通信原理实验内容概要
- 格式:doc
- 大小:658.00 KB
- 文档页数:14
一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统的基本组成和各部分的功能。
3. 熟悉通信信号的基本处理方法。
4. 培养实验操作能力和分析问题、解决问题的能力。
二、实验内容1. 通信系统基本组成实验2. 通信信号调制与解调实验3. 通信信道传输特性实验4. 通信系统误码率实验三、实验仪器1. 通信原理实验箱2. 双踪示波器3. 数字信号发生器4. 信号分析仪四、实验原理1. 通信系统基本组成实验:了解通信系统的基本组成,包括信源、信道、信宿和变换器等。
2. 通信信号调制与解调实验:掌握模拟调制、数字调制的基本原理,以及相应的调制和解调方法。
3. 通信信道传输特性实验:了解通信信道的传输特性,包括频率响应、时延特性和噪声特性等。
4. 通信系统误码率实验:掌握通信系统误码率的计算方法,以及影响误码率的因素。
五、实验步骤1. 通信系统基本组成实验(1)观察实验箱各模块的功能和连接方式;(2)按照实验指导书的要求,连接实验电路;(3)进行实验操作,观察实验现象,记录实验数据。
2. 通信信号调制与解调实验(1)按照实验指导书的要求,设置调制参数和解调参数;(2)进行调制和解调实验,观察实验现象,记录实验数据;(3)分析实验结果,验证调制和解调的正确性。
3. 通信信道传输特性实验(1)设置不同的信道参数,观察信道对信号的影响;(2)分析信道传输特性,记录实验数据;(3)计算信道传输特性指标,如信噪比、误码率等。
4. 通信系统误码率实验(1)设置不同的误码率,观察误码率对通信系统的影响;(2)分析误码率与信道、调制、解调等因素的关系,记录实验数据;(3)计算通信系统误码率,验证实验结果。
六、实验结果与分析1. 通信系统基本组成实验实验结果显示,通信系统由信源、信道、信宿和变换器等部分组成,各部分之间通过信号传输实现信息交流。
2. 通信信号调制与解调实验实验结果显示,调制和解调过程可以有效地将信息信号转换为适合信道传输的形式,并恢复出原始信息。
第1篇一、实验目的1. 理解通信原理的基本概念和原理。
2. 掌握通信系统中的信号传输、调制解调、信道编码和解码等基本技术。
3. 通过实验验证通信原理在实际系统中的应用,提高实际操作能力。
二、实验内容1. 信号传输实验(1)实验目的:验证信号传输过程中的基本特性,如幅度调制、频率调制、相位调制等。
(2)实验原理:通过改变输入信号的幅度、频率和相位,观察输出信号的相应变化,分析调制和解调过程。
(3)实验步骤:① 设计信号传输系统,包括调制器、传输信道和解调器;② 选择合适的调制方式,如AM、FM、PM等;③ 通过实验验证调制和解调过程,分析输出信号的特性;④ 分析实验结果,总结调制和解调过程中的关键因素。
2. 调制解调实验(1)实验目的:研究调制解调技术在通信系统中的应用,掌握调制解调的基本原理和方法。
(2)实验原理:通过实验验证调制解调过程,分析调制解调器的性能指标,如调制指数、解调误差等。
(3)实验步骤:① 设计调制解调系统,包括调制器、解调器和信道;② 选择合适的调制方式和解调方式,如AM、FM、PM、PSK、QAM等;③ 通过实验验证调制解调过程,分析调制解调器的性能指标;④ 分析实验结果,总结调制解调过程中的关键因素。
3. 信道编码和解码实验(1)实验目的:研究信道编码和解码技术在通信系统中的应用,掌握信道编码和解码的基本原理和方法。
(2)实验原理:通过实验验证信道编码和解码过程,分析编码和解码的性能指标,如误码率、信噪比等。
(3)实验步骤:① 设计信道编码和解码系统,包括编码器、信道和解码器;② 选择合适的信道编码方式,如BCH码、RS码等;③ 通过实验验证信道编码和解码过程,分析编码和解码的性能指标;④ 分析实验结果,总结信道编码和解码过程中的关键因素。
4. 通信系统综合实验(1)实验目的:综合运用通信原理中的各种技术,设计一个简单的通信系统,并验证其性能。
