区域地面沉降的监测方法
- 格式:ppt
- 大小:1.94 MB
- 文档页数:15
浅谈InSAR地面沉降监测合成孔径雷达干涉测量(InSAR)是近几十年来迅速发展起来的且具有很大应用潜力的一种对地的观测技术,是以合成孔径雷达复数据提取的相位信息为信息源,获取地表三维信息与变化信息的一项技术。
与传统的获取DEM的方法相比,InSAR技术在获取DEM方面具有全天候、全天时、大范围、高精度等优点,因此它被广泛应用于各种领域,如地形测量、地震探测、火山运动等。
标签:InSAR DEM 影像配准基线估计相位解缠1 InSAR概述、意义及在DEM获取中存在的问题1.1 合成孔径雷达干涉测量概述合成孔径雷达干涉测量(InSAR)是发展于20世纪60年代末且应用前景巨大的一种对地观测技术。
它整合了合成孔径雷达成像原理和干涉测量技术,以合成孔径雷达复数据提取的相位信息为信息源,通过利用传感器高度、雷达波长、波束视向及天线基线距间的几何关系可以精确地测量出地表上某一点的三维空间位置与变化信息。
1.2 研究InSAR提取DEM的意义数字高程模型是科研人员研究地表形状、地貌构造的有效方法,在地质、地形、水文、自然灾害监测等领域有重要的作用。
另外,我国不仅有辽阔的国土面积,而且地形复杂多样,在部分地区如沙漠、高山等测区通过传统方法获得高精度的DEM比较困难,所以,InSAR技术必将在提取DEM的过程中会扮演越来越重要的角色。
1.3 InSAR在DEM获取中存在的问题InSAR技术提取DEM的数据处理一般理论研究在国外已经趋于完成,但在国内仍然还处在研究起步阶段,还有许多关键问题需要解决,如时间引起的去相关现象对干涉效果的影像、影像处理与分析工具等。
2 InSAR作业原理2.1 干涉测量模型雷达干涉测量方式一般有交轨干涉测量、顺轨干涉测量和重复轨道干涉测量3种,其中,交轨干涉测量和顺轨干涉测量属于双天线系统,而重复轨道干涉属于单天线系统。
2.2 基本原理图2-1为重复轨道干涉测量成像的示意图,卫星通过一部天线对地面同一点P进行两次近平行的观测,获取P点的复图像对。
施工中的沉降观测与数据分析处理流程一、背景介绍在城市建设和基础设施建设的过程中,地面的沉降问题是一个常见的挑战。
沉降对建筑物和地下管线的稳定性和安全性有着重要影响,因此,在施工过程中对沉降进行观测和数据分析处理是至关重要的。
二、沉降观测的方法为了准确监测地面沉降情况,一般采用测点布设的方式进行观测。
常用的观测方法包括测点设置、仪器选择和数据采集等。
1. 测点设置首先,需要根据实际情况确定测点的布设范围和数量。
一般来说,测点应布置在建筑物或工程附近的地面上,以便实时监测地面沉降的变化。
测点的位置和数量应根据工程规模和地质条件进行合理选择。
2. 仪器选择根据沉降观测的需要,需要选择合适的仪器设备进行监测。
目前,常用的仪器包括测量仪器、自动化监测设备和全站仪等。
根据具体情况选择合适的仪器设备,以确保观测数据的准确性和稳定性。
3. 数据采集观测过程中,需要定期采集沉降数据。
为了保证数据的准确性,需要按照预定的时间间隔进行数据采集,并在数据采集后进行及时的记录和备份。
三、沉降数据的处理方法沉降观测结束后,需要对采集到的数据进行处理和分析。
这一步骤旨在分析地面沉降的变化趋势和规律,并提供相关参考数据。
1. 数据清洗在进行数据处理之前,需要对采集到的数据进行清洗,包括数据的筛选和去除异常值等。
在清洗过程中,需要注意保留关键数据,以便后续的分析和处理。
2. 数据分析通过对清洗后的数据进行分析,可以得到地面沉降的变化趋势和规律。
常用的分析方法包括统计分析、图表分析和回归分析等。
通过这些方法,可以获取各个测点的沉降速度、沉降趋势和沉降规律等重要参数。
3. 结果解读根据数据分析的结果,可以对地面沉降情况进行解读。
