发动机转速和曲轴位置传感器
- 格式:doc
- 大小:2.43 MB
- 文档页数:12
曲轴位置传感器的作用就是确定曲轴的位置,也就是曲轴的转角。
它通常要配合凸轮轴位置传感器一起来工作——确定基本点火时刻。
我们都知道,发动机是在压缩冲程末开始点火的,那么发动机电脑是怎么知道哪缸该点火了呢?就是通过曲轴位置传感器和凸轮轴位置传感器的信号来计算的,通过曲轴位置传感器,可以知道哪缸活塞处于上止点,通过凸轮轴位置传感器,可以知道哪缸活塞是在压缩冲程中。
这样,发动机电脑知道了该什么时候给哪缸点火了。
工作原理曲轴位置传感器通常安装在分电器内,是控制系统中最重要的传感器之一。
其作用有:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
曲轴传感器主要有三种类型:磁电感应式、霍尔效应式和光电式。
1、磁电感应式:磁电感应式转速传感器和曲轴位置传感器分上、下两层安装在分电器内。
传感器由永磁感应检测线圈和转子(正时转子和转速转子)组成,转子随分电器轴一起旋转。
正时转子有一、二或四个齿等多种形式,转速转子为24个齿。
永磁感应检测线圈固定在分电器体上。
若已知转速传感器信号和曲轴位置传感器信号,以及各缸的工作顺序,就可知道各缸的曲轴位置。
磁电感应式转速传感器和曲轴位置传感器的转子信号盘也可安装在曲轴或凸轮轴上。
2、霍尔效应式:霍尔效应式转速传感器和曲轴位置传感器是一种利用霍尔效应的信号发生器。
霍尔信号发生器安装在分电器内,与分火头同轴,由封装的霍尔心片和永久磁铁作成整体固定在分电器盘上。
触发叶轮上的缺口数和发动机气缸数相同。
当触发叶轮上的叶片进入永久磁铁与霍尔元件之间,霍尔触发器的磁场被叶片旁路,这时不产生霍尔电压,传感器无输出信号;当触发叶轮上的缺口部分进入永久磁铁和霍尔元件之间时,磁力线进入霍尔元件,霍尔电压升高,传感器输出电压信号。
曲轴位置传感器使用说明书(第一版)适用零件号:104565692534609425345442253671801. 概述曲轴位置传感器也被称为发动机转速传感器,或简称转速传感器。
曲轴位置传感器一般为磁电式脉冲信号传感器。
它是构成现代汽车发动机管理系统之速度密度法空气计量算法理论和实践的重要零部件,也是发动机管理系统中最重要的核心零部件之一。
曲轴位置传感器被用于测试曲轴旋转时的转速和曲轴(活塞)的相对位置。
系根据电磁线圈原理,由一个永久磁铁作铁芯元件和外部加以线圈构成其核心元件。
外壳一般采用复合材料注塑成型封装。
根据发动机在车辆上的实际总体布置状态,一般情况下,曲轴位置传感器可被安装于曲轴的前部,皮带轮附带曲轴目标轮;或后部,飞轮总成附带曲轴目标轮;或者是设计装配在发动机的气缸体上,曲轴目标轮被设计在缸体内部的曲轴之曲柄相应位置上。
曲轴上的目标轮相当于一个旋转磁阻分配器。
旋转磁阻分配器(曲轴目标轮)和曲轴位置传感器间的电磁感应产生一个输出电压脉冲信号。
曲轴转动时,曲轴目标轮上的齿和槽以不同的距离切割传感器磁力线,并通过传感器,引起其感应到的磁阻改变。
正是由于这个可变的磁阻,才能产生可变的输出脉冲信号。
输出信号的波形和单位时间变化率反映出曲轴的旋速度和相对旋转位置,并且其频率与曲轴旋转频率成正比。
曲轴目标轮被设计成60–2矩形齿均布的黑色金属材料齿轮。
缺齿信号可帮助系统判定曲轴的相对位置。
曲轴目标轮旋转产生脉冲电压信号直接反映了发动机的实测转速工作状态。
该信号被输出给发动机电子控制模块(ECU)。
发动机管理系统的发动机电子控制模块即可根据系统算法确定曲轴实时的旋转速度和(位置)和转速。
峰值为400 mV (具体见图纸)屏蔽接地端子,详情请参照图纸。