(2)实验原理:将上述实验中的技术综合应用于通信系统,验证系统的整体性能。
一、实验名称通信原理实验二、实验目的1. 理解通信系统的基本组成和基本工作原理。
2. 掌握模拟通信和数字通信的基本技术。
3. 熟悉调制、解调、编码、解码等基本过程。
4. 培养实际操作能力和实验技能。
三、实验器材1. 通信原理实验箱2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机四、实验原理通信原理实验主要包括模拟通信和数字通信两部分。
1. 模拟通信:模拟通信是指将声音、图像等模拟信号通过调制、解调、放大、滤波等过程,在信道中传输的通信方式。
模拟通信的基本原理是:将模拟信号转换为适合在信道中传输的信号,通过信道传输后,再将信号还原为原来的模拟信号。
2. 数字通信:数字通信是指将声音、图像等模拟信号通过采样、量化、编码等过程,转换为数字信号,在信道中传输的通信方式。
数字通信的基本原理是:将模拟信号转换为数字信号,在信道中传输后,再将数字信号还原为原来的模拟信号。
五、实验内容1. 模拟通信实验(1)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
(2)放大与滤波实验:通过实验箱,观察放大和滤波过程中的波形变化,了解放大和滤波的基本原理。
2. 数字通信实验(1)编码与解码实验:通过实验箱,观察编码和解码过程中的波形变化,了解编码和解码的基本原理。
(2)调制与解调实验:通过实验箱,观察调制和解调过程中的波形变化,了解调制和解调的基本原理。
六、实验步骤1. 模拟通信实验(1)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
(2)放大与滤波实验:连接实验箱,设置放大和滤波参数,观察波形变化,记录实验数据。
2. 数字通信实验(1)编码与解码实验:连接实验箱,设置编码和解码参数,观察波形变化,记录实验数据。
(2)调制与解调实验:连接实验箱,设置调制和解调参数,观察波形变化,记录实验数据。
七、实验结果与分析1. 模拟通信实验(1)调制与解调实验:实验结果显示,调制过程将模拟信号转换为适合在信道中传输的信号,解调过程将传输的信号还原为原来的模拟信号。
一、实验名称通信原理实验二、实验目的1. 理解通信原理的基本概念和原理;2. 掌握通信系统中的调制、解调、编码和解码等基本技术;3. 培养实际操作能力和分析问题能力。
三、实验内容1. 调制与解调实验(1)实验目的:验证调幅(AM)和调频(FM)调制与解调的基本原理;(2)实验步骤:1. 准备实验设备:调幅调制器、调频调制器、解调器、示波器、信号发生器等;2. 设置调制器参数,生成AM和FM信号;3. 将调制信号输入解调器,观察解调后的信号波形;4. 分析实验结果,比较AM和FM调制信号的特点;(3)实验结果与分析:通过实验,观察到AM和FM调制信号的特点,验证了调制与解调的基本原理。
2. 编码与解码实验(1)实验目的:验证数字通信系统中的编码与解码技术;(2)实验步骤:1. 准备实验设备:编码器、解码器、示波器、信号发生器等;2. 设置编码器参数,生成数字信号;3. 将数字信号输入解码器,观察解码后的信号波形;4. 分析实验结果,比较编码与解码前后的信号特点;(3)实验结果与分析:通过实验,观察到编码与解码前后信号的特点,验证了数字通信系统中的编码与解码技术。
3. 信道模型实验(1)实验目的:验证信道模型对通信系统性能的影响;(2)实验步骤:1. 准备实验设备:信道模型仿真软件、信号发生器、示波器等;2. 设置信道模型参数,生成模拟信号;3. 将模拟信号输入信道模型,观察信道模型对信号的影响;4. 分析实验结果,比较不同信道模型下的信号传输性能;(3)实验结果与分析:通过实验,观察到不同信道模型对信号传输性能的影响,验证了信道模型在通信系统中的重要性。