解读过程中,需要结合实际情况和工程要求,对沉降的影响程度和可能的风险进行评估和预测。
四、沉降观测与工程管理的关系沉降观测和数据处理在工程管理中起到重要的作用。
通过对地面沉降进行监测和分析,可以提前发现潜在的问题,及时采取措施进行调整和修复,从而确保工程的稳定性和安全性。
地面沉降监测分层标施工技术规程概述说明以及解释1. 引言1.1 概述地面沉降监测分层标施工技术规程是针对建筑基础施工、土地开发项目以及城市道路改造等工程中的地面沉降问题而制定的一项技术指导文件。
本文将对该技术规程进行全面概述和详细说明。
1.2 文章结构本文按照以下结构组织:引言部分介绍文章的背景和目的,解释地面沉降监测分层标施工技术规程的重要性和必要性。
正文部分主要包含三个方面:地面沉降监测的背景和重要性、分层标施工技术规程的概念和意义以及监测方法和仪器选用要点。
详细内容解读部分将对分层标施工技术规程的具体内容进行解读,包括基本原则和流程步骤、施工现场操作指南及注意事项,以及施工质量控制和验收标准等。
应用案例分析部分将通过三个具体案例来展示地面沉降监测与分层标施工技术规程在不同项目中的实际应用情况。
结论部分将对地面沉降监测分层标施工技术规程进行总结和评价,同时展望其未来的发展趋势和应用前景。
1.3 目的本文的目的是通过对地面沉降监测分层标施工技术规程进行详细概述和解释,加深读者对该技术规程的理解和认识。
希望通过本文的阐述和案例分析,使读者了解到地面沉降监测与分层标施工技术规程在工程项目中应用的重要性,并为相关从业人员提供一定的指导和参考。
同时,我们也希望促进相关领域研究的进一步深入发展,推动该领域技术水平的提升。
2. 正文:2.1 地面沉降监测的背景和重要性地面沉降是指地表在一定时间内发生的垂直方向下沉的现象。
地面沉降可能由于自然因素(如地壳变形、岩石侵蚀等)或人为因素(如施工活动、开采活动等)引起。
地面沉降对城市的建设和土地利用有着重要影响,它可能导致基础设施损坏、结构倒塌、地质灾害发生等问题。
为了及时发现和监测地面沉降情况,以保证建筑物和基础设施的安全稳定,进行地面沉降监测就显得尤为重要。
通过持续监测并及时采取相应措施,可以预防潜在风险并减少经济损失。
2.2 分层标施工技术规程的概念和意义分层标施工技术规程是一种有效的解决土地开发和工程建设中地面沉降问题的方法。
地面沉降的监测技术及治理措施摘要:地面沉降量增加过快大会易造成各种建筑物大量下沉、地下电缆管道大面积破损、洪涝地震等各类灾害持续加剧蔓延等的一系列突出问题,给整个国民经济安全造成极为巨大潜在的严重损失。
针对当前上述严峻问题,结合前人多年收集的各种研究报告资料,本文着重对区域地面的沉降特征进行开展了进一步深入系统研究,综合与评价验证了各地现有成熟的各种地面异常沉降特征预测体系及各种监测分析技术,并着重根据各不同地区地面反常沉降行为的主要特性,提出有了具体针对性可行的综合预防应对策略措施及相关治理工作措施,对加强地面超常沉降预防治理应对工作都有着一定价值的借鉴参考意义。
关键词:地面沉降,监测技术,治理措施1地面沉降相关的监测技术概括1.1 常用的地面沉降监测技术大范围监测技术水准测量站1~5技术较为可靠、成熟,高程测点系统存在较大失效的可能性,集成化、自动化应用程度比较低,不能满足大规模信息化的监测工作需求全球定位系统(GPS)1~10点式监测,集成化、自动化运用程度很高,布设和密度相对较低,成本投入较偏高合成孔径干涉仪雷达(InSAR)1~20分布式光纤连续面监测,集成化、自动化及控制一体化程度要比较高,成本要求比较高,精度要求易受地面农作物等环境因素干扰等的影响分布式光纤0.01精度高、效率比较高,性能要成熟和可靠,自动化系统集成标准化程度要求很高,施工技术方法比较简便,成本要稳定和可控,脆弱和易剪断,安全可靠存在应变折减小地尺度范围变形监测新技术分层标0.1点式变形监测,可实现分别实现对地层不同变形类型地层剖面的压缩和变形(膨胀)的测量数据及动态监测,实施应用时难度一般稍嫌大,成本要求亦较高基岩标0.1点式形变监测,数据可靠性能力更要求强,传感采集点密度也一般都较低,实施工作中技术难度都比较之大,成本较高。