尺寸图。
图纸上会标明零部件号码和安有以下内容:曲轴位置传感器安装位置德尔福发动机管理系统推荐将发动机曲轴目标轮设计布置在规定,曲轴位置传感器设计布置包括:曲轴目标轮装配位置确定和曲轴位置传感器装配位置选择曲轴目标轮装配位置形式曲轴位置传感器的装配设计必须与发动机曲轴目标轮在发动机上所选择的装配位置的设计相关。
13个柴油车传感器位置、功能详解电控柴油发动机上的传感器可谓五花⼋门,⼤致分为压⼒传感器、温度传感器、速度与位置传感器三类,细分类型⼤约有⼗余种,⽽今天就给⼤家介绍⼤多电控柴油机所必备传感器。
⼀、曲轴转速传感器结构:磁脉冲式功能:⽤于测量发动机转速和曲轴转⾓。
安装位置:飞轮壳上,曲轴⽪带轮旁,发动机缸体上⼆、凸轮轴位置传感器结构:以磁绕组⽅式功⽤:凸轮轴每转⼀圈向ECU提供⼀个信号,ECU据此确定那个⽓缸的活塞处于压缩⾏程上⽌点。
安装位置:在凸轮轴前端三、共轨压⼒传感器结构:压阻式⾼压传感器,最⾼频率在1KHz,测量范围在0-200Mpa功⽤:实时测定共轨管中的实际压⼒信号并反馈给ECU,增减调节油压安装位置:共轨管上四、冷却液传感器结构:负温度细数的热敏电阻,其使⽤范围为40-130°C功⽤:主要⽤于测量发动机冷却的温度,从⽽进⼀步精确控制燃油喷射量安装位置:在节温体上五、进⽓压⼒传感器结构:半导体压敏电阻式压⼒传感体功⽤:计算空⽓量,⽤来控制空燃⽐和负温度细数的热敏电阻,从⽽进⼀步精确控制燃油喷射量。
安装位置:安装在进⽓歧管六、燃油温度传感器结构:负温度细数的热敏电阻,其使⽤范围为﹣40-130°C。
功⽤:⽤于向发动机控制单元提供燃油温度信号,⼀般设置在第⼆级燃油滤清器盖内。
发动机控制单元根据燃油的温度变化对喷油量进⾏修正,因为燃油随温度升⾼⽽膨胀变得密度变⼩。
位置: 在主油管上七、机油温度传感器结构:负温度细数的热敏电阻功⽤:⽤于向发动机控制单元提供发动机的机油温度,特别是在寒冷⽓温状态下。
位置:主机油管上⼋、⽔温传感器功能:测量冷却液温度,⽤于喷油量的修正,扭矩修正,轨压修正以及热保护。
位置:位于发动机出⽔⼝管路上九、⼤⽓压⼒传感器功能:检测⼤⽓压⼒,测量海拔⾼度,⽤于控制喷油参数的修正。
位置:⼤⽓压⼒传感器集成在ECU内⼗、空⽓流量计功能:测量进⼊进⽓管得空⽓量,⽤于喷油量的修正。
发动机八大传感器的作用简要解释如下:
1.空气流量传感器:测量进入发动机的空气流量,安装在空气旁通道上。
2.进气压力传感器:检测进气歧管的负压变化来感知发动机的进气量大小。
3.发动机转速、凸轮轴位置传感器:用于测量发动机转速和确认曲轴位置的信号。
4.节气门位置传感器:包括线性节气门电位计和怠速开关,前者供ECU控制喷油量和点火提前给后者供应ECU感知节气[门处于怠速状态。
5.冷却液温度传感器:用于测量发动机冷却液的温度。
6.进气温度传感器:发动机工作时,进入发动机的空气质量大小与进气温度和大气压力的高低有关,当进气温度低时空气密度大相同气体的质量较大,反之当进气温度高时相同气体的质量较小。
7.爆震传感器:检测发动机有无爆震现象。
8.氧传感器:检测废气中氧的含量。
以上就是发动机八大传感器的作用简要解释,希望能够帮助到您。
曲轴位置传感器的作用
曲轴位置传感器在内燃发动机的工作过程中起着关键作用。
它的主要作用是监测曲轴的位置和转动速度,以提供准确的引擎转速、点火时机和燃油喷射等信息。
通过曲轴位置传感器,发动机控制单元(ECU)可以实时监测曲轴的转动状态,从而确定引擎的工作状态。
这对于控制燃油和空气的混合物的供给、点火时机的分配以及排放控制都至关重要。
在点火系统中,曲轴位置传感器可以提供准确的点火时机信号,使ECU能够精确控制点火系统的工作。
