INSAR技术在城市地面沉降监测中的应用
- 格式:ppt
- 大小:11.85 MB
- 文档页数:46
2010 NO.19SCIENCE & TECHNOLOGY INFORMATION高 新 技 术InSAR(Interferometric synthetic ap-erture radar,InSAR)结合了合成孔径雷达成像技术和干涉测量技术,利用传感器的系统参数和成像几何关系等精确测量地表某一点的三维空间位置及微小变化的测绘技术。
合成孔径雷达差分干涉测量技术(DInSAR)是以合成孔径雷达复数影像的相位信息获取地表变化信息的技术,是InSAR 技术应用的一个拓展。
在实际应用中,相干雷达波由于在传递的过程中受大气效应影响,以及地表变化造成的时间去相关和长基线引起的空间去相关,严重地制约常规DInSAR在区域地表形变监测方面的应用,尤其对于地表沉降这种缓慢累积形变监测来说,时间失相关问题更为突出。
为了克服常规DInSAR的局限性,近年来国际上少研究者提出了基于部分相位稳定的雷达散射目标,即永久散射体(PS)进行差分干涉相位处理达到监测区域地表形变的目的,这种方法被称为永久散射体差分干涉测量技术(P S-I n S A R),是对传统的I n S A R和D-InSAR技术的扩展应用,可以突破时间、空间失相关和大气延迟的影响,可以提高数据的利用率,提取长时间、大范围的地表形变信息。
1 PS-InSAR技术1.1PS-InSAR的基本原理PSInSAR技术的基本原理就是利用多景同一地区的SAR影像,影像数目根据图像相干性情况而定,一般数目要大于20幅。
通过统计分析所有影像的幅度信息或者相位信息,找出不受时间、空间和大气效应影响的永久散射体。
然后利用选择的PS点建立关于变形和相位差的函数关系,而在PS 点上地形数据误差和大气延迟误差等通过外部数据或者相关的处理方法而被分离,从而可以获得PS点上地表形变信息。
由于选取的PS点在一段时间内具有很好的稳定性,可以通过这些稳定点内插出其他低信噪比点的形变信息,获取该地区的形变信息。
GPS/I N S AR数据融合在大范围地表沉降监测中的应用武百超1,邹徐文2(辽宁工程技术大学,辽宁阜新 123000)摘要:讨论了GPS、I N S AR应用于大范围地表沉降监测的技术特点;论述了这两种技术合成的必要性和可行性。
文中还综述了GPS、I N S AR合成技术的理论与方法,结合国内外的成功经验对其应用前景进行了展望。
关键词:CGPS;GPS;I N S AR;D I N S AR;误差改正;数据融合中图分类号:P22814 文献标识码:B 文章编号:1001-358X(2006)01-0033-03 常规的地表沉降监测一般采用重复精密水准测量方法。
近10年来,随着全球卫星定位系统GPS、计算机,数据库等技术的飞速发展,这种野外作业周期长、耗费大量人力物力的传统水准测量方法已逐渐为周期短、精度高,布网迅速的GPS技术所取代。
合成孔径雷达干涉测I N S AR(I nterfer ometric Synthetic Aperture Radar)技术在国外已开始应用于地表沉降监测,W eg muller(1999)利用1992年8月至1996年5月间的欧洲航天局雷达卫星数据监测意大利Bol o2 gna城的沉降情况,取得了与常规测量一致的效果;同时,日本的Nakag wa等(2000)利用JERS1L波段的合成孔径雷达S AR研究Kant o北部平原的地面沉降,发现L波段比C波段的S AR数据更适合平原地区的地面沉降研究;中科院遥感所选取处于沉降区的苏州市,利用I N S AR技术进行了城市地表沉降监测,与常规水准测量相比,两者相关度达01943。
这些都说明I N S AR测量值与水准测量保持很高的一致性,进一步统计分析表明,样本对的差异均值为4147mm,差均值为0117mm。
与此同时,GPS在天津市地表沉降监测方面已取得了比较令人满意的效果。
其他一些单位的实践证明,采用差分GPS静态测量的方法进行大范围的地表沉降监测,从测量精度看,可以取代长距离的一等精密水准测量,且前者比后者的工作效率高得多,其经济效益是非常可观的;甚至,采用GPS的实时动态(RTK)测量广泛取代二等水准测量也在进一步研究之中。
时序InSAR的误差分析及应用研究一、概述时序InSAR技术,作为合成孔径雷达干涉测量(InSAR)的一个重要分支,近年来在大地测量、地质环境监测、灾害预警等领域展现出了广阔的应用前景。
该技术通过对同一地区不同时间获取的SAR图像进行干涉处理,提取地表形变信息,进而实现对地表微小形变的高精度监测。