1.2SBAS⁃InSAR技术SBAS监测技术是指一项是由Beradino等人团队在于2002年时所首先提出来使用的一种基于时间序列分析技术的InSAR监测方法[详见图表12页]。
地面沉降监测与防治技术规程
地面沉降监测与防治技术规程是为了监测和防治地面沉降问题而制定的一套技术标准和规范。
该规程包括了监测和测量地面沉降的方法和技术,以及预测、评估和预防地面沉降的技术措施。
地面沉降是指地表或地下土层下沉或下降的现象。
它可能是由于地下水开采、土地开发、地下工程施工、地震等原因引起的。
地面沉降会给建筑物、交通运输、水利设施等基础设施造成损害和影响,因此对地面沉降进行监测和防治是非常重要的。
地面沉降监测与防治技术规程主要包括以下内容:
1. 地面沉降监测方法:包括测量点的选择和布设、测量仪器和设备的选择和使用、测量数据的处理和分析等。
2. 地面沉降预测和评估方法:通过历史数据和模型推算等方法,对未来地面沉降进行预测和评估,以便采取相应的防治措施。
3. 地面沉降防治技术:包括基础设施的设计和施工、地下水管理、土壤处理等措施,以减轻地面沉降的影响或防止地面沉降的发生。
4. 地面沉降监测与防治管理:包括监测数据的管理和维护、防治措施的执行和
监督等管理方面的内容。
地面沉降监测与防治技术规程的制定和实施,有助于提高地面沉降问题的预测和评估能力,确保基础设施的安全和可持续发展。
同时,它也为相关部门和企业提供了技术指导和操作规范,以保障公共安全和环境保护。
地面沉降的监测技术及治理措施摘要:地面沉降是城市中常见的地质灾害,在人类建设活动及自然环境的共同作用下,地壳表层土体出现了不同程度的沉降现象,导致不同地区地面的高度有所下降,形成了难以逆转的地质问题。
通常情况下,地面沉降的共有表现为持续时间较长,发展比较缓慢,区域影响较大,产生的原因复杂和治理问题多等,沉降的长期存在对城市建设、交通运输、资源调度、经济发展和居住环境造成了巨大的威胁。
本文主要分析地面沉降的监测技术及治理措施。
关键词:地面沉降;监测技术;沉降预测;治理措施引言目前,很多学者开展了一系列的地面沉降分析工作,地面沉降的治理工作也有了一定成效,但未能有效控制其继续恶化的趋势,面对如此严峻的沉降问题,日后的研究工作开展仍十分困难。
随着地面沉降问题的日益严重,为防止地面沉降导致巨额损失,有必要对此展开深入研究。
1、地面沉降监测技术分析因地面沉降监测范围有所差异,监测技术包括大范围监测技术和小范围监测技术。
大范围监测技术通常包括全球定位系统(GPS)、合成孔径干涉雷达(InSAR)、分布式光纤传感技术以及水准测量等。
GPS监测技术是利用人造卫星对一个指定的测量地点进行三边测量定位,根据测量定位获得的地面高程数据实现地面沉降监测。
InSAR监测技术是沉降监测的先进技术,通过对固定点测得干涉图像和波形信号,模拟出测量点的三维模型特征,然后比较SAR图像的相位差获得干涉条纹,进而得出测量点高程数据的变化,达到沉降监测目的。
多年以来,分布式光纤传感技术已成为国际区域光纤通信成果中新型的研究方法,通过使用先进的光时域反射仪(OTDR),把光纤当作传感元件,发挥其在传输过程中的介质特性,研究光纤在各个区域的温度和应变分布规律,完善沉降监测方法。
小范围监测技术包括常见的水准测量、基岩标及分层标等方法。
其中,水准测量也被称作几何水准测量,该方法是通过水准尺和水准仪2种仪器来测量地面上不同点之间的高差关系,保证在某个区域内沉降监测能得到满足要求的监测精度。