4. 通信系统性能分析实验(1)实验目的:分析通信系统的性能指标;(2)实验步骤:1. 准备实验设备:通信系统仿真软件、信号发生器、示波器等;2. 设置通信系统参数,生成模拟信号;3. 仿真通信系统,观察系统性能指标;4. 分析实验结果,比较不同参数设置下的系统性能;(3)实验结果与分析:通过实验,观察到不同参数设置对通信系统性能的影响,验证了通信系统性能分析的重要性。
通信原理实验实验报告实验名称:通信原理实验实验目的:1. 理解基本的通信原理和通信系统的工作原理;2. 掌握各种调制解调技术以及通信信号的传输方式;3. 熟悉通信系统的基本参数和性能指标。
实验设备和器材:1. 信号发生器2. 采样示波器3. 调制解调器4. 麦克风和扬声器5. 示波器6. 功率分贝计7. 电缆和连接线等实验原理:通信原理主要涉及调制解调、传输媒介、信道编码和解码等方面的内容。
本次实验主要内容为调幅、调频和数字调制解调技术的验证,以及传输信号质量的评估和性能测量。
实验步骤:1. 调幅实验:将信号发生器产生的正弦波信号调幅到载波上,并使用示波器观察调幅波形,记录幅度调制度;2. 调频实验:使用信号发生器产生调制信号,将其调频到载波上,并使用示波器观察调频波形,记录调频的范围和带宽;3. 数字调制实验:使用调制解调器进行数字信号调制解调实验,并观察解调的信号质量,记录解调信号的正确性和误码率;4. 信号质量评估:使用功率分贝计测量信号传输过程中的信噪比和失真程度,并记录测量结果;5. 性能测量:采用示波器和其他测量设备对通信系统的带宽、传输速率等性能指标进行测量,记录测量结果。
实验结果:1. 对于调幅实验,观察到正弦波信号成功调幅到载波上,并记录幅度调制度为X%;2. 对于调频实验,观察到调制信号成功调频到载波上,并记录调频的范围为X Hz,带宽为X Hz;3. 对于数字调制实验,观察到解调后的信号正确性良好,误码率为X%;4. 信号质量评估测量结果显示信噪比为X dB,失真程度为X%;5. 性能测量结果显示通信系统的带宽为X Hz,传输速率为X bps。
实验总结:通过本次实验,我们深入了解了通信原理中的调制解调技术和信号传输方式,并且成功进行了调幅、调频和数字调制解调实验。
通过信号质量评估和性能测量,我们对通信系统的性能指标有了更深入的了解。
在实验过程中,我们还发现了一些问题和改进的空间,例如在数字调制实验中,我们可以进一步优化解调算法,提高解调的正确性。
第1篇一、实验目的1. 理解通信系统的基本原理和组成。
2. 掌握通信系统中的调制、解调、编码、解码等基本技术。
3. 熟悉实验仪器的使用方法,提高动手能力。
4. 通过实验,验证通信原理理论知识。
二、实验原理通信原理实验主要涉及以下内容:1. 调制与解调:调制是将信息信号转换为适合传输的信号,解调是将接收到的信号还原为原始信息信号。
2. 编码与解码:编码是将信息信号转换为数字信号,解码是将数字信号还原为原始信息信号。
3. 信号传输:信号在传输过程中可能受到噪声干扰,需要采取抗干扰措施。
三、实验仪器与设备1. 实验箱:包括信号发生器、调制解调器、编码解码器等。
2. 信号源:提供调制、解调所需的信号。
3. 传输线路:模拟信号传输过程中的衰减、反射、干扰等现象。
四、实验内容与步骤1. 调制实验(1)设置调制器参数,如调制方式、调制频率等。
(2)将信号源信号输入调制器,观察调制后的信号波形。
(3)调整解调器参数,如解调方式、解调频率等。
(4)将调制信号输入解调器,观察解调后的信号波形。
2. 解调实验(1)设置解调器参数,如解调方式、解调频率等。
(2)将调制信号输入解调器,观察解调后的信号波形。
(3)调整调制器参数,如调制方式、调制频率等。
(4)将解调信号输入调制器,观察调制后的信号波形。
3. 编码与解码实验(1)设置编码器参数,如编码方式、编码长度等。
(2)将信息信号输入编码器,观察编码后的数字信号。
(3)设置解码器参数,如解码方式、解码长度等。
(4)将编码信号输入解码器,观察解码后的信息信号。
4. 信号传输实验(1)设置传输线路参数,如衰减、反射等。
(2)将信号源信号输入传输线路,观察传输过程中的信号变化。