通过监测每个缸体的
曲轴位置,ECU可以决定何时点火以产生最佳的动力输出和
燃油效率。
此外,曲轴位置传感器还可以监测曲轴的转速,以提供引擎的转速信息。
这对于驾驶员来说,是掌握车辆当前工作状态的重要指标之一。
同时,在某些情况下,如发动机转速过高或过低时,ECU还可以通过曲轴位置传感器提供的信息来进行相应
的控制和保护。
总而言之,曲轴位置传感器的作用是监测曲轴的位置和转速,为发动机控制系统提供关键的引擎工作状态信息,以实现准确的点火、燃油喷射和排放控制。
第二篇汽车电子控制技术第八章电子控制原理基础一.名词解释1.ROM:只读存储器2.RAM:随机存储器3.A/D转换器:数据模拟转换器,将模拟信号转换为数字信号然后被微处器接受。
二.填空题1.曲轴位置传感器一般有磁电式、霍尔式、光电式等多种。
2.氧传感器的作用是:(1)通过检测排气中的氧含量,检测发动机的空燃比;(2)在闭环控制用于喷油脉宽的修正;(3)检测催化转换器的转换效率。
3.爆震传感器的作用是:用来检测发动机是否发生爆震。
4.模拟信号是一个连续变化的电量,往往用信号电压的幅值来表示信号的量值。
5.在发动机ECU中I/O表示:输入/输出接口。
6.在发动机ECU中A/D表示:模数转换器。
三.思考题1.发动机转速与曲轴位置传感器的作用是什么?答:采集曲轴转动角度和发动机转速信号并输入控制单元(ECU),电子控制器根据此信号确定点火正时和喷油正时、产生点火和喷油控制脉冲、控制燃油泵工作等。
在无分电器电子控制点火系统和控制各缸工作顺序喷油的燃油喷射系统中,曲轴位置传感器还用于识别气缸。
2.试述各种空气流量传感器的结构与工作原理。
答:1)翼片式空气流量传感器结构:主要由检测部件、电位计、调整部件、接线插座和进气温度传感器5部分组成。
工作原理:当吸入发动机的空气流过传感器主进气道时,传感器翼片就会受到空气气流压力产生的推力力矩和复位弹力力矩的作用,当空气流量增大时,气流压力对翼片产生的推力力矩增大,推力力矩客服弹力力矩使翼片偏转角度α增大,直到推力力矩与弹力力矩平衡为止。
进气量越大,翼片转角α也就越大。
2)量芯式空气流量传感器结构:量芯、电位计、进气温度传感器和线束插座组成。
工作原理(与翼片式传感器相似)。
3)热丝式与热膜式空气流量传感器结构:1】热丝式结构:由铂金丝、控制电路等组成。
工作原理:传感器工作时,铂金属丝将被控制电路提供的电流加热到高于进气温度的120℃,由于进气温度变化会使热丝的温度发生变化,而影响进气量的测量精度。
曲轴位置传感器是内燃机中的一个重要部件,它的作用是监测发动机曲轴的位置和转速,并将这些信息反馈给发动机控制单元(ECU)。
它可以帮助引擎更准确地注入燃料和控制点火时机,从而提高发动机的效率和性能。
然而,如果曲轴位置传感器出现故障,就会导致引擎的性能下降,甚至无法正常运转。
及时发现并排除曲轴位置传感器故障至关重要。
针对曲轴位置传感器故障的排除步骤,我们可以从简单到复杂来逐步排查,以确保能够找到故障的根源并进行修复。
1. 检查传感器连接:检查传感器的电气连接是否牢固。
断开电源后,检查传感器插座和电缆连接,确保没有松动或生锈的现象。
还可以利用万用表检查传感器的连接是否正常,检测传感器是否出现断路或短路的情况。
2. 清洁传感器表面:传感器安装在引擎上,可能会受到灰尘、油污和其他杂质的影响。
清洁传感器表面是非常必要的。
可以使用一些专门的清洁剂或者酒精进行清洁,确保传感器能够正常感知曲轴的位置。
3. 检查传感器工作状态:可以借助车载诊断仪或者OBD扫描工具来检查曲轴位置传感器的工作状态。
通过这些工具,可以读取传感器的输出信号,从而判断传感器是否正常工作。