市政工程顶管施工路面沉降监测及防治施工方案1、建设工程路面沉降监测1.1一般规定1.1.1建设工程因施工建设或运营诱发的周围区域地面沉降,应在地面沉降影响范围内进行监测工作。
1.1.2监测前应进行现场踏勘,收集相关资料,根据相关规范、规程编制监测方案。
1.1.3地面沉降监测成果应进行检查验收,并编制检查验收报告。
1.2监测方案1.2.1监测方案编制前,应对拟建场地进行现场调查,并收集下列资料:场地工程勘察成果报告;地面沉降危险性评估报告;工程设计、施工相关资料。
1.2.2监测方案宜包括下列内容:工程概况(包括工程类型、水文地质工程地质条件概况、工程设计和施工方案概况及工程周围重点保护对象等);监测方案编制依据;监测范围;监测项目;监测网(点)布设;监测方法与技术要求;监测频率;监测预警;监测成果及监测报告主要内容;监测仪器设备和监测人员组成。
1.3监测范围1.3.1监测范围应依据建设工程地面沉降危险性评估等级、工程类型和特点及周边环境条件确定。
1.3.2根据监测目的、任务的不同,监测范围宜划分为常规监测区和重点控制区。
无地面沉降危险性评估资料时,可参考表 1.3.1 确定。
表 1.3.1 建设工程诱发地面沉降监测范围分区表注:表中H为基坑开挖深度;D为隧道底板埋深, C 为隧道外径。
1.3.3常规监测区范围内的监测工作应符合现行上海市相关工程建设规范或相关行业标准的规定。
1.3.4建设工程出现突涌、流砂等问题时,监测范围应适当扩大,1.1.1监测项目一般分为地面沉降监测、土体分层沉降监测、地下水位监测、降排水量监测等。
1.1.2监测项目宜依据建设工程类型进行选择,也可参照表1.4.2执行。
表 1.4.2 监测项目表注:√应测项目;〇选测项目。
1.5监测网(点)布设1.5.1水准控制网布设建设工程地面沉降监测区域外应布设一等、二等水准控制网,水准控制网由基准点组成。
基准点设置应符合下列要求:1)基准点应在施工之前布设,宜布设在监测区域之外可靠位置,观测稳定后,方可投入使用;2)基准点不宜少于3 个;3)可选用建设工程场址区附近的基岩标或不受建设工程影响的分层标作为基准点;4)监测期间,应采取有效保护措施,确保其正常使用。
D-InSAR与PS-InSAR技术应用于苏州地面沉降监测之比较
D-InSAR与PS-InSAR技术是目前比较常用的两种区域地面沉
降监测方法。
在苏州地面沉降监测中,这两种方法也被广泛应用,但是它们各自具有优点和缺点。
D-InSAR技术是基于大规模的SAR数据集,通过计算不同时
期内的SAR影像间的相位差来获得地面沉降情况。
这种方法
具有高时间分辨率,能够快速检测地面沉降的变化趋势。
但是
D-InSAR技术在地面沉降监测的准确性上存在一定的局限性,因为这种技术仅能够检测表层地面的变化情况。
相比之下,PS-InSAR技术具有更高的准确性。
它通过利用多
时期SAR影像的星点合成来获取地表变形状态,能够有效避
免大气影响和不同时间影像的相位不一致问题。
但是PS-InSAR技术需要进行高精度的监测处理,因此需要消耗更多的时间和资源。
总体而言,D-InSAR技术和PS-InSAR技术在苏州地面沉降监
测中都能够提供有用的信息,但是应用场景各有不同。
若是需要快速监测地面沉降的变化趋势,可选择D-InSAR技术;若
是需要高精度的地面沉降监测结果,则应选择PS-InSAR技术。
在实际应用时,可以根据具体监测的目的和需求选择合适的方法,从而更好地实现地面沉降监测。
矿山开采过程中地面沉降监测与防控在当今的工业发展中,矿山开采是获取各类矿产资源的重要手段。
然而,这一过程往往伴随着一系列环境和地质问题,其中地面沉降便是一个不容忽视的严峻挑战。