(3)调整传输线路参数,如衰减、反射等。
(4)观察传输线路参数调整对信号传输的影响。
五、实验结果与分析1. 调制实验:调制后的信号波形与原信号波形基本一致,说明调制和解调过程正常。
2. 解调实验:解调后的信号波形与原信号波形基本一致,说明解调过程正常。
网络工程信息安全_通信原理实验讲义一、实验目的1.掌握通信原理的基本概念和原理;2.了解数字通信系统的构成和工作原理;3.学习通信系统中各部件的工作特点及性能指标的测量方法。
二、实验仪器信号发生器、示波器、数字存储示波器、多用测试仪等。
三、实验内容1.信号的频谱分析根据实验要求,使用信号发生器产生不同频率的正弦信号,利用示波器和频谱分析仪进行信号的波形和频谱分析。
2.信号的调制与解调根据实验要求,利用信号发生器产生调制信号,使用示波器和调制解调器进行信号的调制和解调。
3.数字通信系统根据实验要求,使用数字通信系统测试仪,对数字通信系统中的激励特性、传输特性和性能进行测量和分析。
4.通信原理实验综合实验根据实验要求,使用多种仪器和设备,完成一个完整的通信系统的实验。
四、实验原理1.信号的频谱分析信号的频谱是指信号在频率轴上的分布情况,频谱分析是对信号进行频率分解和频谱推导的过程。
常用的频谱分析方法有时域分析和频域分析。
2.信号的调制与解调调制是将低频信号转换为高频信号的过程,解调是将高频信号转换为低频信号的过程。
调制技术有幅度调制、频率调制和相位调制等。
3.数字通信系统数字通信系统是将模拟信号转换为数字信号进行传输和处理的系统。
它包括激励特性、传输特性和性能等方面的参数,通过测试仪器进行测量和分析。
五、实验步骤1.信号的频谱分析a.根据实验要求,使用信号发生器产生不同频率的正弦信号;b.连接示波器和频谱分析仪,将信号输入示波器,并观察信号的波形;c.将信号输入频谱分析仪,利用频谱分析仪进行信号的频谱分析。
2.信号的调制与解调a.根据实验要求,使用信号发生器产生调制信号;b.将调制信号输入调制解调器,利用示波器观察信号的调制和解调效果。
3.数字通信系统a.连接数字通信系统测试仪,按照实验要求进行设置;b.测量和分析数字通信系统的激励特性、传输特性和性能等参数。
4.通信原理实验综合实验a.根据实验要求,准备所需的仪器和设备;b.进行通信原理实验的综合实验,使用多种仪器和设备完成一个完整的通信系统的实验。
1. 理解并掌握通信系统基本组成及工作原理。
2. 掌握通信系统中信号的传输与调制、解调方法。
3. 学习通信系统性能评估方法及分析方法。
二、实验器材1. 通信原理实验平台2. 双踪示波器3. 信号发生器4. 信号分析仪5. 计算机及实验软件三、实验内容1. 通信系统基本组成及工作原理(1)观察通信原理实验平台,了解通信系统的基本组成,包括发送端、信道、接收端等。
(2)分析实验平台中各模块的功能,如调制器、解调器、滤波器等。
(3)通过实验验证通信系统的工作原理。
2. 信号的传输与调制、解调方法(1)学习并掌握模拟信号的调制、解调方法,如AM、FM、PM等。
(2)学习并掌握数字信号的调制、解调方法,如2ASK、2FSK、2PSK等。
(3)通过实验验证调制、解调方法的有效性。
3. 通信系统性能评估方法及分析方法(1)学习并掌握通信系统性能评估方法,如误码率、信噪比、调制指数等。
(2)通过实验测量通信系统性能参数,如误码率、信噪比等。
(3)分析实验数据,总结通信系统性能。
1. 观察通信原理实验平台,了解通信系统的基本组成。
2. 设置实验参数,如调制方式、载波频率、调制指数等。
3. 观察并记录实验过程中各模块的输出信号。
4. 利用示波器、信号分析仪等仪器分析实验数据。
5. 计算通信系统性能参数,如误码率、信噪比等。
6. 分析实验结果,总结实验结论。
五、实验结果与分析1. 通过实验验证了通信系统的基本组成及工作原理。
2. 实验结果表明,调制、解调方法对通信系统性能有显著影响。
例如,在相同条件下,2PSK调制比2ASK调制具有更好的误码率性能。