时序InSAR技术在实际应用中面临着诸多误差因素的影响,这些误差不仅影响形变监测的精度,还可能对结果的解释和应用造成误导。
对时序InSAR技术的误差来源、误差传播特性以及误差校正方法进行系统分析和研究显得尤为重要。
本文旨在全面分析时序InSAR技术的误差特性,并探讨其在实际应用中的效果。
我们将对时序InSAR技术的基本原理和方法进行简要介绍,包括干涉处理、相位解缠、形变反演等关键步骤。
在此基础上,我们将详细分析时序InSAR技术的主要误差来源,如雷达系统误差、大气延迟误差、地表覆盖类型差异等,并探讨这些误差对形变监测结果的影响。
为了减小误差并提高形变监测的精度,本文将进一步研究时序InSAR技术的误差校正方法。
我们将介绍一些常用的误差校正技术,如相位滤波、地面控制点校正等,并讨论这些方法的适用性和局限性。
我们还将探讨如何结合其他数据源和信息来提高时序InSAR形变监测的精度和可靠性。
本文将通过实例分析展示时序InSAR技术在具体领域的应用效果。
我们将选取具有代表性的地质环境监测、城市沉降监测等案例,分析时序InSAR技术在这些领域的应用特点、优势以及存在的问题。
通过这些实例分析,我们将进一步验证时序InSAR技术的实用性和有效性,并为未来的应用提供有益的参考和借鉴。
本文将对时序InSAR技术的误差分析及应用研究进行系统的探讨和分析,旨在为相关领域的研究者和实践者提供有益的参考和借鉴。
1. InSAR技术简介及发展历程合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar,简称InSAR)技术,是一种将合成孔径雷达成像技术与干涉测量技术相结合的前沿微波遥感技术。
InSAR沉降监测及地质灾害风险评估研究一、引言InSAR(干涉合成孔径雷达)技术是一种通过使用雷达发射的电磁波与地面上的目标物相交、反射后形成的干涉图像来进行测量和监测的方法。
它在地质灾害监测和风险评估方面得到了广泛应用。
二、InSAR沉降监测1. InSAR原理InSAR通过比较两个或多个雷达图像,可以检测地面的微小变化。
当地面发生沉降时,相位差发生变化,从而在干涉图像中形成明暗相间的条纹。
通过解算这些条纹可以确定地表的沉降变化。
2. InSAR沉降的应用InSAR技术在监测地面沉降方面具有高灵敏度和大范围覆盖的优势。
它能够及时发现沉降现象,并对沉降的大小和空间分布进行精确的测量。
这对于城市建设、水资源管理和地下工程等领域至关重要。
3. 案例分析:InSAR监测大城市地面沉降以北京市为例,近年来由于地下水的过度开采和地铁建设等原因,北京市的地面沉降问题日益凸显。
利用InSAR技术,可以对北京市的地表沉降进行监测和评估,帮助相关部门制定有效的控制措施并预防地质灾害的发生。
三、地质灾害风险评估1. 地质灾害的概念地质灾害是地壳活动和自然因素作用于人类活动环境中造成的可能对生命、财产和环境造成严重危害的现象。
常见地质灾害包括地震、滑坡、泥石流等。
2. 地质灾害风险评估的重要性地质灾害风险评估是对地质灾害的发生概率、影响范围和损失程度进行全面评估,从而了解灾害风险的大小,以及采取有效的控制和管理措施。
通过评估和预测灾害风险,可以减少潜在风险和损失。
3. InSAR在地质灾害风险评估中的应用InSAR技术可以提供地表形变的高精度观测数据,为地质灾害风险评估提供重要依据。
通过对地表沉降、地表位移等数据的分析,可以识别潜在的地质灾害危险区域,并评估灾害的潜在影响。
四、InSAR沉降监测与地质灾害风险评估的结合1. 原理与方法将InSAR沉降监测和地质灾害风险评估相结合,可以更准确地预测地质灾害的发生概率和影响范围。
InSAR技术在地面沉降监测中的应用作者:李红英来源:《电子技术与软件工程》2015年第22期摘要介绍SAR、InSAR、D-InSAR的发展状况,以及InSAR、D-InSAR的基本原理。
然后通过实例介绍InSAR、D-InSAR技术在地面沉降监测中的应用。
最后对InSAR技术的应用前景进行了探讨。
【关键词】InSAR D-InSAR PS-InSAR 地面沉降监测我国发生地面沉降灾害的城市已超过50个,全国城市地面沉降量并在逐年增长趋势。
地面沉降的过程一般都是循序渐进的、长时间累积而形成的地质灾害,且不可逆转,恢复困难,严重影响到城市建设的发展,是制约区域经济持续发展并对人民生命财产安全产生威胁的重要因素之一。
因此,及时准确地监测地面沉降及发展过程具有重要意义。
合成孔径雷达干涉测量技术(InSAR)是在20世纪60年代末出现的,研究阶段是在80年代开始的,至今三十多年的研究发展,其应用也越来越被认可。