4. 替换传感器:如果经过上述步骤排查后发现传感器仍然存在问题,那么可能需要考虑更换一个新的曲轴位置传感器。
在更换传感器之前,需要确保选用的传感器与原装配的型号相匹配,并严格按照安装要求进行更换。
5. 检查曲轴和齿轮:在排除传感器本身故障之后,还需要检查曲轴和齿轮的状态。
曲轴和齿轮的损坏或者异物堵塞都有可能影响传感器的工作。
在排查故障时,也需要对这些部件进行仔细检查。
在排除曲轴位置传感器故障时,需要耐心和细心。
如果自己无法找到故障原因,可以寻求专业的汽车维修技师来帮助排查和修复。
曲轴位置传感器的故障可能会导致发动机性能下降,甚至直接影响行车安全,因此我们应该重视曲轴位置传感器的维护和排查工作。
以上就是针对曲轴位置传感器故障排除的一些基本步骤,希望对您有所帮助。
发动机八大传感器作用简洁解释发动机是现代汽车的核心组件之一,它负责产生动力,并驱动车辆行驶。
然而,发动机的正常运行和性能表现不仅依赖于其内部构造和机械部件,还依赖于一系列关键的传感器。
这些传感器扮演着监测和控制发动机运行的重要角色。
在本文中,我们将深入探讨发动机的八大传感器的作用,以帮助读者更好地理解和利用这些关键部件。
1. 氧气传感器(O2传感器)氧气传感器监测发动机排气中的氧气含量。
通过检测排气中的氧气水平,氧气传感器能够判断燃烧过程的质量,并根据需要调整燃油供应以实现最优的燃烧效率。
它有助于减少废气排放和提高燃油经济性。
2. 曲轴位置传感器(Crankshaft Position Sensor)曲轴位置传感器用于检测发动机曲轴的旋转速度和位置。
它提供发动机转速的关键信息,以便控制点火系统和燃油喷射系统的操作。
通过准确测量曲轴位置,曲轴位置传感器确保点火系统按时点火,以实现最佳的动力输出。
3. 曲轴相位传感器(Crankshaft Phase Sensor)曲轴相位传感器用于测量曲轴的旋转相位。
通过监测曲轴相位,曲轴相位传感器可以帮助控制发动机的点火和喷射时机,并调整气缸内压强的分布。
它对于发动机的节能、减排和动力输出都起着至关重要的作用。
4. 凸轮轴位置传感器(Camshaft Position Sensor)凸轮轴位置传感器用于检测发动机凸轮轴的位置和速度。
凸轮轴位置传感器的作用类似于曲轴位置传感器,但它专门用于控制凸轮轴的操作,以确保气门的开闭时间和幅度与发动机控制系统的要求相匹配。
5. 气体温度传感器(Intake Air Temperature Sensor)气体温度传感器测量进气道中的空气温度。
准确的气体温度信息对于燃烧过程的控制和发动机性能至关重要。
气体温度传感器可以帮助调整燃油喷射量和点火时机,以适应不同的气温条件。
6. 大气压力传感器(Manifold Absolute Pressure Sensor)大气压力传感器测量进气道中的绝对压力。
曲轴位置传感器的工作原理
曲轴位置传感器是一种用于测量发动机曲轴位置和转速的装置。
其工作原理可以简述如下:
1. 曲轴位置传感器通常安装在发动机曲轴的靠近转盘的一侧。
它由一个磁铁和一个感应线圈组成。
2. 磁铁固定在曲轴的转盘上,随着曲轴的旋转,磁铁也一起旋转。
3. 当磁铁靠近感应线圈时,磁场会通过线圈产生感应电流。
4. 感应电流的大小与磁场的强弱成正比,而磁场的强弱与曲轴的位置有关。
5. 感应线圈将感应电流转换为电压信号,并通过连接线传输到发动机控制单元(ECU)。
6. ECU利用接收到的电压信号来确定曲轴的位置和转速,以
便对发动机的点火和喷油时机进行精确控制。
总的来说,曲轴位置传感器利用磁铁和感应线圈的相互作用,通过测量磁场的变化来确定曲轴的位置和转速。