3. 通过实验测量了通信系统性能参数,如误码率、信噪比等。
实验数据表明,在合适的调制方式、载波频率等参数下,通信系统可以达到较好的性能。
4. 分析实验数据,总结实验结论。
实验结果表明,在通信系统中,合理选择调制方式、载波频率等参数,可以提高通信系统性能。
六、实验总结本次实验通过观察、实验、分析等方法,对通信原理进行了深入学习。
通信原理实验教程一、实验内容通信原理实验通常包括以下内容:1. 信号的产生与调制:实验通过信号发生器产生不同频率的正弦波信号,然后通过调制电路将正弦波信号调制成不同调制方式的信号,如调频、调幅、调相等。
2. 信号解调与恢复:实验通过解调电路将调制信号进行解调,恢复成原始的信息信号,然后通过滤波电路对信号进行滤波处理,使其更加稳定。
3. 通信系统的性能分析:实验通过各种测试仪器对通信系统进行性能分析,包括信噪比、误码率等指标的测试和分析。
4. 数字通信系统的实验:实验通过数字信号发生器产生数字信号,然后通过数字调制解调技术将数字信号传输到接收端,并对接收信号进行解码等操作。
二、实验仪器设备通信原理实验需要使用的主要仪器设备包括:1. 信号发生器:用于产生各种信号,包括正弦波信号、方波信号、三角波信号等。
2. 示波器:用于观察和测量信号波形,包括幅度、频率、相位等参数。
3. 信号调制解调实验箱:用于进行信号的调制解调实验操作,包括调幅、调频、调相等。
4. 滤波器:用于对信号进行滤波处理,去除杂波,使信号更加稳定。
5. 锁相环电路:用于信号的同步处理,提高信号的稳定性和抗干扰性。
6. 数字信号发生器:用于产生数字信号,进行数字通信系统实验。
三、实验步骤通信原理实验一般按以下步骤进行:1. 信号产生与调制实验:(1) 将信号发生器设置为正弦波形式,并调节频率和幅度。
(2) 将信号通过调制电路进行调幅、调频、调相等操作。
(3) 在示波器上观察和测量调制后的信号波形。
2. 信号解调与恢复实验:(1) 将调制后的信号通过解调电路进行解调操作,恢复成原信号。
(2) 使用示波器观察解调后的信号波形,并进行滤波处理。
(3) 对信号进行稳定性测试,包括信噪比、误码率等指标的测量和分析。
3. 数字通信系统实验:(1) 使用数字信号发生器产生数字信号,并进行数字调制操作。
(2) 将数字信号通过数字调制解调技术传输到接收端,并对接收信号进行解码等操作。
一、实验名称:通信原理实验二、实验目的:1. 理解并掌握通信原理的基本概念和原理;2. 熟悉通信系统的组成及各部分功能;3. 掌握通信系统性能指标及分析方法;4. 提高动手操作能力及实验报告撰写能力。
三、实验内容:1. 通信系统基本组成及功能;2. 信号调制与解调;3. 信道传输特性;4. 通信系统性能分析。
四、实验器材:1. 通信原理实验箱;2. 双踪示波器;3. 函数信号发生器;4. 数据采集器;5. 计算机及仿真软件。
五、实验步骤:(一)通信系统基本组成及功能1. 观察实验箱中各模块的连接情况,了解通信系统的组成;2. 分析各模块的功能,如放大器、滤波器、调制器、解调器等;3. 在实验箱上操作,观察各模块间的信号传输过程。
(二)信号调制与解调1. 设置实验箱中调制器和解调器的参数,如调制指数、载波频率等;2. 输入调制信号,观察调制器输出信号的变化;3. 将调制信号输入解调器,观察解调器输出信号的变化;4. 分析调制与解调过程,验证调制和解调的正确性。
(三)信道传输特性1. 设置实验箱中信道模块的参数,如衰减、相位延迟等;2. 输入信号,观察信道模块输出信号的变化;3. 分析信道传输特性,如衰减、相位延迟等对信号的影响;4. 通过实验验证信道传输特性对通信系统性能的影响。
(四)通信系统性能分析1. 设置实验箱中通信系统参数,如信号功率、信噪比等;2. 分析通信系统性能指标,如误码率、比特误码率等;3. 通过实验验证通信系统性能指标与系统参数的关系。
六、实验结果与分析:(一)通信系统基本组成及功能实验结果表明,通信系统由发送端、信道和接收端组成。
