻璃缸里装满水,然后将这些水倒入长120cm,宽81cm的长方体玻璃缸里,这时水深多少?参考答案与试题解析新人教版六年级下册《空间与图形》小学数学-有答案-单元测试卷一、填空1.【答案】线段,射线【考点】直线、线段和射线的认识【解析】依据直线和线段和射线的定义进行作答即可。
2019-2020学年度人教版数学六年级下册小升初专题练习:空间与图形三一、选择题(题型注释))A. 平移B. 旋转C. 既平移又旋转2.圆柱的侧面沿直线剪开,在下列的图形中,不可能出现()A.长方形或正方形B.三角形C.平行四边形3.用木条钉成的长方形拉成一个平行四边形,它的高和面积()A.都比原来大B.都比原来小C.都与原来相等4.如果大圆的周长是小圆的2倍,当小圆的直径是2分米时,大圆的直径是()分米。
A. 8B. 4C. 65.一个圆锥的体积是18立方分米,比与它等底等高的圆柱的体积少()立方分米。
A. 36B. 24C. 9D. 186.有一辆小汽车(如下图),小红从空中往下看这辆汽车,下面哪幅示意图是小红看到的形状?()A. B. C.7.棱长为8dm的油箱容积和体积相比()。
A. 一样大B. 体积大C. 容积大8.一只小狗正在平面镜前欣赏自己的全身像(如图所示),此时,它所看到的全身像是()。
A.B.C. D.9.用1立方厘米的小正方体摆成一个几何体,从正面、上面和侧面看,分别得到下面的图形:这个几何体是由 个小正方体摆成的.( ) A. 16B. 2010.在旋转过程中,确定一个图形旋转后的位置,除了需要知道此图形原来的位置外,还需要知道( ) A. 图形的形状、旋转中心 B. 图形的形状、旋转角 C. 旋转中心、旋转角D. 以上答案都不对11.下面三根小棒能围成等腰三角形的是( ) A. 4 6 8B. 4 4 6C. 4 4 8D. 3 4 512.一个圆柱的侧面展开图如图,那么这个圆柱可能是下列图中的( )A. B. C.评卷人 得分二、填空题(题型注释)13.一个长方体的棱长之和是48分米,长是5分米,宽是3分米,这个长方体的表面积是 平方分米,体积是 立方分米.14.一个圆的半径是3cm ,它的直径是 ,周长是 ,面积是 .15.下图是通过________得到的16.一个圆柱的底面直径是4厘米,高是6厘米,它的体积是_____立方厘米;与它等底等高的圆锥体积是________立方厘米。
六年级数学空间与图形试题答案及解析1.有一个角是直角的三角形是直角三角形,有一个角是钝角的三角形是钝角三角形,有一个角是锐角的三角形是锐角三角形。
()【答案】×【解析】略2.(1)如右图,书店在学校()偏()()度方向上,距离学校()米。
(2)小英家在学校()偏()()度方向上,距离学校()米。
(3)学校在银行()偏()()度方向上,距离银行()米。
(4)学校在公园()偏()()度方向上,距离公园()米。
【答案】(1)北西 60 400 (2)南西 30 800(3)南西 15 600 (4)北西 45 400【解析】本题考查的是用方向和距离来描述位置。
在解此问题之前,我们首先要确定以谁为参考点,然后再用方向和距离的知识来确定位置,过程中要利用比例尺来计算实际距离。
(1)书店在学校北偏西90-30=60度方向上,距离学校的米数:200×2=400(米)。
(2)小英家在学校南偏西90-60=30度方向上,距离学校的米数:200×4=800(米)。
(3)学校在银行南偏西90-75=15度方向上,距离银行的米数:200×3=600(米)。
(4)学校在公园北偏西45度方向上,距离学校的米数:200×2=400(米)。
3.用圆规画图,当圆规两脚之间的距离为( )厘米时可以画出直径为2厘米的圆,这个圆的面积是( )平方厘米。
【答案】1,3.14【解析】本题考查用圆规画圆的正确方法以及直径与半径的关系及圆的面积。
根据直径先确定出半径,再计算出圆的面积。
圆的半径是2÷2=1(厘米),画圆时圆规两脚张开的距离就是半径。
圆的面积:3.14×=3.14(平方厘米)4.一个圆锥体与一个圆柱体等底等高,已知圆锥体的体积比圆柱体少14立方分米,那么圆锥体的体积是()立方分米。
【答案】7【解析】本题考查等底等高的圆柱与圆锥的体积关系。
明确体积减少部分与两个图形的体积关系,正确计算,解决问题。
空间与图形练习题
填空:(27﹪)
1、把一个圆平均分成64个小扇形,剪开后拼成一个近似的长方形,这个长方形的长是宽的()倍。
2、一根长2米的圆柱形木料,把它锯成相等的4段后,表面积增加了3.6平方米,这根木料原来的体积是()立方米。
3、一个长方体的棱长总和是108厘米,它的长、宽、高的比为4∶3∶2,这个长方体的表面积是()。
判断:(27﹪)
4、三根小棒长度的比是1∶3∶1,用这三根小棒可以围成一个等腰三角形。
()
5、不相交的两条直线叫做平行线。
()
6、任何两个等底等高的梯形都能拼成一个平行四边形。
()
选择:(16﹪)
7、一个三角形中最小的一个内角是50°,这个三角形是()三角形。
A.直角 B.锐角 C.钝角 D.不能确定
8、长方形的长和宽都增加20%,这个长方形的面积比原来增加()。
A.20%
B.40%
C.44%
D.56%
解决问题:(30﹪)
9、打谷场上有一个近似于圆锥形的小麦堆,高1.5米,占地面积是8平方米。
把这堆小麦装进一个圆柱形粮囤中,正好占这个粮囤的 2/3。
求这个粮囤的容积。
10、把一个棱长6dm的正方体切成棱长2dm的正方体,可以得到多少个小正方体?表面积增加了多少?
评分标准:
填空题每空9分答案:①∏②1.2 ③7488
判断题每题9分④×⑤×⑥×
选择题每题8分⑦ B ⑧ C
解决问题每题15分⑨8×1.5×1/3÷2/3=6立方米
⑩ 3 ×3×3=27(个)
(27×6-9×6)×(2×2)=432平方分米。