这些数据对于发动机的正常运行和性能调整至关重要。
汽车常用传感器的介绍一、曲轴位置传感器(crankshaft position sensor 简写CPS)1、作用:检测发动机转速,因此又称为转速传感器;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
曲轴位置传感器一般安装于曲轴皮带轮或链轮侧面,有的安装于凸轮轴前端。
现在常用的曲轴位置传感器重要分为三类,磁电式的、霍尔式的、光电式的。
2、检测方法:(1)磁电式的和霍尔式的都要先检查传感器到靶轮之间的间隙。
(2)磁电式的可以用电阻表检测它的电阻,阻值一般在几百到一千多欧之间,视车型而定。
也可以起动发动机测量它的电压,电压应该随着发动机转速的升高而升高。
(3)霍尔式的可以先测其是否有供电电压(注意:测量时要打开电门),然后测量传感器的接地。
霍尔式曲轴位置传感器有三根线,一根是供电线(提供参考电压),一根是接地线,还有一根就是信号线;传感器工作时,信号线会输出方波信号,方波的幅值接近参考电压,方波的底部接近0V,发动机的转速越高方波的频率就会越大。
二、节气门位置传感器(Throttle Position Sensor,简写TPS)1、作用:节气门由驾驶员通过加速踏板来操纵,以改变发动机的进气量,从而控制发动机的运转。
不同的节气门开度标志着发动机的不同运转工况。
为了使喷油量满足不同工况的要求,电子控制汽油喷射系统在节气门体上装有节气门位置传感器。
它可以将节气门的开度转换成电信号输送给ECU,作为ECU判定发动机运转工况的依据。
节气门位置传感器有开关量输出型和线性可变电阻输出型两种.2、检测方法:(1)开关量输出型节气门位置传感器的检测开关量输出型节气门位置传感器又称为节气门开关。
它有两副触点,分别为怠速触点(IDL)和全负荷触点(PSW)。
,由一个和节气门同轴的凸轮控制两开关触点的开启和闭合。
当节气门处于全关闭的位置时,怠速触点IDL闭合,ECU根据怠速开关的闭合信号判定发动机处于怠速工况,从而按怠速工况的要求控制喷油量;当节气门打开时,怠速触点打开,ECU根据这一信号进行从怠速到小负荷的过渡工况的喷油控制;全负荷触点在节气门由全闭位置到中小开度范围内一直处于开启状态,当节气门打开至一定角度(丰田1G-EU车为55°)的位置时,全负荷触点开始闭合,向ECU送出发动机处于全负荷运转工况的信号,ECU根据此信号进行全负荷加浓控制.①就车检查端子间的导通性点火开关置于“OFF”位置,拔下节气门位置传感器连接器,在节气门限位螺钉和限位杆之间插入适当厚度的厚薄规;用万用表Ω档在节气门位置传感器连接器上测量怠速触点和全负荷触点的导通情况。
电磁式曲轴位置传感器是一种常用于发动机控制系统中的传感器,它能够准确地检测发动机曲轴的位置和转速,从而帮助控制系统实现精准的点火和供油。
本文将从工作原理、结构组成和应用领域等方面对电磁式曲轴位置传感器进行详细介绍。
一、工作原理1. 电磁感应原理电磁式曲轴位置传感器利用电磁感应原理来实现对曲轴位置的检测。
当曲轴转动时,传感器内部的线圈会受到曲轴齿轮凸起的影响,导致磁场发生变化。
根据电磁感应定律,磁场的变化将上线圈中产生感应电动势,从而产生输出信号。
2. 信号处理传感器输出的感应电动势需要经过信号处理电路进行放大和滤波,以确保输出信号的稳定性和准确性。
经过信号处理后,传感器输出的信号将被送入发动机控制单元(ECU)进行进一步处理和运算。
3. 差动信号在部分设计中,电磁式曲轴位置传感器还会输出差动信号,这是因为在一些发动机设计中,需要对曲轴位置进行双重检测以提高系统的可靠性。
差动信号的产生方式是将两个传感器的输出信号进行比较,从而得到更为稳定和准确的曲轴位置信息。