发送端将信号调制后发送,信道对信号进行传输,接收端对接收到的信号进行解调,从而恢复出原始信号。
(二)信号调制与解调实验结果表明,调制器能够将调制信号转换为适合信道传输的信号,解调器能够将接收到的信号恢复为原始信号。
(三)信道传输特性实验结果表明,信道传输特性对信号的影响较大,如衰减、相位延迟等会降低信号质量,影响通信系统性能。
《通信原理》MATLAB 仿真实验 实验一 模拟调制的仿真实验一、实验目的熟悉MATLAB 软件的使用,并学会用MATLAB 来产生信号并实现信号模拟调制的可视化。
二、实验原理1、 理论原理AM 调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。
在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化;在频谱结构上,它的频谱完全是基带信号频谱在频域内的简单搬移(精确到常数因子)。
由于这种搬移是线性的,因此,幅度调制通常又称为线性调制。
解调方法利用相干解调。
解调就是实现频谱搬移,通过相乘器与载波相乘来实现。
相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。
通过信号的功率谱密度的公式,得到功率谱密度。
即:在AM 信号中,载波分量并不携带信息,信息完全由边带传送。
如果将载波抑制,只需在将直流0A 去掉,即可输出抑制载波双边带信号,简称双边带信号(DSB )。
DSB 调制器模型如图1所示。
图1 DSB 调制器模型其中,设正弦载波为0()cos()c c t A t ωϕ=+式中,A 为载波幅度;c ω为载波角频率;0ϕ为初始相位(假定0ϕ为0)。
调制过程是一个频谱搬移的过程,它是将低频信号的频谱搬移到载频位置。
而解调是将位于载频的信号频谱再搬回来,并且不失真地恢复出原始基带信号。
双边带解调通常采用相干解调的方式,它使用一个同步解调器,即由相乘器和低通滤波器组成。
在解调过程中,输入信号和噪声可以分别单独解调。
相干解调的原理框图如图2所示:)]()([21)]()([)(cos )]([)(00c c c c AM c AM F F A s t t f A t s ωωωωωωδωωδπωω-+++-++=+=图2 相干解调器的数学模型信号传输信道为高斯白噪声信道,其功率为2σ。
即)]()([21)(c c DSB F F s ωωωωω-++=三、 实验内容1、 用Matlab 产生一个频率为2Hz 、功率为10的余弦信源,设载波频率为10Hz ,试画出(1)DSB 调制信号;(2)该调制信号的功率谱密度;(3)相干解调后的信号波形。
图形显示。
2、 用Matlab 产生一个频率为2Hz 、功率为10的余弦信源,设载波频率为10Hz ,A=5,试画出(1)AM 调制信号;(2)该调制信号的功率谱密度;(3)相干解调后的信号波形。
图形显示。
四、 实验结果 AM 调制:DSB 调制:t t f t s CDSBωcos )()(=通过本次实验,我理解了AM和DSB调制的原理,及用MATLAB仿真的方法。
实验二 基带信号眼图的仿真实验一、实验目的熟悉MATLAB 软件的使用,并学会用MATLAB 来产生信号并实现基带信号眼图的可视化。
二、实验原理1、 理论原理2、 重要函数说明三、 实验内容(第2、3题选一题) 1、 画出单极性码型或双极性码的眼图。
2、 设基带传输系统响应是α=0.5的升余弦滚降系统,画出在接收端的基带数字信号波形及其眼图。
3、 设二进制数字基带信号{}1,1n a ∈+-,()100s t T g t ≤<⎧=⎨⎩其它,设加性高斯白噪声的双边功率谱密度为0N 2,画出眼图。
(1) 经过理想低通()()1520s f T H f ⎧≤=⎨⎩其它后的眼图 (2) 经过理想低通()110sf T H f ⎧≤=⎨⎩其它后的眼图四、 实验结果实验三数字频带信号调制的仿真实验一.实验目的熟悉MATLAB软件的使用,并学会用MATLAB来产生信号并实现二进制数字调制的可视化。