其中,差分合成孔径雷达干涉技术D-InSAR(Differential Synthetic Aperture Radar Interferometry)在提取地表形变量时是利用多个时相SAR复数图像的相位信息进行的,其精度已达到cm量级。
“第八届国际地面学术会议研讨会”于2010年10月在墨西哥克雷塔罗市召开,对近5年来在地面沉降研究的成果做了总结。
该会议在讨论地层位移和地表监测技术时,证实了InSAR 技术在地表变形监测方面得到了快速发展和应用。
且已有诸多成果,地区已经包括美国、英国、德国瑞士、墨西哥、意大利等大多数国家。
1 InSAR、D-InSAR、PS-InSAR基本原理获取SAR干涉数据主要有三种方式:SAR交轨干涉测量(XTI)、SAR顺轨干涉测量(ATI)、SAR重复轨道干涉测量(RTI)。
与前两种干涉测量不同,重复轨道干涉测量只要安装一副天线,来获取数据。
以其为例,对干涉SAR的工作原理进行简单介绍。
InSAR技术在西安地面沉降监测中的应用的开题报告1. 研究背景西安市位于黄土高原上,由于人口增长、城市化进程加快、地下水开采等因素,地面沉降问题日益加剧。
地面沉降不仅对土地利用和城市规划造成了影响,而且还会引发建筑物、道路及其他基础设施的安全问题,严重威胁到人民生命财产安全和城市可持续发展。
因此,科学、准确地监测和预测地面沉降,对于及早发现和解决地面沉降问题尤为重要。
实际上,目前地面沉降的监测方法有很多种,如全站仪法、GNSS法、微震法、地电法、水准法等,但基于遥感技术的SAR技术由于具有强大的分辨率、高灵敏度和高时间分辨率等特点,相对于其他方法具有更明显的优势,是一种新型的地面沉降监测方法。
2. 研究目的本文将探讨InSAR技术在西安地面沉降监测中的应用,首先分析InSAR技术的作用和优势,然后介绍SAR数据的获取和处理方法,最后分析InSAR技术在西安地面沉降监测中的应用情况,为今后地面沉降的监测和水平的提高提供技术支持和指导。
3. 研究内容3.1 InSAR技术的介绍3.1.1 InSAR技术的基本原理和优势3.1.2 InSAR技术在地面沉降监测中的应用3.2 SAR数据的获取和处理方法3.2.1 SAR数据的获取方法3.2.2 SAR数据处理方法3.3 InSAR技术在西安地面沉降监测中的应用情况3.3.1 西安地面沉降的情况3.3.2 InSAR技术在西安地面沉降监测中的应用情况3.4 研究方法和可行性分析3.4.1 研究方法3.4.2 可行性分析4. 研究意义本研究将为西安地面沉降监测提供一种新的技术方法,为应对地面沉降问题提供技术支持和参考依据。
同时,本文的研究结果有助于提高InSAR技术在地面沉降监测中的应用水平,为地面沉降监测技术的进一步发展提供参考和借鉴。
基于永久散射体雷达干涉测量技术的沉降监测一、永久散射体雷达干涉测量技术(PSI)简介合成孔径雷达干涉测量(InSAR)是一种使用微波探测目标的成像技术,可将复图像进行相位干涉和差分处理,从中提取地表移动变形信息,从而对地面沉降变形进行监测。
目前,合成孔径雷达差分干涉测量(D-InSAR)技术作为一种重要的地面沉降监测技术,应用已比较广泛,在进行地表形变监测时,理论上能达到mm级精度。
但其受时间、空间去相关以及大气延迟的影响十分严重:时间的去相关主要是指图像分辨单元内物体在图像获得的时间间隔内散射特性发生变化,从而导致所获得的图像对之间失去相关性;几何去相关性主要是指由于成像卫星观测位置不同而导致接收信号时的入射角的不一致,使得物体在图像分辨单元内发生空间变化而导致的去相关性;此外大气的不均匀所产生的大气相位以及不同成像时期大气的不同延时作用也将破坏所获得干涉相位的精确性。
Ferretti等人在2000年提出了一种称为“永久散射体”(Permanent Scatterer)的新技术,它利用从时间序列的SAR图像集中选取那些保持高相关性的点,利用他们的散射特性在长时间上保持的稳定性,获得可靠的相位信息。
因此,永久散射体干涉测量技术(PSI)应运而生,PSI技术的目的是解决D-InSAR中时间、空间的去相关和大气效应等限制测量精度的问题。
与传统方法比较而言,该技术真正实现了生成m级的DEM和mm 级地表形变监测,所获得的永久散射体(PS)可被用作构成一个“天然”的角反射器网,可以高精度地监测城市沉降、滑坡、地震断层和火山地区等地表形变。
同时,由于PS 点不受时间和空间去相关的影响,使可利用的SAR影像突破了已有的时间和空间基线的极限限制,大大增加了SAR影像的可用数量。
二、作业原理PSI技术的基本原理是利用多景(一般要求大于25景)同一地区的SAR影像,通过统计分析所有影像的幅度信息,查找不受时间、空间基线去相关和大气效应影响的永久散射体。