二、结构组成1. 磁环电磁式曲轴位置传感器内部包含一个磁环,它通常由永磁材料制成,用来产生一定强度和稳定性的磁场。
2. 线圈磁环周围围绕着线圈,当曲轴齿轮凸起进入磁场时,会导致线圈中感应电动势的产生。
3. 信号处理电路传感器内部还包含有对输出信号进行放大、滤波和处理的电路,确保输出信号的稳定性和准确性。
4. 连接插头电磁式曲轴位置传感器的连接插头用于与发动机控制单元(ECU)进行连接,实现信号的传输和交换。
三、应用领域电磁式曲轴位置传感器主要应用于内燃机控制系统中,其主要功能是监测发动机的曲轴位置和转速,并将这些信息发送给发动机控制单元,从而控制点火时机和喷油时机。
这是现代发动机控制系统中一个至关重要的功能模块,它能够直接影响到发动机的燃烧效率、动力性能和排放水平。
电磁式曲轴位置传感器也逐渐应用于混合动力系统和电动汽车中,它能够准确地监测发动机的工作状态,从而实现更为精准的功率输出控制和能量回收。
LDE发动机转速传感器的故障检测及判断发动机转速传感器也叫曲轴位置传感器,其作用有:检测发动机转速;检测活塞上止点位置,故也称为上止点传感器,包括检测用于控制点火的各缸上止点信号、用于控制顺序喷油的第一缸上止点信号。
对于部分车型,发动机转速传感器如果损坏,将无法把转速信号传递给发动机ECM,ECM无法判定点火时刻,从而使发动机无法启动。
因为LDE发动机装有1个转速传感器和2个凸轮轴位置传感器,如果转速传感器损坏,发动机将依据凸轮轴位置传感器数据进行判缸和点火,但由于凸轮轴位置传感器测量精度不够精确,无法实现精确角度测量,会出现发动机转速不稳的情况。
所以,LDE发动机转速传感器如果损坏是可以行车的,但有明显的动力不足,有唑车现象。
1 结构特点LDE转速传感器(部件代号B26)和其它型号的发动机一样,也是由永久磁体和感应线圈组成的,线圈电阻约为900~1000Ω。
LDE转速传感器(部件代号B26)安装在发动机缸体靠近4缸的一侧,用来扫描安装在曲轴末端的靶轮。
LDE转速传感器(CKP)电路由一个发动机控制模块(ECM)提供的5V参考电压电路、低电平参考电压电路以及一个输出信号电路组成。
LDE发动机转速传感器是一种内部磁性偏差数字输出集成电路传感装置。
传感器检测曲轴上58齿变磁阻转子的轮齿和槽之间的磁通量变化。
变磁阻转子上的每个齿按总数60齿间隔分布,缺失的2个齿被用作参考间隙。
转速传感器产生一个频率变化的开/关直流电压,曲轴每转动一圈输出58个脉冲。
转速传感器输出信号的频率取决于曲轴的转速。
当变磁阻转子上的每个齿转过曲轴位置传感器时,转速传感器向发动机控制模块发送一个数字信号,该信号描绘了曲轴变磁阻转子的图像。
发动机控制模块使用每个曲轴位置信号脉冲以确定曲轴转速,并对曲轴变磁阻转子参考间隙进行解码,以识别曲轴位置。
然后,此信息被用来确定发动机的最佳点火和喷油时刻。
发动机控制模块还利用转速传感器输出信息来确定凸轮轴相对于曲轴的位置,以控制凸轮轴相位并检测汽缸缺火。
2.3 发动机转速和曲轴位置传感器
2.3.1 发动机转速和曲轴位置传感器作用安装及类型
1.作用
产生发动机曲轴转速信号,决定基本喷油量和基本点火提前角;
产生发动机曲轴转角信号,判定曲轴(或活塞)位置;
产生曲轴基准位置信号,计算曲轴转角。
2.安装
曲轴前端或后端、凸轮轴、分电器
3.类型
霍尔式、电磁感应式、光电式
2.3.2 霍尔式
1.霍尔原理
将霍尔基片垂直放于磁场,通一垂直于磁场的电流,则在垂直于磁场和电流方向产生一电压,霍尔电压。
霍尔电压正比于磁场强度B。
2.结构
永久磁铁:安装在分电器底板上,位于触发叶轮的内侧,与霍尔集成电路相对。