二.实验原理1、二进制振幅键控(1)2ASK调制原理二进制振幅键控记作2ASK,2ASK是利用代表数字信息(“0”或“1”)的基带矩形脉冲去键控一个连续的正弦型载波的振幅,使载波时断时续地输出。
有载波输出时表示发送“1”,无载波输出时表示发送“0”。
数字基带信号式中g(t)是宽度为Ts、高度为A的矩形脉冲,an为数字序列{an}的第n个码元的电平值。
载波c(t)=COS(ωct+ ϕ0),初始相位ϕ0=0则2ASK 信号的表达式为:(2)2ASK信号波形如下:(3)2ASK功率谱密度如下:2、二进制数字频移键控(1)2FSK调制二进制频移键控记作2FSK,2FSK系统是利用二进制数字基带信号控制载波频率进行频谱变换的过程。
二进制基带信号只有两种代码,所以调频时,载波频率只能被置于两种频率,即:即用频率为f1的载波代表“1”码,用频率为f2的载波代表“0”码,或相反。
(2)2FSK调制框图以及波形(3)2FSK功率谱3、二进制数字相移键控(1)2PSK 调制原理二进制相移键控记作2PSK ,用载波的两种相位(0和π)去对应基带信号的“0” 与 “1”两种码元。
因此二元数字调相就是让载波在两种相位间切换,故称相移键控。
2PSK 还可以看作双极性不归零码基带信号的数字调幅,即基带信号与载波 cos ωc t 的乘积。
(2)2PSK 信号频谱三.实验内容1、 用Matlab 产生独立等概率的二进制信源。
(1) 画出OOK 信号波形及其功率谱 (2) 画出2PSK 信号波形及其功率谱(3) 画出2FSK 信号波形及其功率谱(121sf f T ->>) 四.实验源代码、仿真结果及分析1、产生单极性不归零的二进制基带信号,最大幅度归一化为1。
画出基带信号信号波形及其功率谱图形;(1)源代码k=10 %k 表示产生的随机数的个数m=rand(1,k); %产生k 个在(0,1)之间的均匀分布的随机数 for i=1:kif (m(i)>0) && (m(i)< 0.5) s(i)=0; else s(i)=1; endend %根据产生的均匀随机数产生二进制单极性不归零信号subplot(2,1,1);stairs(s) %画出二进制单极性归零信号title('二进制单极性信号');grid onaxis([1,k+1,0,2]);subplot(2,1,2);Y = fft(s,1024);Z=fftshift(Y);Pyy = Z.* conj(Z) /(1024);f = 1000*(0:1000)/(1024);plot(f,Pyy(1:1001));axis([0 1000,0 0.05]);title('二进制单极性信号的频谱');xlabel('频率f (Hz)');grid on(2)基带信号信号波形及其功率谱图形2、对1产生的基带信号进行2ASK调制,画出2ASK信号波形及其功率谱图形;fb =1 %输入的二进制基带信号的频率fc = 3 %载波频率A=1 %载波幅度M=25; %每比特符号用M个点来表示tb=1/fb %输入的二进制基带信号的码元周期tc=1/fc %载波周期Nc=floor(M*tc/tb) %每个载波周期内的采样点的个数step=tb/M %采样间隔%fstart = start frequency for spectrum plot.%fend = end frequency for spectrum plot.for i = 1:kif s(i) == 1for j = 1:MAsk((i-1)*M+j)=A*cos(2*pi*(j-1)/Nc);endelsefor j = 1:MAsk((i-1)*M+j)=0;endendendAskfor i=1:M*kt(i)=i*step;endsubplot(2,2,3);plot(t,Ask)title('2ASK信号波形');grid onsubplot(2,2,4);Y1 = fft(Ask,1024);Z1=fftshift(Y1);Pyy1 = Z1.