地面沉降不仅会对周边的生态环境造成破坏,还可能威胁到人民的生命财产安全以及社会的可持续发展。
因此,对矿山开采过程中的地面沉降进行有效的监测与防控具有极其重要的意义。
矿山开采导致地面沉降的原因是多方面的。
首先,大规模的地下开采活动会破坏原有的地质结构和岩石力学平衡。
当大量的矿石被采掘出来后,地下形成了巨大的空洞,上方的岩层失去了支撑,从而在重力作用下逐渐下沉。
其次,地下水的过度抽取也是一个重要因素。
在矿山开采中,为了降低地下水位、方便开采作业,常常会大量抽取地下水。
这会导致含水层的水压下降,土层压缩,进而引发地面沉降。
此外,开采过程中的爆破、挖掘等活动产生的震动和应力变化,也会加速岩层的变形和地面的沉降。
为了及时掌握地面沉降的情况,有效的监测手段必不可少。
目前,常用的监测方法包括水准测量、GPS 测量、InSAR 技术等。
水准测量是一种传统但可靠的方法,通过定期测量地面上不同点的高程变化来监测沉降情况。
然而,这种方法工作量大,效率较低。
GPS 测量则具有高精度、全天候、自动化等优点,可以实时获取监测点的三维坐标变化,但其成本相对较高。
InSAR 技术是一种新兴的遥感监测手段,通过对不同时期的雷达影像进行处理和分析,能够大面积、高精度地监测地面沉降,但其在复杂地形和植被覆盖地区的应用受到一定限制。
在实际的监测工作中,通常会根据具体情况选择一种或多种监测方法相结合,以达到最佳的监测效果。
例如,在沉降范围较大、地形较为平坦的区域,可以采用 InSAR 技术进行初步监测,发现异常区域后再利用水准测量或 GPS 测量进行详细监测。
同时,为了保证监测数据的准确性和可靠性,还需要建立完善的监测网络和质量控制体系。
监测点的布置应具有代表性和均匀性,能够覆盖整个开采区域和可能受到影响的周边区域。
检测地面沉降的方法介绍地面沉降是指地表或地下水位下降导致地表塌陷或沉陷的现象。
地面沉降对城市建设和土地利用产生了重要影响,因此,准确、可靠地检测地面沉降变得至关重要。
本文将介绍一些常用的地面沉降检测方法。
水准测量法水准测量法是一种常见的地面沉降检测方法。
它通过利用水准仪测量不同位置基准高度的变化,来判断地面是否发生了沉降。
具体步骤如下:1.选择合适的测区范围,确定起点和终点。
2.利用水准仪进行高度测量,并记录每个点的高程值。
3.根据高程数据计算出相邻点之间的高度差,进而判断是否存在地面沉降。
水准测量法适用于较小范围的地面沉降检测,精度较高,但成本较高且耗时较长。
GPS测量法GPS测量法是一种高精度的地面沉降检测方法。
它利用全球定位系统(GPS)接收器记录地表或地下控制点的位置信息,并在不同时间段进行对比。
具体步骤如下:1.在需要监测的区域选择合适位置布设GPS接收器,保证接收器固定不动。
2.连续记录接收器所在位置的坐标,并记录时间戳。
3.在一段时间后,再次进行GPS测量,并与初始位置进行对比,计算地面的变形情况。
GPS测量法可以实现对大范围地面沉降的监测,具有高精度和实时性的优势。
影像解译法影像解译法是一种基于遥感图像的地面沉降检测方法。
它通过分析不同时间段的遥感图像,检测地面沉降造成的地形变化。
具体步骤如下:1.收集不同时间段的遥感图像数据。
2.使用影像处理软件对图像进行配准处理,确保同一位置在不同时间段的图像中对应。
3.利用图像解译技术,提取地面特征并进行比较,寻找地面沉降的迹象。
影像解译法适用于大范围地面沉降的监测,但对遥感图像的质量要求较高。
激光雷达测量法激光雷达测量法是一种高精度的地面沉降检测方法。
它利用激光雷达系统对地表进行扫描,并实时记录地物的高度信息。
具体步骤如下:1.配置激光雷达设备并进行定标操作,确保测量精度。
2.进行激光扫描,并记录地物的高度数据。
3.在不同时间段进行对比分析,判断地面是否发生了沉降。