触发叶轮:安装在放分电器轴上,缸数相等的四个叶片(50 °)和四个窗口(40°)。
霍尔集成电路:安装在分电器上,位于触发叶轮的外测。
3.原理
叶片进入气隙,磁场被旁路,霍尔电压为0,输出高电平;
叶片离开气隙,磁场穿过霍尔元件,产生霍尔电压,输出低电平。
发动机不停地运转,产生数字脉冲信号,信号的频率随发动机转速的增大而增大。
霍尔传感器的输出信号
4.美国GM公司的霍尔式曲轴位置传感器
美国通用的霍尔式曲轴位置传感器安装于曲轴前端,外信号轮均布18个叶片和窗口,内信号轮有三个叶片(100、90、110)和三个窗口(20、30、10)
5.应用
霍尔式曲轴位置传感器主要应用在北美和欧洲的车辆上。
6.检测
(1)万用表检测
电源线:拔下连接器,点火开关ON,测量插头3脚与搭铁间的电压,应为5V。
搭铁线:拔下连接器,点火开关OFF,测量插头1脚与搭铁间的电阻,应为0。
信号线:插好连接器,起动发动机,测量2脚与1脚间的电压,应约为3V。
(2)示波器检测
数字信号:信号频率随发动机转速的增大而增大。
波形的幅值大多数应满5V,波形的形状要适当一致,矩形的拐角和垂直沿的一致性要好。
2.3.3 磁电式
1.结构
信号盘:安装在曲轴或分电器轴上,并随之转动,信号盘上均制有若干凸齿和齿槽,在信号盘上制一宽齿槽或装一销钉。
永磁铁:安装在信号盘的边缘,产生永磁场,穿过信号盘、电磁线圈等。
电磁线圈:当磁场变化时,产生感应电动势,输出信号。
2.原理
信号盘旋转,当信号盘凸齿接近并对正电磁线圈时,磁场增强;当信号盘凸齿离开电磁线圈时,磁场减弱,在感应线圈中产生交变的感应电动势,其频率和幅值随发动机转速的增大而增大,根据频率(脉冲数)计量转速。
其中宽齿槽或销钉对正电磁线圈时,产生频率不同的信号,用于确认曲轴基准位置。
信号波形
3.丰田公司TCCS系统的电磁式曲轴位置传感器
(1)结构
上下两套电磁线圈和信号转子,分别构成G信号发生器和Ne信号发生器,G信号用于计算曲轴转角和发动机转速;Ne信号用于判定曲轴基准位置。
(2)Ne信号的产生
Ne信号转子固定在分电器轴的下部,其上均布有24个凸齿,分电器轴旋转一圈时,在Ne电磁线圈中感应出24个交流信号。
(3)G信号的产生
G信号转子固定在分电器轴的上部,其上有1个凸齿,相对布置有G1和G2两个电磁线圈,分电器轴旋转一圈时,在G1和G2电磁线圈中分别感应出1个交流信号,G1信号对应6缸活塞上止点前10º(BT DC10º),G2信号对应1缸BTDC10º。
利用G信号和Ne信号的组合,就可计算曲轴转角,确定曲轴位置,送至ECM,从而决定喷油和点火的位置。
3.韩国现代SONA TA汽车光电式曲轴位置传感器
4.使用
优点:不受电磁干扰。
缺点:受灰尘影响大。
光电式传感器的功能元件通常被密封得很好,但损坏的分电器轴套或密封垫,以及当维修时可能使油污和污物进入敏感区域造成污损,这就可能引起不能起动、失速和断火。
应用:广泛应用于亚洲车型。
5.检测(韩国现代SONA TA汽车光电式曲轴位置传感器)
(1)万用表检测
电源线:拔下连接器,点火开关ON,测量插头4脚与搭铁间的电压,应为12V。
搭铁线:拔下连接器,点火开关OFF,测量插头1脚与搭铁间的电阻,应为0Ω。
信号线:拔下连接器,点火开关ON,测量2脚和3脚与搭铁间的电压,应为4.8V~5.2V;插好连接器,起动发动机,测量3脚与1脚间的电压,应为0.2V~1.2V,测量2脚与1脚间的电压,应为1.8V~2.5V 。
(2)示波器检测
数字信号:信号频率应随发动机转速的变化而变化。
波形的幅值大多数应满5V,波形的形状要适当一致,矩形的拐角和垂直沿的一致性要好。