* conj(Z1) /(1024);f = 1000*(0:1000)/(1024);plot(f,Pyy1(1:1001));axis([0 1000,0 1]);title('2Ask信号的频谱');xlabel('频率f (Hz)');grid on(2)2ASK信号波形及其功率谱图形3、对1产生的基带信号进行2FSK调制,画出2FSK信号波形及其功率谱图形;(1)源代码fb =1 %输入的二进制基带信号的频率fc0 = 3,fc1=5 %两个载波频率,实验中基带信号的0对应于载波频率fc0,基带信号的1对应于载波频率fc1A=1 %载波幅度M=25; %每比特符号用M个点来表示tb=1/fb %输入的二进制基带信号的码元周期tc0=1/fc0, tc1=1/fc1, %两个载波周期Nc0=floor(M*tc0/tb),Nc1=floor(M*tc1/tb), %每个载波周期内的采样点的个数step=tb/M %采样间隔%fstart = start frequency for spectrum plot.%fend = end frequency for spectrum plot.for i = 1:kif s(i) == 1for j = 1:MFsk((i-1)*M+j)=A*cos(2*pi*(j-1)/Nc0);endelsefor j = 1:MFsk((i-1)*M+j)=A*cos(2*pi*(j-1)/Nc1);endendend % 2FSK调制for i=1:M*kt(i)=i*step;endsubplot(2,2,3);plot(t,Fsk)title('2FSK信号波形'); %画出2FSK的波形grid onsubplot(2,2,4);Y1 = fft(Fsk,1024);Z1=fftshift(Y1);Pyy1 = Z1.* conj(Z1) /(1024);f = 1000*(0:1000)/(1024);plot(f,Pyy1(1:1001));axis([0 1000,0 5]);title('2Fsk信号的频谱');xlabel('频率f (Hz)'); %画出2Fsk信号的频谱grid on(2)仿真结果4、对1产生的基带信号进行2PSK调制,画出2PSK信号波形及其功率谱图形。
(1)源代码fb =1 %输入的二进制基带信号的频率fc =1 %载波频率A=1 %载波幅度M=25; %每比特符号用M个点来表示tb=1/fb %输入的二进制基带信号的码元周期tc=1/fc %载波周期Nc=floor(M*tc/tb) %每个载波周期内的采样点的个数step=tb/M %采样间隔for i = 1:kif s(i) == 1for j = 1:MPsk((i-1)*M+j)=A*cos(2*pi*(j-1)/Nc);endelsefor j = 1:MPsk((i-1)*M+j)=-A*cos(2*pi*(j-1)/Nc);endendendPskfor i=1:M*kt(i)=i*step;endsubplot(2,2,3);plot(t,Psk)title('2PSK信号波形');grid onsubplot(2,2,4);Y1 = fft(Psk,1024);Z1=fftshift(Y1);Pyy1 = Z1.* conj(Z1) /(1024);f = 1000*(0:1000)/(1024);plot(f,Pyy1(1:1001));axis([0 1000,0 5]);title('2Psk信号的频谱');xlabel('频率f (Hz)');grid on(2)仿真结果五.实验心得:1、通过这次实验,对matlab的使用有了一个更加熟练的掌握和了解,熟练掌握了画频谱的的方法,以及怎么用matlab来进行数字调制信号的仿真,我觉得,2ASK、2PSK,2FSK在matlab上实现仿真的方法是相近的,只要学会了一种,其他的就比较简单,但是必须要深刻理解含义,这对于以后的学习都是一个很大的帮助,收益很多。